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We have performed high-resolution two-photon dark-state spectroscopy of an ultracold gas of 3Rb, molecules
in the a®E; state at a magnetic field of about 1000 G. The vibrational ladder as well as the hyperfine and
low-lying rotational structure are mapped out. Energy shifts in the spectrum are observed due to singlet-triplet
mixing at binding energies as deep as a few hundred GHz x h. This information, together with data from other
sources, is used to optimize the potentials of the a*X; and X! Z; states in a coupled-channel model. We find
that the hyperfine structure depends weakly on the vibrational level. This provides a possible explanation for

inaccuracies in recent Feshbach resonance calculations.
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I. INTRODUCTION

Recently, optical schemes have been developed to
selectively produce cold and dense samples of deeply bound
molecules in well-defined quantum states [1-3] (see also
[4,5]). This has opened up new possibilities for cold collision
experiments, ultracold chemistry [6—8], and testing fundamen-
tal laws via precision spectroscopy [9-11]. For such future
experiments it is mandatory that the location and properties
of the available molecular quantum states are well known and
understood.

Until recently, the a*%} triplet potential of the Rb,
molecule had remained largely experimentally unexplored.
Natural samples of Rb, are normally found in their X 12;
singlet state, from which the lowest triplet state is somewhat
difficult to reach in an optical Raman process due to a change
in u-g symmetry. Here we report precision spectroscopy of
87Rb, molecules in this lowest triplet state, a’ =5 (58 2+
581/2), where we resolve vibrational, rotational, hyperfine,
and Zeeman structure with an accuracy as high as 30 MHz.
We use dark-state spectroscopy, where a gas of weakly
bound Feshbach molecules is irradiated by two laser beams.
Molecular losses, induced by one of the two lasers, are
suppressed when the second laser is tuned into resonance with
a bound state (see Fig. 1). Fitting a coupled-channel model
to our experimental data, we have constructed an accurate
Born-Oppenheimer potential for a®%;. This enables us to
calculate the wave functions of triplet bound states as well as
their binding energies to 60 MHz x h accuracy (where & is
Planck’s constant) over the whole manifold of vibrational and
low rotational (N < 5) levels. Our theory and data agree to the
extent that further refinement of the theoretical model requires
a reduction in the experimental uncertainty.

Molecular spectroscopy with cold atomic gases goes back
to the beginnings of laser cooling [12—-14]. An experiment
closely related to ours is the one by Araujo et al. [ 15], where the
Na, triplet ground state was explored using a magneto-optical
trap combined with two-color photoassociation spectroscopy.
Our spectroscopy also makes use of a two-photon transition,
but starts from cold Feshbach molecules rather than from free
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atoms. Recent investigations of the a*% ;" potential of Rb,
include the work of [16—18]. Using one-color photoassociation
of the a* X potential of laser-cooled 3°Rb, Ref. [16] put tight
constraints on the position of the repulsive wall of the a’Z;"
potential but was not able to resolve the vibrational structure.
The two other groups determined several rovibrational levels
using fluorescence spectroscopy [17] or pump-probe photoion-
ization spectroscopy of Rb, formed on helium nanodroplets
[18]. Our work goes well beyond these measurements as
we fully resolve hyperfine, rotational, and Zeeman structure
for almost all vibrational states. Highly precise data of the
asymptotic behavior of the coupled a*%;-X 'S S system is
contained in the large set of observed Feshbach resonances
[19-22] and in the two-photon photoassociation measurements
of four weakly bound levels at zero magnetic field by [23].

This article is organized as follows: Section II presents the
experimental setup and typical dark-state spectroscopy scans.
Section III discusses the relevant quantum numbers of our
studies and the assignment of the observed lines. Section IV
is a short summary of the coupled-channel model and the
optimization procedure of the Born-Oppenheimer potentials.
Section V discusses the progression of the substructure of the
vibrational manifolds. We conclude the article with a summary
and an outlook toward further experiments in Sec. V1.

II. EXPERIMENTAL SETUP AND DARK-STATE
SPECTROSCOPY

The starting point for our experiments is a 50-um-size pure
ensemble of 3 x 10* weakly bound Feshbach molecules which
have been produced from an atomic Bose-Einstein condensate
of 8’Rb by ramping over a Feshbach resonance at a magnetic
field of 1007.4 G (1 G = 10~* T) [24]. They are trapped in the
lowest Bloch band of a cubic 3D optical lattice with no more
than a single molecule per lattice site [25]. The lattice depth
for the Feshbach molecules is 60 E,, where E, = 72h? / 2ma?
is the recoil energy, with m the mass of the molecules and
a = 415.22 nm the lattice period. Such deep lattices prevent
the molecules from colliding with each other, which suppresses
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FIG. 1. (Color online) Dark-state spectroscopy scheme for the
8"Rb, @*%; potential. Lasers 1 and 2 couple the molecular levels
|i) and |v) to the excited level |e) with Rabi frequencies € ,,
respectively. Laser 1 is kept on resonance while laser 2 can be tuned to
any level of the a? ¥.F potential. (Inset) Bound-state level of Feshbach
molecules as a function of magnetic field B,. The dashed line gives
the position of the Feshbach resonance. The dot marks the Feshbach
molecule state used in the experiments.

collisional decay. We observe lifetimes of a few hundred ms.
After producing the Feshbach molecules, the magnetic field is
set to 1005.8 G, where the spectroscopy is carried out. At this
magnetic field, the binding energy of the Feshbach molecules
is 4.4(3) MHz x h (Fig. 1, inset).

Our dark-state spectroscopy works as follows: The Fes-
hbach molecules in state |i) are irradiated by simultaneous
rectangular pulses from lasers 1 and 2. The pulses typically
last 10 us with Rabi frequencies €2; and €2, respectively
(Fig. 1). We keep laser 1 resonant with the |i)—|e) transition
and at a power I; of about 0.1 mW (2 = 27w x 0.3 MHz)
such that in the absence of laser 2 about half of the molecules
are lost by spontaneous emission from |e). Laser 2 with its
power I (up to a few hundred mW) is scanned. As long as
laser 2 does not hit an |e)—|v) resonance, laser 1 will continue
to induce losses. However, when an |e)—|v) resonance occurs,
the initial state |i) is projected onto a dark state |Wgak) =
(S21i) — Q1v))/+/ Q% + ©23. Molecules in this dark state are
shielded from excitation to the short-lived level |e) [26]. This
leads to a suppression of molecular losses. After the lasers
are switched off we measure the number of molecules via a
reverse magnetic field sweep through the Feshbach resonance,
dissociating the remaining molecules in |i) into atoms which
are detected by absorption imaging. These measurements are
destructive, and for each point in a scan, a fresh sample of
Feshbach molecules has to be prepared.

