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Numerical solution of the Hartree-Fock equation in molecular geometries
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Solutions of the restricted Hartree-Fock equations are obtained for small molecules using a combination of
variationally optimized atomic orbitals centered on the nuclei and corrections computed on a Cartesian mesh.
The problem of finding the corrections is reduced to the problem of solving the Hartree-Fock equations with
inhomogeneous terms. An iterative method is developed in which the equation is treated as an inhomogeneous
Helmholtz equation with the potential terms transferred to the inhomogeneous term. Terms in the equation that
arise from rapid variation of the orbitals in the neighborhoods of the nuclei are treated analytically. The Helmholtz
equation can then be solved using a fast Fourier transform method. Results for a number of small molecules that
are accurate at the millihartree level are presented. The method for solving the inhomogeneous Hartree-Fock
equation should be applicable to other problems of quantum chemistry.
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I. INTRODUCTION

The purpose of this article is to present a method for the
numerical solution of the Hartree-Fock equations appropriate
for the geometry of arbitrary molecules. Although the discus-
sion is for the Hartree-Fock equations, the approach is equally
applicable to other problems such as the Kohn-Sham equations
of density functional theory. Major problems that attend the
problem of electronic molecular orbitals are the facts that there
is no natural coordinate system for the problem and that the
potentials are singular at the nuclei so that the orbitals and den-
sities have rapidly varying short-range behavior at the nuclei.

Contemporary molecular structure calculations are almost
entirely based on the expansion of molecular orbitals in terms
of Gaussian basis functions [Gaussian-type orbitals (GTOs)].
The reason is, of course, that the required multicenter integrals
are almost trivial to obtain for GTOs and extremely difficult
to obtain for other functional forms. That is not to say that
GTOs are perfectly suited for the problem. Since electron
densities are strongly peaked at the nuclei, a superposition
of several GTOs is required for a satisfactory representation
of densities and single-particle orbitals. This requirement for
superpositions reduces the efficiency of the method and, in
the case of superpositions of large numbers of functions, can
cause instabilities.

Finite-difference approximate methods have been exten-
sively and successfully used in atomic problems [1]. These
approaches are successful because they are carried out in a
spherical coordinate system centered at the nucleus. In addi-
tion, the mesh points are not uniform in the radial coordinate
since the wave function is concentrated at, and most rapidly
varying at, the nucleus. This simplification is not generally
available in molecular geometries, although prolate spheroidal
coordinates are usefully applied for diatomic molecules [2].

Various approaches have been taken to try to overcome this
problem. For example, an adaptive grid method can be applied,
with mesh points taken to be more dense in the vicinity of the
nuclei [3]. Recently, Shiozaki and Hirata [4] have discussed
a method for solution of the Hartree-Fock equation using a
method introduced by Becke and Dickson [5]. This scheme
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is based on overlapping spheres centered at the nuclei, with
integration points in the intersections assigned weights less
than 1. However, this approach does not completely resolve
the problem of the slow convergence of the angular momentum
summations. Harrison and colleagues have employed, and ob-
tained impressive results using, a multiresolution method and
wavelets to represent the Poisson and Helmholtz kernels for the
single-particle problem and the Hartree-Fock equations [6,7].

In the approach followed here, the problems associated
with rapid variations at the nuclei are overcome in a variety of
ways. Approximate molecular orbitals are constructed as linear
combinations of basis atomic orbitals, as in the usual molecular
orbitals (MO)–linear combination of atomic orbitals (LCAO)
approach. These atomic orbitals are defined numerically on a
radial mesh and are variationally optimized to minimize the
Hartree-Fock energy. The correct behavior of the orbitals at
the nuclei is therefore described. These atomic orbital basis
functions are obtained using methods developed previously
by the author [8]. The essential problems that arise are the
calculation of the various multicenter integrals required for
the energy calculation and the construction and solution of
the variational equations for the orbitals. This approach yields
Hartree-Fock results for small molecules close to the Hartree-
Fock minimum, using minimal basis sets, that is, 1s on H and
1s, 2s, and 2p on the first-row atoms. However, it is difficult to
improve on these results by adding polarization orbitals since
the convergence in the angular momentum expansions is slow.

Subsequent to the construction of the molecular orbitals,
corrections are constructed in spatial Cartesian coordinates.
This calculation requires the inversion of the Hartree-Fock
single-particle operator F − ek . This is effected iteratively by
transferring the potential energy terms in the Hartree-Fock
operator to the inhomogeneous term. The resulting Helmholtz
inhomogeneous equation can then be solved numerically on
the Cartesian mesh using the fast Fourier transform (FFT)
method. A significant finding is that the iterative procedure
converges satisfactorily.

