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Multiconfiguration Dirac-Fock calculations in open-shell atoms: Convergence methods and satellite
spectra of the copper Kα photoemission spectrum
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The copper Kα photoemission spectra is one of the most widely studied. Recent Dirac-Fock calculations have
produced transition energies in good agreement with experiment, though they have relied on approximations that
may not be transferable to other complex atoms in which uncertainties in theoretical results are dominated by
poor convergence. Through a detailed examination of convergence issues in the copper spectrum, we consider
the accuracy obtainable with the multiconfiguration Dirac-Fock (MCDF) method, provide the first determination
of fine structure contributions to the spectrum, and demonstrate reliable techniques for modeling spectator states
with vacancies in the 3p, 3d , and 4s shells.

DOI: 10.1103/PhysRevA.82.052505 PACS number(s): 32.30.Rj, 31.30.J−, 32.80.Hd

I. INTRODUCTION

Plasma physics and astrophysics often interrogate spectra
from ionized species and species with open shells [1]. In
astrophysics, transition-metal x-ray spectra are commonly
used as diagnostics for black holes, neutron stars, and other
galactic phenomena [2], and the many-multiplet method used
to identify temporal variations of the fine structure constant
depends on transition-metal atomic-structure calculations [3].
Contaminants in fusion and tokamak research are commonly
transition-metal plasmas affecting performance [4], while
similar species in fission reactor technology can be important
in activation and lifetime estimates and hence in contaminant
radiation issues [5]. Characteristic radiation is used as a
diagnostic for laser-produced fast-ignition fusion [6] and in the
study of electron propagation near intense laser spots [7]. There
is also a need for improved understanding of the x-ray spectra
used in mammography in order to improve precision [8].

The structure of the photoemission lines of the transition
metals has been the subject of numerous investigations [9–12].
The Kα line is the most intense x-ray emission and refers to the
transition 1s−1 → 2p−1 (the notation 1s−1 refers to a vacancy
in the 1s shell). Separate peaks resulting from transitions to
2p−1

3
2

and 2p−1
1
2

are labeled Kα1 and Kα2.

The asymmetric Kα line shapes and satellite features
observed experimentally are indicative of processes other than
a single ionization event followed by a bound-bound transition.
Of the various explanations put forth to explain the Kα line
shape [10,13,14], the shake-off mechanism, in which a second
electron is ionized as well as the core electron, appears to be the
major contributor [15,16]. The relativistic multiconfiguration
Dirac-Fock (MCDF) method has been highly successful in
relatively simple atoms since the 1960s and 1970s, especially
for low-Z or highly ionized atoms, e.g., in [17,18]. Conversely,
very few studies of open-shell or highly excited atoms exist,
despite their wide application. There are several reasons for
this, including rapid growth of computation time, failure of
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convergence, and multiple near-degenerate eigenstates—the
problems are qualitatively and quantitatively different from
the closed-shell case.

II. CALCULATION

The MCDF method has been described widely [19]. Atomic
states are expanded into linear combinations of configuration
state functions (CSFs) of well-defined parity and angular
momentum,

�(�JM) =
∑

r

cr�(γr�JM), (1)

where �r are a set of Slater-determinant CSFs forming
an (incomplete) orthonormal basis and γr contains all the
quantum numbers necessary to distinguish states. The mixing
coefficients, cr , are determined by diagonalization of the
Dirac Hamiltonian, which occurs simultaneously with the
optimization of the radial wave functions. In the MCDF
implementation used herein QED and finite nuclear mass
effects are added perturbatively.

The standard approach is to use the (restricted) active space
method. A single or minimal set of reference CSF(s) serve as
a zeroth order basis, and higher-order corrections are included
by increasing the size of the CSF basis. The reference CSF
is often divided into the core and an active set of valence
shells, and the basis set is expanded by allowing single or
multiple excitations within the active set. Through systematic
enlargement of the active set, convergence can be monitored.