The level |e) has an excitation energy of about 295 THz x h
with respect to |i) and a width ' = 27 x 8§ MHz. Laser 1, a
grating-stabilized diode laser, is Pound-Drever-Hall locked to
a cavity which is in turn locked to an atomic 87Rb line. Laser 2,
a Ti:sapphire laser, is free-running and typically drifts over a
frequency range of a few MHz within seconds. Both lasers have
a short-term laser linewidth of several tens of kHz. Their beams
have a 1/e? intensity waist radius of 130 xm at the molecular
sample, through which they propagate nearly collinearly. They
are polarized parallel to the magnetic bias field B, (pointing in
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the vertical direction) and thus can only induce 7 transitions.
The frequencies of both lasers are automatically read out
using a commercial wave meter (WS7 from HighFinesse).
The binding energy Ep of |v) minus the binding energy of
our initial Feshbach state (4.4 MHz x h) corresponds to the
frequency difference of the two lasers. The wave meter has
a nominal accuracy of 60 MHz after calibration. Over the
course of days we have observed drifts of 200 MHz, for
example, by repeatedly addressing the same spectroscopic
line. Over the length of a few experimental cycles (5 min)
the wave meter is stable to within 10 MHz, which represents a
random noise floor. Assuming a sufficiently smooth behavior
of the wave meter, drifts of the wave meter typically affect the
frequency measurements of laser 1 and laser 2 in a similar way,
especially since the laser frequencies only differ by 3%. Thus,
such common mode drifts cancel out in the binding energy
to first approximation. Indeed, based on our experience with
the wave meter where we have measured binding energies of a
few sharp lines over an extended period of time and via various
intermediate levels we estimate the accuracy to reach 30 MHz.
This includes peak position uncertainties due to variations of
the number of molecules produced, as well as a frequency
drift of laser 2 during the time between the laser pulse and
wavelength measurement.

Figure 2(a) shows the measured binding energies of the
triplet potential as a function of the vibrational quantum num-
ber v at a magnetic field of 1005.8 G. There are 41 vibrational
states with binding energies ranging from 5 MHz x A to about
7038 GHz x h. The vibrational splitting between the two
lowest vibrational levels, v = 0 and v = 1, is about 393 GHz.
Each vibrational state has hyperfine, rotational, and Zeeman
substructure. This structure is spread out over a range of about
20 GHz, as shown in Fig. 3 for the states v = 0 and 6. These
spectra typically consist of roughly 1000 points corresponding
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FIG. 2. (Color online) (a) Binding energies E(v) for the state
a*T}, where v is the vibrational quantum number. The line is the
result of a coupled-channel model calculation after optimization of
the Born-Oppenheimer potential. Five levels were not measured.
(b) Residues, that is, the difference between experimental data
and theory. Large error bars belong to early measurements without

simultaneous wave-meter readings of both lasers.
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FIG. 3. Scans of two vibrational levels: (a) v =6, (b) v =0.
Plotted is the remaining molecular fraction as a function of the binding
energy Ejp, which basically corresponds to the laser difference
frequency. The scans were recorded using an excited state |e) with 1,
character. The labels s and d indicate rotational states N = 0 and 2,
respectively. The numbers after the labels s or d indicate the position
in the spectrum.

to an average step size of 20 MHz. Each point represents one
production and measurement cycle which takes 28 s.

In each spectrum of Fig. 3 we observe some 10 lines
which vary markedly in linewidth. The width of each line
is determined by the coupling between the levels |e) and
|v), that is, the Rabi frequency €2,. Interestingly, for our
measuring scheme this width scales as Q% [27] and not as
2, [28,29], as one might expect. We have taken advantage
of this enhanced broadening when searching for lines and
vibrational manifolds, which otherwise can be like looking for
aneedle in a haystack. For example, for v = 0 and an intensity
I, of afew hundred mW we reached linewidths of several GHz.
The substructure of the desired vibrational level then appears
essentially as a single broad line with a width of about 20 GHz.
Once this level was found, the power was reduced in order to
resolve its substructure.

In general, we expect spectra of different vibrational levels
to be very similar. Up to v = 35 this is indeed the case. For
v > 35 the vibrational manifolds start to overlap, as the split-
ting between them becomes smaller than 20 GHz. Spectra (a)
(v =6) and (b) (v = 0) of Fig. 3 are clearly similar. Some
visible differences are artifacts; for example, it seems that
in spectrum (b) two narrow lines are missing at Eg/h =~
7021 GHz. This can be explained by the fact that the lines
were narrower (width < 10 MHz) than the local step size of
that scan and thus escaped observation.

III. QUANTUM NUMBERS AND ASSIGNMENT

A. Quantum numbers

For a deeper understanding of the structure of the spectrum
and its assignment we now discuss the relevant quantum
numbers and selection rules.

For the weakly bound levels like the Feshbach state or
the vibrational levels close to the atomic asymptote, Hund’s
coupling case (e) with atomic quantum numbers is most
appropriate. Here none of the angular momenta couple to the
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molecular axis. The state vector is described by

|(fAsz)fvl9F’M>v

where f4,fp are the total angular momenta for atoms A
and B, f is the sum of both atomic angular momenta, /
is the mechanical rotation of the atomic pair, F is the total
angular momentum of the pair, and M is its projection onto a
space-fixed axis. At low magnetic fields the prepared Feshbach
state |7) can be approximated by the state vector |fy = 2,
f=2,f=21=0,F =2,M =2). At the magnetic field
used in the experiment (1005.8 G), F is no longer a good quan-
tum number because of only weak coupling between / and f.
A more appropriate state vector is

|(fas fB) fom gl my, M).

M is a good quantum number, while for example, f4 and fp
have expectation values [30] of about 1.79 instead of quantum
numbers f4 = fp = 2 for 0 G.

Due to the strong hyperfine coupling of Rb and the large
exchange energy, deeply bound levels of the triplet state can
be described by Hund’s coupling case (bg) at low magnetic
fields [31], namely,

IN.(I,S)f.F.M),

where I and S are the total nuclear and electronic spin quantum
numbers, N the molecular rotation including electron orbital
angular momentum, and F and M have exactly the same
meaning as in Hund’s case (e). The index B indicates that
the nuclear spin [/ is not coupled to the molecular axis. Since
both atoms are in the 55 configuration of Rb, the molecular
electronic orbital angular momentum is zero. This means that
N =1 and that f is the same as in Hund’s case (e). Here
we get

IN.my.(1,S) f,my, M),

as an appropriate state vector for higher magnetic fields,
where M =my +my. One can show that owing to the
antisymmetry of the molecular wave function with respect
to nuclear exchange (nuclear spin of ’Rb i = %), molecules
with even (odd) N in the a32,j state must have either a total
nuclear spin / = 1 or 3 (I = 0 or 2) [31,32]. For the X! E;
singlet ground state this relation is reversed because it has
g symmetry in contrast to the u symmetry of the triplet state.
For large magnetic fields, f loses its meaning as S and [ start
to decouple.

