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Shifts from a distant neighboring resonance
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The line center of a resonance is affected by the presence of neighboring resonances due to quantum interference
between the two resonant processes. Such shifts must be accounted for in high-precision measurements but are
easily overlooked. In the present work, we develop an analytic formulation for the effect in the simplest case of a
three-level atom. The shifts in this model system are large enough to be of concern for precision measurements.
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When an atom has two resonant transitions that are closely
spaced in energy, quantum-mechanical interference can cause
a variety of effects on the resonances. One of the clearest
demonstrations of such interference is the quantum beats
phenomenon [1], in which a coherently excited superposition
of two neighboring states shows interference between the
radiative decay from the two atomic levels. Since radiative
decay is a QED process [2], the explanation of interference
effects involving this decay must be developed from QED
theory [3,4]. For atomic systems, radiative decay is usually
treated through density matrices [5–7] and is based upon
the essential-state approach [8]. Quantum-mechanical inter-
ference in the density-matrix formalism has been derived from
QED [9–11]. There are a range of effects predicted due to this
interference, including narrowing of spectral lines [12–14],
cancellation of spontaneous emission [15], phase control of
spontaneous emission [16], and distortions and asymmetries
of Lorentzian line shapes [17–23].

In this article, we calculate the shifts of atomic resonances
from quantum-mechanical interference due to the presence of a
distant neighboring resonance. We study the simplest example
(see Fig. 1) of a three-level atom in which a single monochro-
matic perturbation V (t) = V0 cos (ωt + φ) is nearly resonant
with the |1〉 → |2〉 transition and far off resonance with the
|1〉 → |3〉 transition. It is assumed that V12 = V ∗

21 and V13 =
V ∗

31 are the only nonzero Vij = 〈i|V0|j 〉, that states |2〉 and |3〉
decay radiatively down to only state |1〉, and that this radiative
decay has the same polarization for both states. We derive
analytic formulas for the shift in the |1〉 → |2〉 resonance and
discuss the dependence on the time that the atom interacts with
the perturbation, the perturbation amplitude V0, and the radia-
tive decay rates. In Sec. I, we consider the even simpler two-
level problem, where state |3〉 is excluded. In Sec. II, we show
how the presence of state |3〉 shifts the |1〉 → |2〉 resonance. In
Sec. III, we discuss these shifts for the three-level system, and
in Sec. IV, we discuss systems with more than three levels,
and, in particular, shifts for the helium triplet states.

I. TWO-LEVEL ATOM

Suppose that state |3〉 of Fig. 1 is not present and the
remaining two-level atom is exposed to a monochromatic
perturbation. Within the rotating-wave approximation in which
the nonresonant exp (−iωt − iφ) part of cos (ωt + φ) is
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ignored, the two-level atom can be described in the density
matrix formalism by

ρ̇22 = −γ2ρ22 − i
�2

2
ρ12 + i

�∗
2

2
ρ21, (1a)

ρ̇21 = i�2ρ22 +
(
i�2 − γ2

2

)
ρ21 − i

�2

2
, (1b)

where �2 = 〈1|V0|2〉/h̄ is the Rabi frequency, �∗
2 its complex

conjugate, �2 = ω − ω21 (as shown in Fig. 1), and τ2 = γ −1
2

is the lifetime of state |2〉. Conservation of probability ρ11 +
ρ22 = 1 determines ρ11 and ρ12 = ρ∗

21. Combining Eqs. (1a)
and (1b) and the complex conjugate of (1b) yields a third-order
differential equation for ρ22:

4
...
ρ22 + 8γ2ρ̈22 + (

4�2
2 + 5γ 2

2 + 4|�2|2
)
ρ̇22

+ (
4�2

2γ2 + 2|�2|2γ2 + γ 3
2

)
ρ22 = γ2|�2|2 . (2)

For an atom that starts in the ground state |1〉 at t = 0, the
solution to Eq. (2) at time t = T is