In the neighborhood of a nucleus of charge Zn at Rn, a
molecular orbital ψk(r) behaves as ψk(Rn)e−Zn|r−Rn|, that is,
as a Slater orbital. It will be shown in detail that it is possible
to exploit this known behavior to improve the accuracy by
treating such terms analytically.
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The approach described here is related to one proposed
by Alexander and colleagues [9,10]. However, the present
advantage is that the difficult structure of the wave functions
in the neighborhood of the nuclei is described by the radial
basis functions, and the increments are less rapidly varying.

An approach in which the behavior at the nuclei is
treated by superpositions of Gaussian orbitals and the overall
behavior is treated by the finite element method has been
described by Yamakawa and Hyodo [11] and applied to
small molecules within the local density approximation for
exchange and correlation. A similar approach has been taken
by Pahl and Handy [12] and applied within the Hartree-Fock
approximation to the water molecule. In this method, basis
functions are constructed within finite spheres centered on
each nucleus and are augmented by plane waves.

In the second section, the theory underlying the Hartree-
Fock approximation and the MO-LCAO approach will be
reviewed. Section III will discuss aspects of the multicenter
integral problem for arbitrary orbitals and the orbital opti-
mization procedure. Section IV will develop the equations
for the molecular orbital corrections and the correction to
the total energy. The iterative procedure for the inversion of
the Schrödinger-like operator is explained in Sec. IV. Spatial
integrations for various matrix elements are complicated by
the singular nuclear potentials, and methods to remove this
problem analytically are proposed. The numerical methods
applied will be described in Sec. V, and the factors that affect
the accuracy will be discussed in a somewhat heuristic way.
Results for a number of small molecules are presented in
Sec. VI and compared with other, largely Gaussian-type orbital
results. Possible avenues for future work and possible other
extensions are described in the last section.

II. HARTREE-FOCK EQUATIONS

The molecular wave function in the Hartree-Fock approx-
imation is a Slater determinant formed from orthonormal
single-particle wave functions ψk . It is convenient to define
functionals V and W by

V [ρ](r) =
∫

1

|r − r′|ρ(r′)dr′, (1)

W [f,g] =
∫

f (r)
1

|r − r′|g(r′)drdr′

=
∫

f (r)V [g](r)dr. (2)

The functional V is the potential stemming from a density ρ.
The total energy E, apart from nuclear-nuclear repulsion,

in the restricted Hartree-Fock approximation is given by

E =
∑

k

〈ψk|T + VN|ψk〉

+
∑
kl

(
1

2
W

[
ψ2

k ,ψ2
l

] − 1

4
W [ψkψl,ψkψl]

)
, (3)

where

〈ψk|T + VN|ψk〉 =
∫

ψk(r)

[
−1

2
∇2 + VN(r)

]
ψk(r)dr,

(4)

VN(r) = −
∑

n

Zn

|r − Rn| . (5)

The sums in Eq. (3) are over the occupied orbitals, and the
sum in Eq. (5) is over the nuclei. Normally, a factor of 2 should
be included with each summation.

The Hartree-Fock equations are

Fψk(r) = ekψk(r), (6)

where

Fψk(r) = 1

2

δE

δψk(r)
. (7)

Explicitly, F operating on a spin-orbital f is defined by

[Ff ](r) =
[
−1

2
∇2 + VN(r)

]
f (r) + VH(r)f (r)

−
∑

l

ψl(r)V [ψlf ](r), (8)

where

VH(r) =
∑

l

V
[
ψ2

l

]
(r) (9)

and the sum on l is on the occupied orbitals, and ψl and f

have the same spin quantum number in the exchange term.
In the standard MO-LCAO approach, approximate Hartree-

Fock orbitals ψk are constructed as linear combinations of
atomic basis functions χi defined by

χi(r + Ri) = χ0i(r)Ylimi
(r̂), (10)

where χi0 is the radial factor and Ri is usually a nuclear
coordinate; that is, χi is an angular momentum wave function
in the coordinate system centered at Ri . The molecular
orbitals are orthonormalized linear combinations of the atomic
orbitals:

φj (r) =
∑

j

dijχi(r). (11)

The solutions of the Hartree-Fock equations are in turn linear
combinations of the molecular orbitals:

ψk =
∑

j

ujkφj ,

=
∑
ij

dijujkχi,

=
∑

i

ckiχi . (12)

The coefficients cki in Eq. (12) are obtained from the
solution of the Hall-Roothaan equation:

Fv(k) = ek�v(k), (13)

with the matrices F and � defined by

fij = 〈χi |F |χj 〉, (14)

ωij = 〈χi |χj 〉. (15)

The expansion coefficients are then given by cki = v(k)
i . This

leads to the problem of computing the matrix elements of F
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and the overlap integals 〈χi |χj 〉. The matrix equation can also
be written as follows:

〈ψk|F |ψl〉 = δklek. (16)

In most molecular calculations, the radial factors χoi are
constructed as linear combinations of Gaussian orbitals. In
the present approach, the usually contracted Gaussian orbitals
are replaced by functions in which the radial factors are
defined numerically on a radial mesh uniformly spaced in the
variable ρ = ln r . This leads to a double optimization process,
that is, the solution of the Hall-Roothaan equations and the
optimization of the radial factors. This set of functions will be
referred to as the atomic orbital basis.

III. ORBITAL OPTIMIZATION

Electronic molecular structure calculations using numeri-
cally defined orbitals is a multifaceted problem requiring the
evaluation of the necessary multicenter integrals, translation of
angular momentum wave functions centered at one point to a
new point, expansion of products of angular momentum wave
functions in terms of such functions, and solving the variational
problem for the radial factors. In this section, the approaches
to these problems followed here will be summarized.

The translation of an angular momentum wave function can
be expressed [13] as

flm(r − R) =
∑

LL′MM ′
(−1)m

(
L L′ l

M M ′ −m

)

×FLL′(r,R)YLM (r)YL′M ′(R), (17)

where

FLL′(r,R) = il+L′−L

[
(2L + 1)(2L′ + 1)

4π (2l + 1)

]1/2 (
L L′ l

0 0 0

)

× 2

π

∫ ∞

0
jL(kr)jL′(kR)f̃ (k)k2dk, (18)

f̃ (k) =
∫ ∞

0
jl(kr)f (r)r2dr. (19)

The functions FLL′(r,R) can be computed using an efficient
approach applying Gaussian integration [14].

The product of two expansions of the form of Eq. (17) about
a third center can be reduced using the familiar identity

Yl1m1 (r̂)Yl2m2 (r̂) =
∑
LM

(−1)M
[

(2l1 + 1)(2l2 + 1)

4π (2L + 1)

]1/2

×
(

l1 l2 L

0 0 0

) (
l1 l2 L

m1 m2 −M

)
YLM (r̂).

(20)

However, if the three centers are collinear, a better method
that avoids the rather slow convergence of the expansions is
available [15].

The nuclear attraction three-center integrals are obtained by
expanding each of the atomic orbitals and the nuclear potential
about a third center, as described by Eq. (17). The Coulomb
factor is expanded by the familiar Laplace expansion. The
expansion center is chosen to optimize the convergence rate of

the resulting summation [16]. The three sums are truncated at
a common value LN,max.

The electron-electron repulsion integrals are obtained by
expanding each product of orbitals about an intermediate
center:

χ
(1)
l1m1

(r − R1)χ (2)
l2m2

(r − R2) =
∑
	σ

F	σ (r − Rc), (21)

where F	σ is again an angular momentum eigenfunction. The
four-center integrals can be efficiently computed in momentum
space by initially computing and storing the spherical Bessel
transforms F̃	σ . The expansions in Eq. (21) are truncated at a
maximum 	max; 	 � 	max. If the expansion centers coincide,
the resulting integral will be relatively large, but there are
many fewer terms in the summation. Therefore a large value
of 	max, 	(1)

max, can be chosen. Conversely, if the expansion
centers differ, a smaller value, 	(2)

max, is chosen. Details of
the procedure can be found in [15]. The numerical spherical
Bessel transforms are obtained using a procedure adapted for
the logarithmic meshes that is efficient and gives valid results
at large values of the transform variable [17].

The optimization problem being followed is twofold. The
coefficients in the basis function are optimized by solving the
Hall-Roothaan equation [Eq. (13)]. The numerically defined
basis functions are then to be determined by constructing and
solving an Euler-Lagrange equation, again with the constraint
that the ψk should be orthonormal. There is some redundancy
in this, however, from arbitrary factors in the basis functions.
This is removed by requiring that the basis functions be
normalized.