Expectation values for the total nuclear spin and the electron
spin for our Feshbach level are / =1.56 and S = 0.76,
respectively. Thus, we have significant electronic singlet-
triplet mixing and consequently also mixing of the basis
vectors with different /. In contrast, the excited intermediate
state |e) has well defined quantum numbers S and /. Thus, |e)
largely determines which quantum numbers the deeply bound
a2 levels will have in the Raman transition.

The intermediate level |e) is located in the v/ = 13 manifold
of the 132;(55 12 + 5P12) potential. Due to significant
effective spin-spin interaction, the vibrational manifold is split
into two components, 1, and 0, separated by 47 GHz. As
intermediate level |e) we either choose a level with 1, character
or with 0, character. Its rotational energy must be low because
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the Feshbach level has the lowest rotational quantum number
N = 0. As rotation is low in |e), decoupling of S and I from
the molecular axis by rotation is not yet important. We can
then approximate the state |e) by quantum numbers for Hund’s
case (a,) where the index « indicates that the nuclear spin 7 is
coupled to the molecular axis,

S, 192, F,M).

The projections of the electronic and nuclear spin onto
the molecular axis appear as quantum numbers X and €2,
respectively.

The |e) level with 1, character is energetically the
lowest within the 1,(v = 13) manifold. It has the quan-
tum numbers S =1, |X|=1,1 =3, |;|~ 3, F~2, and
M =2 for low magnetic fields B,. Its excitation energy is
294.626 4(2) THz x h with respect to |i) at a field of 1005.8 G.

The |e) level with O, character has an excitation energy of
294.673 6(2) THz. It can be described by the quantum numbers
S=1,2=0,I=3,M=2,and F =3 at B, = 0. Because
of its low hyperfine coupling, the better choice of basis vector
here is

ISE,.(JDHF,M),

where J results from the coupling of the electronic spin and
the molecular rotation (J = N + S). For our 0, le) level, J
is approximately zero. Our 1, |e) state is a superposition of
N = 1and3.

As stated before, due to the laser polarization along the
magnetic field, only 7 transitions are allowed, which results in
the selection rule AM = 0. Further, in a one-photon transition
parity has to change. The Feshbach state |i) has a total parity
“plus” because it is a £ state and (—1)V = 1. Thus, we can
only address |e) levels with “minus” parity and |v) levels with
“plus” parity. This means that the |v) level must have an even
rotational quantum number N = 0,2,4, . ... For the |e) level
only quantum numbers N = 1,3, ..., or superpositions of
these, are available. In fact, as the 137 state is well described
in a Hund’s case (a) basis, N is in general not a good quantum
number for the |e) level. The selection rule AN = %1 for
N determines the range of reachable levels for |v) according
to the superposition in |e). The selection rules A/ = 0 and
AS = 0 are important for the transition |e) to |v). For the
transition |i) to |e) they are, however, nearly irrelevant since /
and S are not good quantum numbers for level |i).

B. Assignment of spectral lines

Figure 4 shows measured and calculated (based on the
coupled-channel model, see Sec. IV) lines of the v =106
spectrum, where the excited state |e) with 0, character was
selected. The lines form three groups with the quantum
numbers f = 4, 3, and 2, according to the hyperfine coupling
of § = l and I = 3. This is a clear indication that the hyperfine
energy is still dominant compared to the Zeeman energy.

Each group consists of one line with N = 0 corresponding
to a nonrotating molecule and several lines with N = 2 which
are shifted to lower binding energy by about 2 GHz x h due to
rotation. The fact that we do not observe lines with N > 2 can
be explained as follows: The excited state |e¢) has “minus” total
parity. Since J =0 and S = 1, N must be equal to one and
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FIG. 4. Scan of the hyperfine, rotational, and Zeeman structure
in the a° (v = 6) manifold using an excited level |e) with
0, character. The x axis shows the binding energy Ep. The quantum
number f is shown below each of the three groups of lines. Thick
black lines above the spectrum indicate states with N = 0; gray lines
correspond to states with N = 2. The upper row of numbers indicates
the expectation values of the magnetic quantum number m y at the
magnetic field of 1005.8 G.

is also a good quantum number for this lowest level in the 0
manifold. Thus, when using the state with O; character, only
final states |v) with N = 0,2 can be addressed in the a? =F
state due to the selection rule AN = +£1.

The overall structure of each vibrational level can be
understood with a relatively simple effective Hamiltonian [33]:

A
H=28 T+ B,N* + upgsS. B,

with the atomic hyperfine structure constant A = 3.42 GHz x
472/ h [34], the total electronic and nuclear spin operator S
and I, respectively, and the operator for molecular rotation
N. B, is the rotational constant of the desired vibrational
level v. The last term describes the Zeeman effect of the
electronic spin when exposed to an external magnetic field
B, in the z direction. The nuclear Zeeman term is neglected.
The Zeeman effect can be evaluated for the case of strong
hyperfine coupling such that f (with f = S 4 I) is still a good
quantum number. Using a simple vector model for f one can
derive a Landé factor g :

A
H= Es-I+BuN2 + ppgrmyB.,

SS+1)—I1U+ 1))
f(f+1D

For each f, the N =2 group is shifted to lower binding
energy by 6B, compared to N = 0, corresponding to about
2 GHz for the v = 6 manifold (see Fig. 4). Each N = 2 group
is split by the Zeeman energy according to the m ; quantum
number of each line. Only those lines which have quantum
numbers where M =2 =m; +my can be observed. The
level f = 3 has a small g factor (1/6 for I = 3), which gives
rise to a small Zeeman splitting. Additionally, one sees that
the splitting between f = 4 and f = 2, which would be about
12 GHz for the pure hyperfine part, is enlarged by a Zeeman

(D

with gfz%(u
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contribution because of the different signs of g for f = 4 and
f = 2. In Fig. 4 the expectation values for m ; resulting from
the coupled channel model are given in the upper row and show
that these lead to good quantum numbers for f =4 and f =2
but are less good for f = 3, where the hyperfine and electronic
Zeeman energies are small. The mixing of states with different
my for f = 3 is not included in the simple model of Eq. (1).
As discussed before, for the intermediate state with
0, character we exclusively observed N = O and N = 2levels

in the >} potential. This restriction does not necessarily
apply when using the intermediate level |e) with 1, character.
The corresponding spectrum in Fig. 3(a) shows the same v = 6
manifold as in Fig. 4, only |e) has 1, instead of 0, character. It
has additional lines (at ~4838 and ~4832 GHz) which match
the predicted positions of N = 4 levels.