ρ22 = ρSS
22 + e−γBT [A sin (vT ) − B cos (vT )] + Ce−γAT , (3)

where

ρSS
22 = |�2|2

4�2
2 + γ 2

2 + 2|�2|2
, (4a)

A = C(γA − γB) − γBρSS
22

v
, (4b)

B = C + ρSS
22 , (4c)

C = |�2|2 − 2ρSS
22

(
γ 2
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, (4d)
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b
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)
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3
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24
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b
− b

)
, (4f)
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3
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(α

b
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)
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b = 3

√
β +

√
α3 + β2, (4h)

α = 48

(
�2

2 + |�2|2 − 1

12
γ 2

2

)
, (4i)

β = 8γ2
(
18|�2|2 − 36�2

2 − γ 2
2

)
. (4j)

Note that since ρ22 (the population of state |2〉) depends only
on the square of �2, the line shape is perfectly symmetric about
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FIG. 1. The three-level atom. A single monochromatic applied
field is nearly in resonance with the |1〉 → |2〉 transition but far off
resonance with the |1〉 → |3〉 transition. Both state |2〉 and state |3〉
radiatively decay down to state |1〉. We consider the case in which the
entire population starts in state |1〉 at t = 0 and find the population
of state |2〉 at time t = T . Interference effects between states |2〉 and
|3〉 cause shifts in the resonant frequency for driving population to
state |2〉.

�2 = 0, and thus the line shape is exactly centered at ω = ω21.
For long interaction time T , Eq. (3) reduces to the steady-state
solution ρ22 → ρSS

22 [Eq. (4a)], which recovers the familiar
power-broadened Lorentzian line shape. For small γ2T , the
line shape reduces to the well-known

ρ22 → |�2|2
sin2

[√
�2

2 + |�2|2(T/2)
]

�2
2 + |�2|2

, (5)

which further reduces to

ρ22 → |�2|2 sin2 [�2(T/2)]

�2
2

, (6)

in the perturbative regime in which T and �2 are sufficiently
small so that ρ22 is much smaller than unity. The more general
perturbative result (for the case in which γ2T is not necessarily
small) is

ρ22 → |�2|2[1 + e−γ2T − 2e−γ2
T
2 cos (�2T )]

4�2
2 + γ 2

2

. (7)

For intermediate times, when the perturbative solution is
no longer valid and the steady-state regime is not yet
reached, the line shape Eq. (3) is, in general, more
complicated.

Figure 2 shows the half-width-at-half-maximum (HWHM)
points for a range of parameters �2, γ2, and T . Note that
the widths obtained from Eq. (3) agree with those from
Eqs. (7), (5), and (4a) in their respective ranges of validity.
The variable b of Eq. (4a) is real for most of parameter space,
including the full range shown in Fig. 2. When b is real, all of
the quantities in Eqs. (3) and (4) are real, but Eqs. (3) and (4)
are correct even when b is complex.

FIG. 2. (Color online) HWHM for the two-level line shape. The
circles represent the HWHM for the exact line shape of Eq. (3). These
are in good agreement with the widths of Eq. (7) (dashed line) for
sufficiently small T and �2, where the perturbative result should
be valid. For small γ2T , the width of Eq. (5) (solid lines) agrees
with Eq. (3) to larger �2. For large T , the width of Eq. (3) is well
approximated by the steady-state solution of Eq. (4a) (dotted line).

II. THREE-LEVEL ATOM

When we consider the full three-level atom of Fig. 1, Eq. (1)
expands to [9,10]

ρ̇22 = −γ2ρ22 − i
�2

2
ρ12 + i

�∗
2

2
ρ21 − γ23

2
ρ23 − γ23

2
ρ32,

(8a)
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)
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2
ρ33 − i

�2

2
, (8b)
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ρ22 + i�3ρ33 − γ23

2
ρ21

+
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i(�2 − ω32) − γ3

2

]
ρ31 + i

�2

2
ρ32 − i
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2
, (8c)

ρ̇23 = −γ23
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ρ22 − γ23

2
ρ33 − i
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2
ρ13

+
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ρ̇33 = −γ3ρ33 + i
�∗

3

2
ρ31 − γ23

2
ρ32 − i

�3

2
ρ13 − γ23

2
ρ23.