As the number of electrons and the number of active
shells increases, the size of the CSF basis increases rapidly.
Usually only single and double excitations from the reference
configuration are considered; however, the number of CSFs
in open-shell atoms still quickly escalates beyond practical
limits—expansion of the ground state of calcium to the n = 6
layer requires ∼5,000 CSFs, scandium requires ∼275,000,
and titanium requires ∼2,000,000. An ionized transition metal
with a spectator vacancy can have three or four open shells,
leading to CSF bases orders of magnitude larger again and with
thousands of near-degenerate energy eigenstates [20]. Copper,
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with a full 3d shell and a single unpaired 4s electron, provides
a useful starting point for investigations into open-shell atoms.

Deutsch’s early investigation [9] associated the asymmetry
of the copper Kα lines with a population of initial states
containing an additional vacancy in the 3d shell (“spectator”
states). Deutsch’s MCDF calculations allowed the identifica-
tion of separate diagram and spectator contributions; however,
the use of a single-basis set for upper and lower states produced
results that required an experimental-theoretical energy shift
before agreement with experiment was achieved. Moreover,
the removal of the 4s electron from the calculations essentially
reduced the problem to a closed-shell case.

Recent work by Chantler et al. [15] has taken into
consideration the 4s shell electron and produced results with a
level of accuracy that surpasses those previously reported. This
work challenges claims that the MCDF method is accurate
to no more than 1–2 eV, with results accurate to < 0.1 eV
for the Kα lines. This level of accuracy allows theoretical
results to be fit to experimental data without the need for the
theoretical-experimental energy shift common to works of this
nature in the past.

The increased level of accuracy achieved by Chantler et al.
arises from the implementation of theoretical work by Olsen
[21] in the GRASP2K code of Jönsson et al. [22], also used
in the present work. This allows for the transformation of
two nonorthogonal, incomplete basis sets (CSFs) into a single
biorthogonal set, thus allowing for transition matrix elements
to be calculated between them. It is well-known that relaxation
of orbitals between initial and final states is an important con-
tribution to matrix elements, and biorthogonalization allows
this to be properly taken into account.

Despite the accuracy of these results, several approxima-
tions were made. Valence-valence configuration interactions
involving the 4s-shell electron were only included approxi-
mately, and the potentially significant multiplet splitting of
the diagram lines was not calculated; rather, only the J = 1
to J = 1 transition was calculated, and statistical arguments
were used to adjust the transition rates.

This previous calculation disposes of the core/valence
distinction and allows substitutions from all shells while

prohibiting excitations from lower shells into the open 4s shell.
While this evidently provides excellent convergence when the
active set includes the n = 4 layer, if the method is robust it
must remain converged when the active set is expanded further.
Moreover, if we wish to apply these methods to a range of com-
plex atoms, such approximations will not always be sensible.

III. RESULTS AND DISCUSSION

In the present work we consider several models for
generating the expanded set of CSFs. In method 1 we
divide the reference configuration into a set of core orbitals
(1s, 2s, and 2p) and an active set (3s, 3p, 3d, and 4s).
Valence-valence correlations are included by allowing single
and double excitations within the active set of orbitals, which
is expanded at each stage of the calculation. At this stage
no core-valence correlations are considered. We employ the
frozen-core approximation, wherein after each expansion of
the active set the existing optimized orbitals are “frozen,” and
only the newly added orbitals are optimized. The 4s electron
was included in the calculation of the n = 3 layer before it was
frozen, and the active set was expanded to the n = 5 layer.

In method 2 we take into account core-valence correlations
by allowing excitations from the core to the n = 4 layer, with
the restriction that no more than a single electron is excited
from the core. In method 3 we extend the core-valence cor-
relations by allowing both single and double excitations from
the n = 2 layer and allow core excitations into the n = 5 layer.