As mentioned in Sec. III A the level |e) with 1, character
would be described by a superposition of N =1 and N =3
states in a Hund’s case (b) basis. We thus expect to see
transitions to levels with N = 0,2,4 of the a° E;L state
according to the selection rule AN = £1. In order to avoid
confusion, we note that the N = 0 and N = 2 lines between
4825 and 4830 GHz which are clearly visible in Fig. 4 are
weak or are not even observed in Fig. 3. For the same reasons
as discussed at the end of Sec. II, the experimental step size
of about 10 MHz might have been too large compared to the
narrow linewidths for these transitions to be seen.

It was not always necessary to carry out a complete scan
as in Fig. 4 in order to assign quantum numbers to observed
lines in arbitrary vibrational levels. Often it was sufficient to
measure a few characteristic lines and splittings and to compare
them to the calculated spectrum. These data were then used to
optimize the coupled channel model along with its a3Ej' and
X! E; Born-Oppenheimer potentials.

IV. COUPLED-CHANNEL MODEL AND OPTIMIZATION
OF THE a*%;} POTENTIAL

In our work we use a coupled-channel model [35-37] that
can calculate all bound states of the X' ¥} and @’ EF states,

which correlate with the atomic asymptote 52S;/> + 52512
The program has helped us with the search for lines as well
as with their identification. Using our data we are able to
optimize the Born-Oppenheimer potential of the a*X ] state
as well as to improve the potential of the ground state X' Zé',"
given in [38]. In the following we briefly describe the model
and explain how the X'S} and a’%, Born-Oppenheimer
potentials are optimized.

To cover the full range of experimental data by a single
theoretical model, only a coupled-channel analysis is adequate.
It includes the calculation of the molecular bound states as
well as the scattering resonances. It takes into account the
X! E; and a®> =} potential functions, the hyperfine coupling,
the Zeeman interaction, rotation and the effective spin-spin
interaction. Such a theoretical approach is described in several
articles (e.g., [39]).

For the present analysis we include our measurements
covering 135 lines of the %" state as well as data from
other work. For the X! E; ground state we added data from
Fourier transform spectroscopy by Seto et al. [38] with more
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than 12 000 lines. We also include measurements of Feshbach
resonances for the three isotopologues 85Rb,, $'Rb,, and
8RbY'RD [19-22], the four asymptotic levels from [23], and
measurements from Fourier transform spectroscopy for the
a32,j' state reported by Beser et al. [17].

The full Hamiltonian (cf. [39-41]) for a pair of atoms A
and B can be written in the form

H =T, + Ux(R)Px + Uy(R)(1 — Px) + aa(R)ss - ia
+ap(R)sp -ip + [(gs45:4 — &iaiza)
+ (858528 — ginizp)lusB. + SAMR)(3S% — $7). (D)

In the present case of the homonuclear molecule ®’Rb, the
parameters with index A are equal to those of index B. The
first term in the first line shows the kinetic energy 7, where
we take the atomic masses from recent tables by G. Audi
et al. [42]. The next two terms describe the potential energies
Uyx and U, for the motion of the atoms, where Px and 1 — Px
are projection operators on to the uncoupled states X and a,
respectively. R corresponds to the internuclear separation of
the two atoms. The second line shows the hyperfine interaction
between the atomic electron spins s4 p and the atomic nuclear
spins i4 p. The main contribution to the functions a4 g(R) is
the Fermi contact term. The R dependence of the hyperfine
parameters accounts for several effects: It takes into account
the electronic distortions of one atom by the other, that is,
the binding, and an effective coupling of the electron spin of
one atom with the nuclear spin of the other atom. We start
with R-independent atomic coupling constants taken from a
compilation by Arimondo et al. [43]. These constants are later
refined by a simple Ansatz for the R dependence [discussed
in Eq. (8)]. We neglect the nuclear quadrupole moment in the
hyperfine interaction, which might come into play for deeply
bound levels. The third line in Eq. (2) gives the Zeeman energy
from the coupling of the electron spin and the nuclear spin with
an external homogeneous magnetic field B, in the z direction.
The electronic and nuclear g factors for the atomic ground state
of the Rb isotopes are taken from the report in [43]. This term
couples states with different f quantum numbers. The last
line contains the spin-spin interaction which couples different
N states of basis (b). It is formed by the total molecular spin S
and its projection on the molecule fixed axis Z. The parameter
X is a function of R, of which one part has 1/R? dependence
as a result from the magnetic dipole-dipole interaction. In ad-
dition, A contains contributions from second-order spin-orbit
interactions. The final analysis showed that such a contribution
is significant within the achieved experimental accuracy.
For example, this was important for the precise location of
Feshbach resonances involving / = 1 and / = 2 levels.

The functional form of the two Born-Oppenheimer
potentials, X IE; and a>X}, is split into three regions on
the internuclear separation axis R: the short-range repulsive
wall (R < RsRr), the asymptotic long-range region (R > RyR),
and the intermediate deeply bound region in between. The
analytic form of the potentials in the intermediate range, Utg,
is described by a finite power expansion of a nonlinear function
& which depends on the internuclear separation R,

n

Ur(R) =Y _ai&'(R), 3)

i=0
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R — Rm

SR = R R,

“4)
Here the a; are fitting parameters (see Table II). We choose
b and R, such that only few parameters a; are needed for
describing the steep slope at the short internuclear separation
side and the much smaller slope at the large R side. R, is
chosen close to the value of the equilibrium separation. The
potential is extrapolated for R < Rsgr by the short-range part
Usr with

Usr(R) = uy + up/R™. )

We adjust the parameters u; and u, to get a continuous
transition at Rgg. The final fit uses N, ~ 4.5 for both the
X'Tfand @’ states.

For large internuclear distances (R > Ry r), we adopted the
standard long-range form of molecular potentials,

ULr(R) = =Co/R® = Cs/R® = Cio/R"" £ Eexer. (6)
where the exchange contribution given by [44]
Eexen = AexRV CXP(—,BR) (7N

is negative for the singlet and positive for the triplet potential.
By adjusting the parameter ay in Eq. (3) we can assure a
continuous transition from Uy g to Ur. As mentioned, the data
on hand include three different isotopologues, namely, 85Rb,,
87Rb,, and 3 Rb¥Rb. Using a model developed earlier for
LiK [45] we checked in the final calculations that the data are
not sufficiently precise to extract deviations from the Born-
Oppenheimer approximation. Thus, we derive the potentials
without any mass scaling correction.