(8e)

The radiative decay terms in these density matrix equations
have been shown to follow from QED [9,10]. The effects
of small QED frequency shifts (Lamb shifts) have been
neglected, as in [9] and [10]. Equations (8a)–(8e) have been
used extensively to describe a wide variety of effects in
multilevel systems [12–16,24,25]. In Eq. (8), �3 = 〈1|V0|3〉/h̄
and τ3 = γ −1

3 is the lifetime of state |3〉. The appearance of
γ23 = (γ2γ3)1/2 in Eq. (8) indicates the coherence of radiative
decay from states |2〉 and |3〉. This coherence is possible
because the radiation from the decay of these two states
has the same polarization. The other components of ρ are
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obtained from the complex conjugates of these equations
and from conservation of probability for this closed system:
ρ11 + ρ22 + ρ33 = 1.

We wish to solve Eq. (8) in the regime where the two
resonances are not overlapping. In our case (Fig. 1), the driving
frequency ω is nearly resonant with the |1〉 → |2〉 transition
but far off resonance with the |1〉 → |3〉 transition, and thus
state |3〉 causes a small perturbation to the line shape of Eq. (3).
If the two resonances are sufficiently separated in frequency
to not overlap, then ρ33 � ρ22. To proceed, we introduce a
small perturbation parameter η, such that ρ33 is of order η2

smaller than ρ22. In terms of this parameter η, the dominant
components of the density matrix are ρ11, ρ12, ρ21, and ρ22,
whereas ρ13, ρ31, ρ23, and ρ32 are a factor of η smaller than
these dominant terms, and ρ33 is a factor of η2 smaller. In order
to ensure this ordering, it is necessary that �2, �3, γ2, γ3, �2,
and 2π/T all be much smaller (by one order in η) than ω32.

Taking a linear combination of Eq. (8a), Eq. (8d), and its
complex conjugate allows one to eliminate the ρ23 and ρ32

terms in Eq. (8a) to the lowest order in η. Keeping only the
terms up to first order in η leads to

ρ̇22 = −γ2ρ22 − i
�′

2

2
ρ12 + i

�′
2
∗

2
ρ21, (9)

where

�′
2 = �2 − i

γ23�3

2ω32
. (10)

Similarly, if one takes a linear combination of Eqs. (8b), (8c),
and (8d), one can eliminate the ρ23 and ρ31 terms in Eq. (8b)
to first order in η to obtain

ρ̇21 = i�2ρ22 +
(
i�′

2 − γ2

2

)
ρ21 − i

�′
2

2
, (11)

where

�′
2 = �2 − γ 2

23 + |�3|2
4ω32

. (12)

Equations (9) through (12) are complete to first order in η.
From the similarity of Eqs. (9) and (11) to Eqs. (1a) and

(1b), one can write the expression for ρ ′
22, the probability of

being in state |2〉 at a time T (including the effects of the
presence of the off-resonant state |3〉), by substituting �2 with
�′

2 in Eqs. (3) and (4), as well as substituting �′
2 for some

instances of �2. The result (correct to order η) is

ρ ′
22 = ρSS

22
′ + e−γ ′

BT [A′ sin (v′T ) − B ′ cos (v′T )] + C ′e−γ ′
AT ,

(13)

where

ρSS
22

′ = |�2|2
4�′

2
2 + γ 2

2 + 2|�2|2 + 2ε�′
2

, (14a)
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A − γ ′

B) − γ ′
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22
′

v′ , (14b)

B ′ = C ′ + ρSS
22

′
, (14c)

C ′ = |�2|2 − 2ρSS
22

′(
γ ′2

B + v′2)
2[(γ ′
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, (14d)
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, (14e)
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√
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(
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, (14g)
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√
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α′ = 48

(
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2
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2

)
, (14i)