The energy, expressed in terms of the χi , is

E =
∑
ij

wij 〈χi |T + VN|χj 〉

+
∑
ijkl

wijwkl

(
1

2
W [χiχj ,χkχl] − 1

4
W [χkχj ,χiχl]

)
,

(22)

where the wij are the elements of the density matrix obtained
from the solution of Eq. (13):

wij =
∑

k

okckickj , (23)

where ok = 2 if orbital k is occupied, and 0 otherwise. We
therefore consider a Lagrangian

L = E −
∑
kl

λkl〈ψk|ψl〉, (24)

δL
χk(r)

= 0. (25)

The variational derivative of E with respect to χi is given
by

δE

δχi(r)
= 2

∑
j

wijFχj (r). (26)

The variational equations are therefore∑
j

wijFχj −
∑

j

γijχj = 0, (27)
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where Fχj is defined in Eq. (8). The multipliers γij are
determined from the equation∑

j

wijfjk =
∑

j

γijωjk, (28)

where fjk and ωjk are defined in Eqs. (14) and (15).
Equations (27) are coupled. They are solved separating the

diagonal terms in wij and treating them as inhomogeneous
equations with the off-diagonal terms being the inhomoge-
niety. This is feasible since the density matrix is positive
semidefinite. The equations then take the form

[F − γii]χi(r) = − 1

wii

∑
i �=j

wij [F − γij ]χj (r). (29)

The procedure is then to expand the terms in Eq. (29) about
Ri using Eqs. (17) and (20). Since χi in these coordinates
is of the form χi(r)Ylimi

(r̂), only terms proportional to
χi(r)Ylimi

(r̂) contribute to the inhomogeneous term. However,
terms proportional to χi are separated out and retained to
define an effective central potential, in order to reduce the
inhomogeneous terms.

In computing the inhomogeneous terms, the nuclear attrac-
tion potentials and the orbitals are expanded about Ri . These
expansions are truncated at a common value Lmax,opt.

The variational equation is then a Schrödinger-like inho-
mogeneous equation:

−1

2

1

r2

d

dr
r2 dχi

dr
+ li(li + 1)

2r2
χi(r) + [V (r) − λi]χi(r) =Zi(r),

(30)

where V (r) stems from the terms proportional to χi and Zi(r)
contains the remaining terms. This is a form of eigenvalue
problem, with the eigenvalue λi being determined by the
constraint that χi should be normalized. The procedure is
describe in more detail in Ref. [8]. It should be mentioned that
the total energy calculation is independent of the optimization
procedure.

IV. ORBITAL CORRECTIONS

In this section, the equations for the corrections to the orbital
wave functions and energies will be derived, and the approach
to their solution will be described. The approximate solutions
and single-particle energies will be denoted by ψk and εk . The
Hartree-Fock operator constructed from the ψk will be denoted
by F0. The error in the approximate solution is denoted by εk;
that is,

[F0 − ek]ψk = εk. (31)

It can be assumed that εk is orthogonal to ψk . The correction
to the orbitals and the energy eigenvalues will be denoted by
δψk and δek . It can also be assumed that δψk is orthogonal to
ψl for all l.

The corrections must satisfy

(F − ek − δek)(ψk + δψk) = 0. (32)

The equations can be combined to give

(F0 − ek)δψk = −εk − (δF − δek)[ψk + δψk], (33)

where F is constructed from the exact solutions and δF =
F − F0. Taking the product with ψk gives

δek = 〈δψk|εk〉 + 〈ψk|δF |ψk + δψk〉. (34)

The term δF[ψk + δψk] arises from the increment in the direct
and exchange potentials stemming from the δψk .

Equation (33) can be rewritten as[
−ek − 1

2
∇2

]
δψk = −εk − (δF − δek)[ψk + δψk]

+
Nn∑
n=1

Zn

|r − Rn|δψk − VH(r)δψk

+
∑

l

ψl(r)V [ψlδψk](r). (35)

The equation is solved iteratively, writing it as

[
−ek − 1

2
∇2

]
δψ

(n+1)
k = −εk +

Nn∑
n=1

Zn

|r − Rn|δψ
(n)
k − I

(n)
k (r),

(36)

where

I
(n)
k = (δF (n) − δek)

[
ψk + δψ

(n)
k

] + VH(r)δψ (n)
k

−
∑

l

ψl(r)V
[
ψlδψ

(n)
k

]
, (37)

with δψ
(0)
k = 0, δe

(0)
k = 0.