Having discussed the complete physical model, we are now
ready to calculate all the relevant bound-state energies and
scattering properties to compare them with the experimental
data. We have decided to evaluate the Hamiltonian in Hund’s
basis (e) as f is still a relatively good quantum number. This is
due to the fact that the hyperfine interaction is larger than the
Zeeman interaction in our experiment. As the total electron
spin is not a good quantum number in Hund’s case (e), the
choice of this basis leads to significant nondiagonal matrix
elements from the Born-Oppenheimer potentials, which are
given for a pure singlet or triplet state.

We evaluate the free parameters of the model with a self-
consistent iteration loop and alternate between: (i) coupled
channel calculations of the full Hamiltonian and (ii) solving the
Schrédinger equation separately for the states X' =" anda® =
using only the first line of Eq. (2) and applying the Numerov
procedure. The coupled channel calculations in step (i) are used
to determine the hyperfine and Zeeman structure. From this we
construct hyperfine free spectroscopic data. This data is the
input for the Born-Oppenheimer potential fits in step (ii). We
incorporate the fitting routine for the plain Born-Oppenheimer
potentials in step (ii). The optimization of the singlet and triplet
potentials is done simultaneously as both potentials have a
common asymptote. These asymptotic potentials are given in
Eq. (6) with equal dispersion coefficients.

Normally, the iteration loop between the potential function
fit and the coupled channel calculation for producing hyperfine
structure free data converges in a few steps, but we observed
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some systematic deviations between measurements and calcu-
lations. Specifically, the hyperfine splitting showed variations
of a few percent within the vibrational ladder. Even though our
experimental accuracy is not better than 30 MHz, such small
variations are observable since the hyperfine splitting in ’Rb,
of 12 GHz is so large.

In order to theoretically account for the hyperfine variations,
we extended the model. We changed the fixed atomic hyperfine
parameters to a function in R. We chose a function which
switches at a distance Ry from the atomic value of the
hyperfine constant to another value for a deeply bound dimer,

= -9
da/B = dro <1 + e(R—RO)/AR + ]) . (8)

Here ag;, is the atomic hyperfine constant, ¢y the fractional
change of the constant, and Ry and AR describe the switching
distance and its width, respectively. We also tried several
other simple switching functions, which produced about
equal fit quality. The function in Eq. (8) is easily applicable
for other isotopes by introducing the proper atomic hyperfine
constant, because the scaling ¢, will be independent of the
isotope. We chose Ry = 11.0ap and AR = 0.5ay (where
ap = 0.5292 x 1071 m is the Bohr radius), such that
switching takes place approximately at the minimum of the
a*¥f potential. From our fits we obtained an amplitude
¢y = —0.0778, which corresponds to a variation of the
hyperfine coupling across the potential depth of up to 8%.
The influence of this hyperfine variation within an individual
vibrational manifold will be smaller because of the averaging
of Eq. (8) over the vibrational wave function. As mentioned
before, also the spin-spin interaction needs optimization in
order to explain systematic shifts of Feshbach resonances in
s-wave and p-wave scattering channels, as measured in [19].
The spin-spin interaction couples different partial waves [
subject to the selection rule Al = 0, &+ 2 such that resonances
in a s-wave scattering channel involve bound states with / = 0
and [ = 2. In higher order this also involves states with / = 4
etc. The spin-spin interaction splits the resonances according
to |my|, the projection quantum number of rotation on the space
fixed axis. We use a simple functional form for A(R) in Eq. (2),

M8 = 30" (5 +asoxp bR~ Reo)l) . O
that consists of two terms. The first term represents the
magnetic dipole-dipole interaction and the second term is the
second-order spin-orbit contribution. If Eq. (9) is given in
atomic units, « is the fine structure constant. Since the few
data at hand cannot be highly sensitive to the actual function,
we adopted values for b and Rso from a theoretical approach
by Mies et al. for Rb, [46] (b = 0.7196510_1 and Rso =
7.5ap). We fitted the parameter agsp, which yielded aso =
—0.0416a, 3. With these parameters the second part in Eq. (9)
contributes significantly to the effective spin-spin interaction
in the internuclear separation interval R < 20ay. This affects
bound levels of the triplet state that determine the Feshbach
resonances. After optimization we achieve an accuracy of
0.1 G. This correction to the constant A does not influence the
description of the other bound states within their uncertainty.
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Finally, we found that we can improve the fit by adding to
the long range formula Eq. (6) a term of the form —Cas/R%®
with an amplitude C,¢, which contributes about a thousandth
of the total long-range energy at the connection point Ryg.
The exponent of 26 was chosen so that the term is negligible
outside a small region around the long-range connection point
R = Ryr.

The final parameter sets of the potentials are shown in
Tables I and II for the singlet and triplet states, respectively. The

TABLE 1. Parameters of the analytic representation of the
potential of state X 'E;. The energy reference is the dissociation
asymptote and the term energy T) is the depth of the potential.
Parameters with * are set for continuous extrapolation of the potential;
for those with *x, see text for interpretation.

R < Rg =3.126 A

N, 4.533 89
ui —0.638904 880 x 10* cm™!
w3 0.112005361 x 107 cm™~' AMs

Rsg < R < Rig = 11.000 A
b —0.13
R 4.209 912 760 A
ap —3993.592 873 cm™!
a 0.000 000 000 000 000 000 cm ™"
a, 0.282 069372972346 137 x 10° cm™!
as 0.560425 000209 256905 x 10* cm™
a, —0.423962 138510562945 x 105 cm™"
as —0.598 558 066 508 841 584 x 10° cm™!
as —0.162613 532034769 596 x 105 cm™!
a; —0.405 142102246 254 944 x 10° cm™!
ag 0.195237 415352729586 x 10° cm™!
ag 0.413 823 663033582852 x 10° cm™!
a —0.425 543284 828921501 x 107 cm™!
ay 0.546 674790 157210198 x 10% cm™!
apn 0.663 194778 861331940 x 10® cm™!
as —0.558341 849704 095051 x 10® cm™!
ay —0.573987 344918535471 x 10° cm™!
as 0.102010964 189156 187 x 10" cm™!
ae 0.300040 150506311035 x 10 cm™!
ay —0.893 187252759 830856 x 10' cm™!
as —0.736002 541 483347511 x 10" cm™!
ao 0.423 130460 980355225 x 10" cm™!
ax —0.786 351477 693491 840 x 10'° cm™!
a1 —0.102470557344 862152 x 10" cm™!
axn 0.895155 811349267578 x 10" cm™'
an 0.830355322355692902 x 10" cm™!
s —0.150102297761 234375 x 10'2 cm™!
ass 0.586778 574293387070 x 10" cm™'

R > Rir

Ce 0.2270032 x 10 cm™" A®
Cs 0.7782886 x 10° cm™! A8
Cio 0.2868869 x 10" cm~! A0
i 0.2819810 x 10% cm~' A%
Aex 0.1317786 x 10° cm™' A~
y 5.317 689
B 2.093 816 A~!