β ′ = 8γ2
(
18|�2|2 − 36�′

2
2 − γ 2

2 − 54ε�′
2

)
. (14j)

Equations (13) and (14) differ from Eqs. (3) and (4) only by
the shift in �′

2 [Eq. (12)] that is proportional to ω−1
32 (i.e.,

first-order in the parameter η) and by the small parameter

ε = γ23|�2||�3|
γ2ω32

, (15)

which is of the same order in η. Unlike Eq. (3), the line shape
of Eq. (13) is shifted from ω = ω21 both due to the shift in �′

2
and due to the terms proportional to ε that are linear in �′

2.
For long interaction times, ρ ′

22 → ρSS
22

′
, which can be re-

expressed (to first order in η) as

ρ22
′ → |�2|2

4(�2
′ + ε/4)2 + γ 2

2 + 2|�2|2
. (16)

This is a Lorentzian with the same width as Eq. (4a), but shifted
by

S∞ = γ 2
23 + |�3|2 − (γ23/γ2)|�2||�3|

4ω32
. (17)

The γ 2
23/4ω32 part of this shift in the Lorentzian line

shape was previously obtained in a Compton scattering
calculation [18].

For small γ2T , Eq. (13) reduces to

ρ22
′ → |�2|2

sin2
[√

�′
2

2 + |�2|2(T/2)
]

�′
2

2 + |�2|2
, (18)

which is shifted from �2 = 0 by

S0 = γ 2
23 + |�3|2

4ω32
. (19)

In the perturbative regime (T and �2 sufficiently small), one
obtains

ρ22
′ → |�2|2[1 + e−γ2T − 2e−γ2

T
2 cos (�′

2T )]

4�′
2

2 + γ 2
2

, (20)

which is also shifted by S0.
Note that even though Eqs. (16), (18), and (20) are shifted

by S∞, S0, and S0, respectively, they still exhibit exactly the
same line shapes as the two-level line shapes of Eqs. (4a), (5),
and (7). That is, to first order in η, the lines are shifted but not
otherwise broadened or distorted.

For small T , there is a linear correction to the shift S0:

ST ≈0 = S0 − γ23|�2||�3|
20 ω32

T + O(T 3). (21)

Note that in both the limits of small T [Eq. (21)] and large
T [Eq. (17)] the shift of the resonant line center depends on
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γ23, which results from the quantum-mechanical interference
of the radiative decay.

For the three-level system under consideration, since the
same matrix elements are present in the radiative decay rates
(γ2 and γ3) as are present in the Rabi frequencies (�2 and
�3),γ3 is related to γ2 by

γ3 = γ2
|�3|2
|�2|2

(ω21 + ω32)3

ω3
21

, (22)

where the energy differences h̄ωij are shown in Fig. 1. Using
this relationship and γ 2

23 = γ2γ3, Eq. (21) becomes

ST ≈0 = γ 2
23 + |�3|2{1 − (γ2T /5)[(ω21 + ω32)/ω21]3/2}

4ω32
,

(23)

and Eq. (17) becomes

S∞ = γ 2
23 + |�3|2{1 − [(ω21 + ω32)/ω21]3/2}

4ω32
. (24)

Equations (23) and (24) respectively are the short- and long-
T limits of the more general shift

S = γ 2
23 + |�3|2{1 − f (�2/γ2,γ2T )[(ω21 + ω32)/ω21]3/2}

4ω32
,

(25)

where the factor f (which depends only on the dimensionless
quantities �2/γ2 and γ2T ) determines the amount by which
the |�3|2 shift is suppressed. The factor f is shown in Fig. 3; it
grows linearly from zero for small T (as γ2T/5), indicating that
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FIG. 3. (Color online) The factor f of Eq. (25) that determines
the shift of the |1〉 → |2〉 transition due to the presence of state |3〉.
The line shifts are obtained by least-squares fits of the three-level line
shape of Eq. (13) to the symmetric two-level line shape of Eq. (3)
with the center �2 floating in the fit. Note that f starts at zero at
T = 0 and grows linearly as γ2T/5 as predicted by Eq. (23) and that
it reaches unity for large T , as predicted by Eq. (24).
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FIG. 4. (Color online) Multiplicative factor for the ac Stark shift.
The figure shows that the ac Stark shift must be multiplied by a
factor that depends on Rabi frequency �2, on the lifetime γ −1