The inhomogeneous Helmholtz equation[ − e − 1
2∇2

]
x(r) = y(r) (38)

can be solved on a Cartesian mesh using Fourier transforms.
If

ỹ(k) =
∫

eik·ry(r)dr, (39)

then

x(r) = 1

(2π )3

∫
2

k2 + k2
0

e−ik·rỹ(k)dk, (40)

where k2
0 = −2e. In particular, if

y(r) = e−Zr, (41)

x(r) = 2

k2
0 − Z2

e−Zr − 4Z(
k2

0 − Z2
)2

1

r
[e−Zr − e−k0r ], (42)

and if

y(r) = e−Zr

r
, (43)

x(r) = 2

k2
0 − Z2

1

r
[e−Zr − e−k0r ]. (44)

As discussed in Sec. I, the problem of the be-
havior at the nuclei can be minimized by rewriting
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Eq. (36) as[
−ek − 1

2
∇2

]
δψ

(n+1)
k

= −εk +
Nn∑
n=1

Zn

|r − Rn|
[
δψ

(n)
k − δψ

(n)
k (Rn)e−Zn|r−Rn|

]

−
[
I

(n)
k (r) −

∑
n

I
(n)
k (Rn)e−|Znr−Rn|

]

+
∑

n

δψ
(n)
k (Rn)

Zn

|r − Rn|e
−Zn|r−Rn|

−
∑

n

I
(n)
k (Rn)e−Zn|r−Rn|. (45)

The nuclear attraction term is finite at the nuclei, and the terms
in I

(n)
k (r) vanish at the nuclei. The solution for the latter two

terms are obtained analytically using Eqs. (42) and (44).
We consider now the total energy correction. It is a standard

result of Hartree-Fock theory that the total energy is the sum
of the single-particle energies less the two-particle potential

energy. Therefore the approximate energy obtained from the
ψk is given by

E0 =
∑

k

ek −
∑
kl

(
1

2
W

[
ψ2

k ,ψ2
l

] − 1

4
W [ψkψl,ψkψl]

)
.

(46)

Similarly, the total energy is given, from Eq. (34), by

E =
∑

k

ek + 〈δψk|εk〉 + 〈ψk|δF |ψk + δψk〉

− 1

2

∑
kl

1(
1 + δ2

k

)(
1 + δ2

l

)W [(ψk + δψk)2,(ψl + δψl)
2]

+ 1

4

∑
kl

1(
1 + δ2

k

)(
1 + δ2

l

)
×W [(ψk + δψk)(ψl + δψl),(ψk + δψk)(ψl + δψl)]

= E0 +
∑

k

〈δψk|εk〉 + �V, (47)

where

�V = −1

2

∑
kl

1(
1 + δ2

k

)(
1 + δ2

l

){−(
δ2
k + δ2

l + δ2
k δ

2
l

)
W

[
ψ2

k ,ψ2
l

] + 4W
[
δψkψk,ψ

2
l

] + 4W [δψkψk,δψlψl] + 2W
[
δψ2

k ,ψ2
l

]

+ 4W [δψkψk,δψ
2
l ] + W

[
δψ2

k ,δψ2
l

]} + 1

4

∑
kl

1(
1 + δ2

k

)(
1 + δ2

l

){−(
δ2
k + δ2

l + δ2
k δ

2
l

)
W [ψkψl,ψkψl] + 4W [δψkψl,ψkψl]

+ 2W [δψkψl,δψkψl] + 2W [ψkδψl,δψkψl] + 2W [δψkδψl,ψkψl] + 4W [δψkδψl,δψkψl] + W [δψkδψl,δψkδψl]
}

+
∑

k

〈ψk|δF |ψk + δψk〉, (48)

and 〈δψl|δψl〉 is denoted by δ2
l .

The function δF[ψk + δψk] is given by

δF[ψk + δψk] =
∑

l

1

1 + δ2
l

{
2V [ψlδψl] + V

[
δψ2

l

] − δ2
l V

[
ψ2

l

]}
[ψk(r) + δψk(r)] − 1

2

∑
l

1

1 + δ2
l

{
V [ψkψl]

(
δψl − δ2

l ψl

)
+V [ψkδψl](ψl + δψl) + V [δψkψl]

(
δψl − δ2

l ψl

) + V [δψkδψl](ψl + δψl)
}
, (49)∑

k

〈ψk|δF |ψk + δψk〉 =
∑
kl

1

1 + δ2
l

{
2W

[
ψ2

k ,ψlδψl

] + 2W [ψkδψk,ψlδψl] + W
[
ψ2

k ,δψ2
l

] + W
[
ψkδψk,δψ

2
l

] − δ2
l W

[
ψ2

k ,ψ2
l

]