Derived constants
RX =4.20991(5) A
TX = —3993.592 8(30) cm™!

Equilibrium distance
Electronic term energy
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TABLE II. Parameters of the analytic representation of the
potential of state a*%;. The energy reference is the dissociation
asymptote and the term energy 7 is the depth of the potential.
Parameters with x are set for continuous extrapolation of the potential;
for those with xx, see text for interpretation.

R < RSR =507A

N, 4.533 8950
ut —0.619 088 543 x 10° cm™!
us 0.956 231 677 x 10° cm™" A

Rr < R< Rr=11.00A
b —0.33
R 6.093 3451 A
ag —241.503 352 cm™!
a —0.672 503 402 304 666 542 cm™!
a 0.195 494 577 140 503 543 x 10* cm™!
as —0.141 544 168 453 406 223 x 10* cm™!
as —0.221 166 468 149 940 465 x 10* cm™!
as 0.165 443 726 445 793 004 x 10* cm™!
ag —0.596 412 188 910 614 259 x 10* cm™!
ar 0.654 481 694 231 538 040 x 10* cm™!
ag 0.261 413 416 681 972012 x 10° cm™!
as —0.349 701 859 112 702 878 x 10° cm™"
ar —0.328 185277 155 018 630 x 105 cm™!
ar 0.790 208 849 885 562 522 x 10° cm™!
an —0.398 783 520 249 289 213 x 10° cm™!

R > Rir

Cs 0.227 003 2 x 10® cm™" A°
Cs 0.778 288 6 x 10° cm™' A®
Cio 0.286 8869 x 10" cm~' A!°
cx 0.281 981 0 x 10%° cm™! A2
Aex 0.131778 6 x 10° cm™"' A7
y 5.317 689
B 2.093 816 A~!

Derived constants
Equilibrium distance R¢ =6.0940(10) A
Electronic term energy 7 = —241.503 4(30) cm™'

derived potentials and the corrections defined previously agree
very closely with all observations to within their experimental
uncertainties, and the normalized standard deviation (i.e.,
standard deviation divided by experimental uncertainty) is
close to one. In fact, depending on which of our experimental
data sets (hyperfine free spectra, binding energies from dark-
state spectroscopy or Feshbach resonances) we compare to
the model calculations, the normalized standard deviations
only vary slightly, ranging from 1.01 to 1.3. The normalized
standard deviation from the joint calculation over the huge
body of rovibrational energies (12459 data points from
the states XlE; and @*¥) is about 1.01, which is quite
satisfactory.

As another result of our analysis, we were able to eliminate
an ambiguity in the rotational assignment of the Fourier
transform spectroscopy data reported by Beser et al. for
the state a° E; [17]. The authors stated in the rotational
assignment an ambiguity by AN = £1. We determined that
the shift of the rotational quantum number mustbe AN = +1.
Afterward, we used the data from [17] with that assignment
for the further fits. The result in Table II includes these data
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and will give a better confidence in predicting rotational levels
with higher rotational quantum numbers.

V. PROGRESSION OF VIBRATIONAL LEVELS AND
THEIR SUBSTRUCTURE

In the following we discuss interesting insights which we
have gained from our analysis of the coupled system. In
particular, we investigate the progression of several quantities
in the vibrational ladder and the mixing of singlet and triplet
states. We concentrate on the details of the a* X | state because
it was studied in full resolution of hyperfine and Zeeman
energy over the whole vibrational ladder. Such a body of data
does not exist for any other alkali-metal dimer.

A. Vibrational ladder and rotational progression

We return to the vibrational states shown in Fig. 2, which
allows us to compare in detail the optimized coupled-channel
model with our experimental findings for all vibrational states.

The binding energies given in Fig. 2(a) correspond to the
most deeply bound level in each vibrational level, that is,
the state with quantum numbers N =0, f =2 (at 0 G) and
M =2. We will refer to this level as “sl1”. The sl level
of v =0 in the aSE;f potential is also the lowest bound
state in that potential and has an observed binding energy of
(7038.067 £ 0.050) GHz x h at 1005.8 G with respect to the
lowest atomic asymptote f4 &~ 1,ms = land fp = 1, mp =
1. A list of all the other measured and calculated bound-state
energies together with their expectation values of the quantum
numbers can be found in the supplementary material [47].

Figure 2(b) shows the residues between our experimental
s1 data and the optimized model. In general, the model agrees
very well with the measurements to within the error bars. The
data points with larger error bars belong to early measurements
without simultaneous wave-meter reading of both lasers,
which leads to a significant increase in the experimental
uncertainty (see Sec. II).

We now investigate the progression of the rotational
splitting in the vibrational ladder. For this, we consider the
sl level (N = 0) and its nearest neighbor in our spectra with
(N = 2) which we call “d1” (see Figs. 3 and 4). The sl and
dl levels both have f =2 and m; = 2. Thus, the splitting
between them is to a high degree rotational energy. The
splitting decreases with increasing v, which is due to the fact,
that the mean distance between the Rb, nuclei (and hence the
effective moment of inertia) increases as v increases. We have
directly observed this behavior in our experiments (see Fig. 5).
There is very good agreement between the experimental data
and the calculation (continuous line) using the optimized
potential of the a*X;" state.

Besides the sl level (N =0,f =2) and the dl level
(N =2, f =2)we also observe states with N =4 and f =2
for several low lying vibrational levels. The two lines in
Fig. 3(a) at 4839 GHz and the two lines in Fig. 3(b) at
7032 GHz have N = 4. Observation of these levels improved
the precision when fixing the position of the a*%;" potential
minimum in terms of the internuclear distance, or the effective
rotational constant B,. This turned out to be important for
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FIG. 5. (Color online) Energy splitting A E g between the s1 level
(N =0) and the d1 level (N = 2) for a given vibrational quantum
number v. Large error bars correspond to early measurements without

simultaneous wave-meter readings (see text). The continuous line is
a calculation based on the coupled-channel model.

the reassignment of the observations by Beser et al. [17], as
discussed at the end of Sec. IV.