2 , on the
interaction time T , and on the ratio of the energy separations: ω21/ω32.
For long interaction times T , the shift goes to zero for ω21/ω32 = ∞
and changes sign for finite ω21/ω32.

the |�3|2 shift is minimally suppressed for short interaction
times T . For long interaction times, the |�3|2 shift is maximally
suppressed.

III. DISCUSSION OF THE SHIFTS

The |�3|2/4ω32 term of Eq. (25) is proportional to the
amplitude squared (V 2

0 ) of the monochromatic perturbation
(and therefore the intensity of the electromagnetic wave that
produces the perturbation). For electric dipole transitions, this
is just the usual ac Stark shift. Our result shows that for
the model three-level system, this shift must be multiplied
by a factor that depends on �2/γ2, γ2T and on the ratio
(ω21 + ω32)/ω21. Figure 4 shows some examples of the factor
by which the ac shift must be multiplied for a variety of
these parameters. For the case of ω32 � ω21 (two nearby
states well above the ground state), this factor is just 1 − f

(where f is shown in Fig. 3). In this case, the ac shift goes
from being completely present for short interaction times to
being completely suppressed at long interaction times. Thus,
we obtain the surprising result that, for a three-level atom, the
power-dependent shift can be entirely suppressed in the steady
state. For the case of ω32 being non-negligible compared to
ω21, the shift is still present in its entirety for small interaction
times T but changes sign for longer T .

The first part of Eq. (25) is proportional to γ 2
23 = γ2γ3. Since

this shift is independent of the intensity of the electromagnetic
wave driving the transition, it must be explicitly corrected
for in precision measurements, even after extrapolating to zero
intensity. When performing precision measurements, this shift
is significant even for quite distant neighboring resonances.
If the precision measurement has an accuracy of one part
in N of the natural linewidth (where N ranges from 500
to 5,000 for many precision measurements), a neighboring

052519-4



SHIFTS FROM A DISTANT NEIGHBORING RESONANCE PHYSICAL REVIEW A 82, 052519 (2010)

resonance within N natural linewidths of the resonance leads
to a significant shift. If γ3 is greater than γ2, an even further
neighboring resonance ( γ3

γ2
N natural linewidths away) still

leads to a significant shift.
Often for precision measurements, neighboring resonances

are simultaneously fit to overlapping Lorentzian line shapes.
The overlap of two Lorentzians does lead to a shift that is
properly accounted for by such a fit, but this overlap term is
of order η2 and is therefore much smaller than the shift due to
quantum-mechanical interference that is discussed here, which
is of order η. This O(η) shift is not accounted for by the fit to
two Lorentzians and must be accounted for separately.

IV. SYSTEMS WITH MORE THAN THREE LEVELS

For more complicated systems with multiple, nearly
degenerate ground states, the situation will be more com-
plicated, since such systems exhibit effects such as optical
pumping and dark states. These effects will allow population
to accumulate into states that no longer interact with the
driving field. In these more complicated systems, the shifts
are expected to be modified. Additionally, different types of
experiments (for example, experiments that determine reso-
nant frequencies from absorption, from fluorescence, or from
redistribution of populations) are also expected to give modi-
fied shifts. In each of these cases, the shifts can be obtained by
numerically solving an expanded form [10] of density-matrix
equations of Eq. (8). Such numerical calculations can also
model any possible effects of the variation in amplitude of the
applied field during the time T . Further investigation will be
necessary to characterize the shifts for such multilevel systems.
The current work gives the scale for these interference shifts
by obtaining simple analytic results for the three-level system
of a resonance with a single distant neighboring resonance.