− δ2
l W

[
δψkψk,ψ

2
l

]} − 1

2

∑
kl

1

1 + δ2
l

{
2W [ψkδψl,ψkψl] + W [ψkδψl,ψkδψl] + W [ψkδψl,δψkψl]

+W [ψkψl,δψkδψl] + W [ψkδψl,δψkδψl] − δ2
l W [ψkψl,ψkψl] − δ2

l W [ψkψl,δψkψl]
}
. (50)

Combining Eqs. (48) and (50) gives

�V = 1

2

∑
kl

1(
1 + δ2

k

)(
1 + δ2

l

){
2
(
δ2
k − δ2

k δ
2
l

)
W

[
ψ2

k ,ψlδψl

] + 4δ2
kW (ψkδψk,ψlδψl] + 2δ2

kW
[
ψ2

k ,δψ2
l

]

+ 2
(
δ2
k − 1

)
W

[
ψkδψk,δψ

2
l

] − δ2
k δ

2
l W

[
ψ2

k ,ψ2
l

] − W
[
δψ2

k ,δψ2
l

]}−1

4

∑
kl

1(
1 + δ2

k

)(
1 + δ2

l

){
2
(
δ2
k − δ2

k δ
2
l

)
W [ψkδψl,ψkψl]

+ 2δ2
k

(
W [δψkδψl,ψkψl] + 2δ2

kW [δψkψl,ψkδψl] + 2δ2
kW [ψkδψl,ψkδψl] + 2

(
δ2
k − 1

)
W [ψkδψl,δψkδψl]

− δ2
k δ

2
l W [ψkψl,ψkψl]

}
. (51)
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The leading term in the energy correction,
∑

k〈δψk|εk〉, is the
dominant contribution. The remaining terms are of cubic or
higher order in εk .

V. NUMERICAL IMPLEMENTATION

As described earlier, approximate Hartree-Fock orbitals are
constructed as linear combinations of atomic orbitals χi cen-
tered at the various nuclei. The molecular functions ψk are then
obtained by interpolating the χi to the Cartesian mesh, in this
case using seven-point interpolation, and applying Eq. (12).

One major difficulty in the approach is the determination
of the functions εk defined in Eq. (31). Two approaches
can then be followed. One is to calculate the functions
F0χi as angular momentum expansions about the appropriate
nucleus Ri ,

F0[χi](r) =
∑
LM

DLM,i(r)YLM (r̂), (52)

and interpolate the resulting expansions to the Cartesian
mesh. The alternative is to obtain the F0χi directly on the
Cartesian mesh. The advantage of the former method is that
the calculations on the radial mesh are much more accurate, but
the purpose is defeated because of the truncation of the angular
momentum sums. The disadvantage of the latter approach
is that the requirements on the Cartesian mesh to obtain
satisfactory accuracy are very demanding. On the other hand,
less accuracy is required for the δψk and the energy corrections.
The results in this article have been obtained using the latter
approach.

If F0[ψk] is constructed directly, singular canceling terms
of the form |r − Rn|−1 occur in the kinetic energy and nuclear
attraction energy. Since the analytic form of the solutions at
the nuclei is known, this problem is eliminated by separating
out the singular terms of the form∑

n

ψk(Rn)e−Zn|r−Rn|,
∑

n

ψk(Rn)
e−Zn|r−Rn|

|r − Rn| ,

from F0[ψk].
The kinetic and nuclear attraction terms in F0[ψk] can then

be written

F0,sp[ψk] = −1

2
∇2

[
ψk −

∑
n

ψk(Rn)e−Zn|r−Rn|
]

−
∑

n

Zn

|r − Rn|
[
ψk(r) − ψk(Rn)e−Zn|r−Rn|]

+
∑

n

ψk(Rn)

[
−1

2
∇2 − Zn

|r − Rn|
]

e−Zn|r−Rn|.

(53)

The Fourier transform of the counterterm in Eq. (53) is

−4π
∑

n

ψk(Rn)eik·Rn
Z2

n(
k2 + Z2

n

)2 .

Although less significant, terms of the form∑
n

VH(Rn)e−Zn|r−Rn| −
∑
l,n

V [ψkψl](Rn)ψl(Rn)e−Zn|r−Rn|

are also subtracted from the potential energy terms.