B. Hyperfine splitting and singlet-triplet mixing

It is instructive to investigate the progression of the
multiplet structure of the vibrational levels. Figure 6(a) shows
calculated levels for M = 2 stacked on top of each other for
increasing v of the > potential. We concentrate on the
triplet states (S = 1) with rotation N = 0,2 and we restrict
ourselves further to triplet levels with I = 3. Additionally, we
show singlet levels (S = 0) with I = 2 that are located in the
vicinity of the triplet levels. Thus, the typical stick spectrum
of each vibrational manifold in the a® ;" state looks like the
one in Fig. 4. There are three groups of lines with f = 4,3,2,
respectively. The vibrational quantum number v runs from 0
to 34, where the multiplets do not yet overlap for different
vibrational levels.

In order to properly stack the data, we have chosen the level
with N =0, f = 3 to be the energy reference (AEp = 0) for
each vibrational level. We call this level “s2” (see also Figs. 3
and 4). This level is quite insensitive to mixing with singlet
levels, which makes it a good reference because there is no
singlet level with f = 3 and even parity for direct coupling. It
is clear from Fig. 6(a), that the multiplet structure of different
vibrational manifolds is similar, at least from v = O to about
v = 30, as expected from the simple model Hamiltonian in
Eq. (1). The structure changes in a smooth and monotonical
way with v. For each of the quantum numbers f = 4,3,2 the
splitting between N = 0 and N = 2 decreases with increasing
v as discussed in Sec. V A.

Appreciable mixing of a singlet and a triplet level can
occur when the two levels with f = 2 are located energetically
closely enough, in our case within a few GHz, corresponding to
the strength of the hyperfine interaction. One effect of mixing is
a shift of the level positions due to level repulsion, clearly seen
in Fig. 6. For v = 24, for example, the triplet lines of f =2
are pushed to the left by about 0.4 GHz by the close singlet
levels on the right-hand side. For v < 20 we also observe
narrow coincidences between triplet and singlet levels, for
example, for v = 15. Here almost no perturbation appears in
the graph, in contrast to the case v = 24. We attribute this to
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FIG. 6. (a) Progression of the substructure of the vibrational
manifold at B = 1005.8 G. Shown are calculated a*%} levels
with quantum numbers / ~3, M =2, N =0,2, and v =0---34.
Thick black lines correspond to N = 0, gray ones to N = 2. The
s2 level serves as energy reference (AEg = 0) in each vibrational
substructure. In addition to the triplet levels, nearby singlet levels
of the X! E;' potential are also shown (thick black crosses, N = 0;
gray crosses, N = 2). (b) Symbols as in panel (a). To discuss the
singlet-triplet mixing from a theoretical point of view, we now also
include lines with / ~ 1 butonly N = 0 for clarity. On the bottom, the
approximate quantum numbers (/, f) are given. See text for details.

a significantly lower overlap of the vibrational wave functions
of the singlet and triplet levels for the case v = 15 compared
to that of v = 24. For vibrational quantum numbers v > 30
mixing is very strong and happens for every vibrational level.
Because the long-range behavior of the a* £ and X' X7 states
is similar, the overlap of the wave functions will become large
for high v. The vibrational spacing will become similar to the
hyperfine splitting, and the state vectors here are best described
by Hund’s coupling case (e), that is, quantum numbers of atom
pairs.

Singlet-triplet mixing not only occurs for triplet molecules
with I = 3 but also for / = 1. Figure 6(b) shows (N = 0)
triplet levels with / =3 and I =1 for v =25 to 34. The
repulsion of the I = 1 levels from the singlet levels is clearly
visible. The figure shows an avoided-crossing-like behavior for
the levels on the right as a function of v, indicating the strong
mixing between I = 3 and I = 2, which also means that u-g
symmetry is broken for these levels. Further, our calculations
show that only levels with the same f and N quantum numbers
mix considerably. The singlet lines shown here have f =2
and N = 0. Apparently, despite the relatively strong magnetic
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FIG. 7. (Color online) “Discrete second derivative” of Ez(v), that

is, 82Eg(v) = Eg(v+ 1) —2Ez(v) + Ez(v — 1). The solid curve

connects the points from the s1 levels, while the diamonds correspond
to the s2 state.

fields of about 1000 G f is still quite a good quantum number.
Indeed, f appears as quantum number in both state vectors for
Hund’s case (b) and (e) and loses its meaning only for much
higher magnetic fields. N is good due to the small effective
spin-spin interaction.

The shift in position due to mixing can be traced more
clearly with a simple difference method discussed in the
following. Figure 7 shows the “discrete second derivative”
82E(v) of the function for the binding energies E(v), that
is, 8’Eg(v) = Ez(v+1) —2Ez(w) + Eg(v — 1). In other
words, it is the difference between the neighboring energy
splittings. The curve calculated from binding energies sl
exhibits sudden jumps for particular vibrational levels. These
are due to singlet-triplet mixing and the v positions are consis-
tent with Fig. 6. In contrast, the 82E g (v) curve for the s2 state
is smooth, and thus does not indicate mixing with the singlet
lines, which justifies its choice as energy reference in Fig. 6.

We have confirmed the singlet-triplet mixing experimen-
tally. Figure 8 shows scans of parts of the vibrational levels v =
28,31,33, where the intermediate level |e) with 1, character
was used (see also Fig. 3). The s2 level is chosen to be the
energy reference at A Ep = O as before. For v = 28 we observe
a line structure similar to that of Figs. 3 and 4. Thus, we take
the v = 28 spectrum as reference of the pure case “triplet.”
In fact, from our calculations we see that the next singlet
level is located about 30 GHz away. This detuning gives rise
to only a very small mixing which slightly lowers the triplet
character of the sl level to 0.99. The singlet level obtains a
triplet character of 0.02. However, due to the selection rule
AS = 0, the transition to the intermediate state |e) with its
very pure triplet character would simply be too weak to see.

This situation changes drastically for v = 31 and 33. Two
additional lines are visible in the spectrum which originate
from singlet states with M =2, N =0 and 2 . Here the
singlet-triplet mixing is close to 40%, which makes the singlet
lines easily detectable. Additionally, for v = 31 the sl and d1
components are shifted to lower values than expected from
the reference spectrum v = 28 due to repulsion by the singlet
component on the high energy side. In the case of v =33
the singlet component pushes the sl and d1 in the opposite
direction. Our calculations show that even the chosen energy
reference s2 starts to show mixing, indicated by its reduced
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FIG. 8. Observation of strongly perturbed singlet levels. We
compare sections of line spectra for the vibrational levels v = 28,
31, and 33. As in Fig. 6 the s2 level is chosen as energy reference
AEg = 0. The lines (and crosses) above the experimentally observed
spectrum are from coupled-channel calculations. Black lines (crosses)
represent N = 0 levels, while thin gray lines (crosses) correspond to
N =2levels for § = 1 (S = 0, respectively). The lines that originate
from the singlet states are labeled with “' % *.

triplet character of 0.98. In parallel to the singlet-triplet mixing,
the quantum number / loses its meaning as well; for example,
the level s1 of v = 33 has an expectation value for I of 2.75
instead of 3, due to a significant contribution of I = 2 from
the singlet state. Comparing the stick spectrum line positions
with observed lines in Fig. 8, we note the very nice agreement
between experiment and theory. We want to mention that we
measured the singlet levels at the predicted positions from
first calculations. This emphasizes the predictive power of the
presented model.