In method 4 we dispense with the core or active set approach
entirely and allow single and double excitations from all shells
with the restriction that no excitations into the 4s shell are
allowed. Since double excitations from the n = 1 to n = 4,5
layers are of order 300 eV, we do not expect them to sig-
nificantly alter the results. We find, however, that inclusion of
these CSFs drastically alters the transition energies and reduces
agreement between the gauges, producing results at the n = 5
level that are in poor agreement with experiment. The inclusion
of CSFs with a hollow core shell introduces convergence
difficulties, as correlation orbitals of the same symmetry tend
to collapse to unphysically small radii. Despite the small

TABLE I. Convergence of Cu Kα diagram energies and length/velocity gauge transition strengths. Method 1: Valence-valence correlations
only. Method 2: Core-valence correlations to the n = 4 level. Method 3: Core-valence correlations to the n = 5 level. Method 4: All possible
excitations. Method 4 clearly leads to false results. Absolute transition energies vary with the basis set; however, the energy spacing and relative
intensities calculated with methods 1–3 are in excellent agreement with one another. The ratio of oscillator strengths is a good indicator of
convergence.

Method 1 Method 2 Method 3 Method 4

Active Set Energy (eV) AL/AV Energy (eV) AL/AV Energy (eV) AL/AV Energy (eV) AL/AV

2p1/2 → 1s

No Correlation 8030.79 0.99245 8030.79 0.99245 8030.79 0.99245 8030.79 0.99245
Correlation to n = 4 8027.87 0.99303 8027.95 1.00004 8027.91 1.00033 8027.91 1.00033
Correlation to n = 5 8027.90 0.99300 8027.98 0.99971 8027.90 0.99301 8029.90 1.0173
2p3/2 → 1s

No Correlation 8050.82 0.99263 8050.82 0.99263 8050.82 0.99263 8050.82 0.99263
Correlation to n = 4 8047.80 0.99329 8047.88 1.00005 8047.84 1.00042 8047.84 1.00042
Correlation to n = 5 8047.85 0.99324 8047.93 0.99999 8047.85 0.99325 8046.87 1.01697
Spacing 19.95 19.95 19.95 16.97
Relative Intensities 0.510 0.510 0.512 0.354
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contribution of these CSFs to the eigenstates of interest, this
poor convergence appears to have a significant effect. The
results of these four methods are presented in Table I.

It is generally accepted that if wave functions are converg-
ing, a ratio of transition strengths calculated in the length and
velocity gauges that approaches unity boosts confidence in
the accuracy of the results. In all four methods the ratio of
transition strengths in length and velocity gauges is closest
to 1 after optimization of the n = 4 layer, and it is only with
method 2 that we retain a high degree of convergence upon
addition of the n = 5 layer.

Considering all four methods together, all calculated
transition energies with oscillator ratios close to 1(|AL −
AV |/AL < 0.005) agree to within 0.08 eV. Moreover, the
relative intensities and energy difference of the Kα lines
is robust, indicating that core-valence correlations are only
significant for the 1s−1 state.

While absolute transition energies vary with the inclusion of
core-valence correlations by up to 0.08 eV, the Kα1, Kα2 en-
ergy difference and relative intensities remain consistent to <

0.01 eV and 0.002, respectively; hence the structural features
of the Kα transition can be accurately calculated by consider-
ing only valence-valence correlations. This is true not only for
the diagram lines presented above, but also for more extensive
calculations for multiplet contributions and satellite lines.

This fact is vital for extension of the work to include more
complex situations, as false or poor convergence becomes an
otherwise insurmountable difficulty and an increasing CSF
basis size increases computation time beyond practical limits.
Relatively simple calculations can be used to determine
structural features and the relative positions of lines, while
detailed calculations are necessary only to scale the whole
calculated spectrum.