The Poisson equation for the potentials is solved in a similar
way to the orbital equations. The potential produced by a
charge density ρ(r) is

V (r) = 1

2π2

∫
1

k2
e−ik·rρ̃(k)dk, (54)

where

ρ̃(k) =
∫

eik·rρ(r)dr. (55)

At the nuclei, the densities behave as ψk(Rn)ψl(Rn)
e−2Zn|r−Rn|. Therefore the potential for a modified density,

ψk(r)ψl(r) −
∑

n

ψk(Rn)ψl(Rn)e−2Zn|r−Ri |, (56)

can be obtained. The correction term is then∑
n

ψk(Rn)ψl(Rn)
π

Z3
n|r − Rn|

× [1 − (1 + Zn|r − Rn|)e−2Zn|r−Rn|], (57)

which incorporates the correct large r behavior.
The integral in Eq. (54) is improper since the denominator

vanishes at k = 0. This problem is treated by defining

ρ̃c(k) = ρ̃(k) − ρ̃(0)

[
λ2

k2 + λ2

]2

, (58)

where

ρ̃(0) =
∫

f (r)dr. (59)

The solution of the Poisson equation is then

v(r) = 1

2π2

∫
1

k2
e−ik·rρ̃c(k)dk

+ ρ̃(0)

λ3r

[
1 −

(
1 + λr

2

)
e−λr

]
. (60)

The solution is independent of λ within a reasonable range.
Cartesian meshes are defined in both position and mo-

mentum spaces on intervals [−X,X]3 and [−P,P ]3. The
application of the FFT procedure constrains the meshes by
�x�p = 2π/N . This would appear to be a serious restriction
on the approach. However, the reciprocal scaling in space and
momentum space is appropriate to the problem. The program
package FFTW has been applied [18]. This package permits the
number of mesh points to be a product of small prime factors,
for example, 64, 100, 144, and 200.

Valence electron energies are typically ∼0.5 so that valence
orbitals should behave roughly as e−r at large r . Therefore
an X of 10.0 should be reasonable for small molecules near
equilibrium. The momentum space behavior presents a more
difficult problem. The momentum space orbitals in Eq. (40)
behave as sin kr/(kr)4 in spherical coordinates. The length
scale in k is determined by the maximum nuclear charge.
Therefore, to obtain accuracy at the 0.001 level, P should be
∼4Zmax. The integrands for the energy corrections behave as
k−10 and should not be a problem.
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TABLE I. Energies for small molecules compared with results
from Ref. [19], denoted HJO, showing the energy differences in
millihartrees. The total energies from HJO are in hartrees. LCAO:
results from the orbital basis. N = 100, etc: Cartesian correction
results. The geometries are those of Ref. [19].

Molecule HJO LCAO N = 100 N = 144 N = 200

H2 −1.1336 5.1 0.0 0.0 0.0
CH2 −38.8960 39.8 −0.4 −0.2 −0.2
CH4 −40.2171 27.8 0.6 1.0 1.0
NH3 −56.2249 52.8 −1.9 −0.4 −0.3
H2O −76.0674 54.1 −3.8 −0.8 −0.5
C2H2 −76.8556 64.4 −0.5 −0.5 −0.3
C2H4 −78.0707 76.9 −0.6 1.9 2.5
HF −100.0708 33.9 −8.5 −1.5 −0.6
N2 −108.9930 197.2 −9.5 −1.2 −1.2
N2 −108.9930 124.8 −5.3 −2.2 0.6
CO −112.7908 162.2 −17.7 −2.6 −1.5
CO −112.7908 114.2 −14.9 −1.7 −2.6
HCN −92.9157 110.2 −4.4 −0.9 −0.9
HNC −92.9003 95.9 −5.8 −1.8 −1.8

VI. RESULTS

Results have been obtained for a number of small molecules
for which accurate Hartree-Fock equations have been recorded
by Helgaker et al. [19]. The calculated results depend on many
parameters, as defined in the preceding sections. Obviously,
some are more critical than others. The radial parameters in the
radial factor optimizations are rmin = 0.0001, rmax = 15.0, and
kmax = 200.0, with 256 mesh points. The dependence on these
parameters is probably insignificant within a reasonable range.
The nuclear attraction integrals are computed with LN,max = 8.
The values of 	(1)

max and 	(1)
max applied in the electron-electron

repulsion integrals are 16 and 6, respectively. Lmax,opt = 16
in the truncations in constructing Eq. (29). These parameters
determine the accuracy of the atomic orbital basis. Checks
varying these parameters indicate that the energy results
should be accurate to ≈0.1 millihartrees. The most sensitive
parameters are X and P , defining the Cartesian meshes in real
and momentum space. The results given are for 100, 144, and
200 mesh points with X = 10.0 and P ≈ 15.4, 22.3, and 31.1.