As a simple example of a more complicated system, we
consider the lowest-lying triplet states of helium, as shown
in Fig. 5. The figure shows the 2 3S1 and 2 3P J states in the
presence of a dc magnetic field that lifts the degeneracy of
the mJ states. In order to consider a system similar to the
three-level system discussed in Sec. II, we assume that optical
pumping has been used so that only the 2 3S1 mJ = 1 state is

23S1

23P2

23P1

23P0

m=-2 m=-1 m=0 m=1 m=2

0
1

2

3

applied
laser
field

radiative
decay

FIG. 5. The 2 3S1 and 2 3P J states of atomic helium in the
presence of a dc magnetic field. The population is initially pumped
to the |1〉 state. A laser field polarized in the direction of the
magnetic field is nearly in resonance with the |1〉 → |2〉 transition.
The off-resonant |1〉 → |3〉 transition causes a shift. Both states |2〉
and |3〉 decay with equal branching ratios to the |1〉 and |0〉 states.

populated, and we designate this as state |1〉 in Fig. 5. Laser
light that is linearly polarized along the direction of the dc
magnetic field allows transitions from |1〉 to only the 2 3P2

mJ = 1 and 2 3P1 mJ = 1 states. If the laser light is nearly
resonant with the 2 3P2 mJ = 1 state (designated as |2〉 in
Fig. 5), the |1〉 → |2〉 resonance line center is shifted by the
off-resonant 2 3P1 mJ = 1 state (designated by |3〉 in Fig. 5).
The system is identical to that discussed in Sec. II, except that
here states |2〉 and |3〉 can also decay down to the 2 3S1 mJ = 0
state (designated by |0〉 in Fig. 5).

For this system and for small T , the shift of the |1〉 → |2〉
resonance line center (as obtained by measuring the population
of state |2〉 at time T ) is still given by Eq. (19), where for
this case ω32/2π = 2.29 GHz and γ 2

23 = γ2→1γ3→1, with
γ2→1 being the partial decay rate from state |2〉 to state |1〉.
Specifically, γ2→1 = γ3→1 = 1

2 τ−1, where τ = 98 ns is
the 2 3P lifetime and 1

2 is the branching ratio to state |1〉.
The resulting shift (after extrapolating to zero power) is
�f = S0/2π = 72 Hz. Current measurements of the 2 3P

fine structure are at accuracies of a few hundred hertz [26–28],
and thus shifts of the type mentioned here need to be carefully
considered for such measurements. In order to obtain a
determination of the fine-structure constant to an accuracy
of 10−9 or better, measurements of the 2 3P structure to an
accuracy of 60 Hz or better must be compared to precise QED
calculations of the fine structure [29], and the interference
shifts discussed here will again have to be carefully
considered.

The ac Stark shift [the |�3|2 term of Eq. (19)] for the
system of Fig. 5 reduces with T , as was the case for the
simple three-level system discussed in Sec. III. However,
the additional decay channel to state |0〉 causes the population
to be lost to the |0〉 state. The result is that the population in the
|2〉 state decreases quickly with T , and only measurements of
the population of state |2〉 at not too large values of T become
practical.

V. CONCLUSIONS

In the present work, we calculate shifts due to quantum-
mechanical interference between a resonance and a distant
neighboring resonance using the density-matrix equations for
a three-level system. We obtain an interference shift that scales
as 1/ω32 for all interaction times T (from short pulses to the
steady-state regime) and for all intensities of the driving field.
The ac Stark shift is obtained naturally from solving the density
matrix equations; however, somewhat unexpectedly we find
a significant change in the ac shift when moving from the
short-T to the steady-state regime.

The present work shows shifts that are still present when
extrapolating to zero power, that are not accounted for by
a simple fit to overlapping line shapes, and that lead (to first
order) to line shapes that are shifted but not otherwise distorted.
All three of these properties make the shifts easy to overlook
in precision measurements of resonant line centers.

For systems with more than three levels, the calculations
will in general be more complicated and will be discussed
in more detail in a future publication. Even for these more
complicated systems, the present calculation still gives the
scale for the interference shifts.
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