The fact that we observe singlet-triplet mixing for relatively
deeply bound levels with binding energies of a few hundred
GHz x h is already quite interesting. In addition, it provides
valuable information for fixing the energy position of the triplet
levels with respect to the singlets with high precision. This is
especially important for the large body of data of the singlet
system (see Sec. IV), which was obtained with no connection
to the triplet state [38].

C. Franck-Condon overlap

When scanning over all vibrational levels, the transition
matrix elements for the transition from |e) to |v) are not
constant but oscillate as a function of v. This oscillation
is mainly due to variations in the Franck-Condon overlap
between the |e), v/ = 13 vibrational wave function and
the vibrational wave functions |v) of the a32]; potential.
Figure 9 shows the normalized transition matrix element,
¢ = Q(v)/(2m /1), where 2, is the Rabi frequency and
I, is the intensity of laser 2. 2, is determined from the
measured width of the dark resonance [48,49]. For these
measurements we used the excited level 1, as |e) and the sl
levels as |v) of the a3E;r state. The transition matrix element

¢, varies from about (0.2-33) MHz/+/Wcm™2. In terms of a

dipole moment, (er) = Q2,(v)/+/Ihiv/€oc/2, this corresponds
to (0.05-8.0) x 1073° Cm.
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FIG. 9. (Color online) Normalized transition matrix element

Q,/(27 /1) between the excited level |e) (v’ = 13,1, character) in

the 1° E;j potential and the s1 level with vibrational quantum number
v in the lowest triplet potential a*>%;F.

In comparison, the amplitude for the transition between |i)

and |e) is Q/+/T] = 0.4 MHz/vW cm~2. We determine 2,
from resonant excitation, measuring how quickly |i) molecules
are lost for a given laser intensity /;. The data in Fig. 9 can
be used to fix the position of the 1° E; potential relative to the
a*%F potential applying the Franck-Condon approximation.

VI. CONCLUSION AND OUTLOOK

In this article we demonstrate high-resolution dark-state
spectroscopy of ultracold 8’Rb, molecules. We are able to
resolve the vibrational, rotational, hyperfine, and Zeeman
structure of the lowest a®%; potential with an absolute
accuracy as high as 30 MHz. We find that the hyperfine
structure is weakly dependent on the vibrational level, which
also influences predictions of Feshbach resonances if one
would like to reach accuracies on the order of 0.1 G.

By optimizing mainly the triplet Born-Oppenheimer po-
tential we obtain a model that can quite accurately predict
all vibrational levels in the @’} and X'S} potentials
for different ranges of rotational quantum numbers. After
reassigning recent data from Fourier transform spectroscopy
[17], we extend the range of applicability to rotational states
as high as N = 70 for the a* ;" potential. Because of this re-
assignment also the molecular parameters like the equilibrium
internuclear separation R, or the dissociation energy D, have
changed significantly compared to values reported in [17].
The new values are given in Table II. For rotational levels
with N < 4 the model calculations for triplet levels of any
vibrational level should have a precision similar to that of
our measurements, that is, about 30 MHz. For higher N this
precision will increasingly degrade resulting from the reduced
accuracy of the data from [17] of about 300 MHz for N = 70.
Compared to [38], the potential of the ground-state X 12;
is significantly improved close to the atomic asymptote by
including data on the mixed singlet-triplet levels of this study
and data on Feshbach resonances from various other sources.

052514-10



HYPERFINE, ROTATIONAL, AND VIBRATIONAL ...

We recommend the derived potential function for further
use. It can predict the deeply bound levels with an accuracy
(about 50 MHz), comparable to that of the Fourier transform
spectroscopy in [38]. The asymptotic levels are accurate on the
order of a few MHz or better as their position is determined by
the precisely measured location of Feshbach resonances. We
improved the description of the large set of 3’Rb Feshbach
resonances as compared to Ref. [19] where the original
calculation was based only on a few selected resonances
and a derived asymptotic form of the two potentials. In [19]
deviations as high as 2 G appeared and, for example, the
resonances of asymptote fa = 1,ms =0+ fp = 1,mp =1
were all calculated systematically too high. In the present
model these discrepancies disappear. The average deviation
over all 46 resonances, given in [19-22], is about 0.15 G [50].
If one removes the R-dependence of the hyperfine coupling
as given in Eq. (8), deviations in the order of 0.5 G appear
varying according to the different f levels which correlate
to the Feshbach resonances. To improve the overall fit, one
probably might be forced to include many-body effects of
the collision process for detecting the resonances. The overall
improvement of the long-range behavior also allows the whole
set of scattering lengths for the three isotopologues to be
calculated. Table III gives a selection of these calculations.
The error of these data will be in the last digit shown.
These values are consistent with earlier publications but more
precise and, in general, internally consistent between the
isotopologues.

Our model will be valuable for our planned collision
experiments of ultracold molecules which have to be prepared
in well-defined quantum states. The singlet-triplet mixing that
we observe is of interest for a proposed precision experiment
to measure the time dependence of the electron to proton mass
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TABLE III. Scattering lengths (in Bohr radius, ay = 0.5292 x
10719 m). @jowes: gives the scattering length of the energetically lowest
hyperfine state.

Rb + Rb
ISOtOpe Asinglet Atriplet Alowest (fsmf) + (fvmf)
87/87 90.35 99.04 100.36 (1,1) + (L,
85/85 2720 —386.9 —460.1 2,2) +(2,2)
87/85 1137 201.0 229.4 (1,1) +(2,2)

ratio [11] (see also [9,10]). The precision of future mea-
surements would be mainly limited by the accuracy of the
wave meter and could be improved by one or two orders of
magnitude. Such a high precision could be used, for example,
to test the fundamental limits of the coupled-channel model,
where we assume the validity of (i) the Born-Oppenheimer
approximation, (ii) using Zeeman terms with atomic param-
eters only, (iii) a limited functional dependence in R of
the hyperfine and spin-spin interaction, and (iv) neglecting
quadrupole hyperfine coupling.
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