Results for the total energies are are given in Table I and
are compared with those of [19] at the same geometries. These
are denoted by HJO. Table I also shows the energies, denoted
LCAO, obtained in the atomic orbital basis. The results agree
with those given in HJO within a few millihartrees in all cases.
However, it can be observed that the results for molecules
containing nuclei of smaller Z are more accurate in the

TABLE II. Orbital energies obtained in this study.

n H2 CH2 CH4 NH3 H2O HF

1 −0.5947 −11.292 −11.203 −15.537 −20.561 −26.290
2 −0.893 −0.943 −1.141 −1.350 −1.599
3 −0.566 −0.546 −0.628 −0.716 −0.769
4 −0.397 −0.546 −0.628 −0.587 −0.649
5 −0.546 −0.431 −0.509 −0.649

TABLE III. Orbital energies for heavier molecules.

n C2H2 N2 CO HCN HNC C2H4

1 −11.244 −15.681 −20.674 −15.595 −15.598 −11.221
2 −11.240 −15.678 −11.352 −11.297 −11.293 −11.220
3 −1.030 −1.471 −1.521 −1.237 −1.266 −1.040
4 −0.768 −0.777 −0.803 −0.814 −0.878 −0.814
5 −0.682 −0.634 −0.641 −0.582 −0.522 −0.653
6 −0.411 −0.611 −0.641 −0.497 −0.522 −0.601
7 −0.411 −0.611 −0.555 −0.497 −0.493 −0.518
8 −0.377

N = 100 case and that for larger Z values, the results are
more dependent on N. This is suggests that the factor limiting
the accuracy is P , the maximum momentum. The iterative
procedure is terminated after 10 iterations, and the results may
be ≈0.1 millihartrees high.

Results for two cases for N2 and CO are given. One is for the
minimal basis on each atom, and the second adds 3s orbitals
to the basis. These are added because the optimum m = 0 2p

orbital may be quite different from the m = ±1 solution.
Results for the single-particle energies of the occupied

orbitals are presented in Tables II and III. The near-degeneracy
of the valence 3σg and 1πu in N2 may be noted. The energies
differ only slightly between the two calculations.

VII. DISCUSSION

Methods have been developed to overcome the problems
associated with the rapid variation of molecular orbitals
in the neighborhoods of the atomic nuclei and to obtain
numerical solutions of the restricted Hartree-Fock equations
for molecules. An important aspect is the method of separating
out the Slater orbital-like contributions at the nuclei and
treating them analytically.

A significant result of this work is that it presents an iterative
procedure for the solution of the Hartree-Fock operator with
inhomgeneous terms. It should therefore be applicable to
other problems. For example, it should be feasible to add
external static potentials to obtain polarizabilities. Evidently,
exchange and/or correlation density-dependent potentials can
be included in a straightforward way.

The convergence of the iterative procedure is rather slow
and appears to be geometric, with the error decreasing by
1/2 to 2/3 at each iteration in the later stages. This may be
a consequence of the self-consistent-field procedure for the
direct and exchange potentials rather than the iteration on the
δψk . This is indicated since the energy iterations decrease
monotonically.

There is considerable current interest in the possibility of
applying the optimized effective potential (OEP) method to
molecules [20–22]. The usual basis set expansion methods can
lead to ambiguous results, as illustrated recently [23], in that
matrix solutions of the single-particle Schrödinger equation
may not provide faithful pointwise solutions. In future work, it
is hoped to apply these methods to this single-particle problem
and develop a Cartesian method for the OEP for molecules.

This approach is obviously very demanding of computer
resources. It is also clearly most practical for molecules near
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equilibrium and is inapplicable to dissociation behavior. The
method would be much improved if the large momentum
properties of the orbitals and orbital increments could be
treated in a more satisfactory fashion. Future work will be
directed toward this issue. Other areas to be investigated
are the convergence properties of the angular momentum
expansions of the error terms εk . Evidently, the results should
be independent of the atomic orbital basis chosen. However,
including additional polarization orbitals in the atomic orbital
basis may improve the convergence of the iterative process,
and this will also be investigated.
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