To this end we adopted a new approach to the calculation of
multiline transitions. In the first stage one or a few of the lines
are calculated to a high degree of accuracy. Since calculations
using large CSF bases are more prone to false convergences
and unphysical answers (but are ultimately the most accurate),
this stage proves to be highly difficult, and sometimes several
lines must be tried before satisfactory convergence is obtained.
Failure of wave functions to converge is a well-known and
poorly understood problem in relativistic atomic structure
calculations [23,24]. In the second stage we calculate all
lines simultaneously with a smaller set of CSFs and scale

TABLE II. Energies and Einstein A coefficients for copper Kα1,2

spectrum fine structure as calculated using method 2. The Kα1 and
Kα2 centroids (calculated using the weighted energies above) are
0.05 eV higher than predicted by the J = 1 → J = 1 transition alone.

Transition Energy (eV) Strength (A/1014s−1)

Kα2

J = 0 → J = 1 8028.18 3.08800
J = 1 → J = 0 8027.95 1.02628
J = 1 → J = 1 8027.95 2.04981
Kα1

J = 0 → J = 1 8048.09 6.01073
J = 1 → J = 1 8047.88 1.00575
J = 1 → J = 2 8047.88 4.96683

FIG. 1. Experimental and fitted theoretical spectrum for copper
Kα. The curve bounding the residuals is ±σ . The positions of the
stick diagrams represent the transition energies contributing to the
spectrum, and the height represents the intensity, normalized to
the most intense transition of the group. The energy of the 4s spectator
transition clearly indicates why approximate treatment of the open
shell has provided good results in previous work.

the transition energies to agree with the results from stage one.
The results of this method on the multiplet calculation are
presented in Table II.

The Kα spectator states have been calculated using
this method. Transition energies were calculated for both
the diagram and spectator states, taking into account only
valence-valence correlations. The whole spectrum was
then scaled so that the diagram lines matched the most
accurate results presented in Table I as measured according
to the oscillator ratios (method 2, n = 4). To correct for the
divergence problem (closely spaced energy levels of the same
J,� diverge in energy due to the finite number of basis states)
we used a weighted average.

The fit of our results to experimental data is presented in
Fig. 1. The experimental data is a parametrization of Deutsch’s
experimental results [9]. Diagram and satellite intensities
are fitted independently, and an additional three parameters
characterize the transition widths—one each for Kα1 and Kα2

and one for the difference between diagram and spectator.
The residuals remain almost entirely contained within ±σ .

Figure 1 also includes stick diagrams illustrating the
strengths and energies of the transitions contributing to the
diagram and spectator spectra. As well as the dominant 3d
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TABLE III. Fitted parameters and standard deviations for the
Kα spectrum. The errors represent only the diagonal elements in
the covariance matrix and do not consider the effect of the ∼0.1eV
uncertainty in transition energies.

Parameter Literature

widths (eV) Fit [15] [9] [26]

2p 3
2

2.72(8) 2.55(11) 2.68 1.81(5) 2.07 [27]
2p 1

2
2.20(4) 1.87(10) 2.08 2.93(7) 2.96 [27]

2p 3
2
3d 3.61(29) 3.86(24) 2.75 1.21(15)

2p 1
2
3d 3.13(25) 3.18(25) 2.75 1.09(15)

% pop.
Diagram 74(1) 71(2.5) 69 72(3)
Satellite 26(1) 29(2.5) 31 28(3) 23 [28]

spectator, we have calculated transition data for the 4s specta-
tor and 3p spectator states. Deutsch presented his experimental
results as a parametrization, and the 3p spectator (which would
appear on the high-energy side of the Kα1 peak) was not
significant enough to be included in their parametrization.

Removal of the 4s electron has a minor effect on the
spectrum. The transition energies are greater than the J = 1 →
J = 1 diagram case energies but less than the J = 0 → J = 1
diagram case energies. This explains why both Deutsch and
Chantler were able to obtain such excellent results despite
incomplete treatments and why atomic calculations provide
results that agree with solid-state experiments—solid-state

effects involving the 4s electron have little impact on the
inner-shell transition energies.

Fitting parameters are presented in Table III. Despite using
the same experimental data, our transition widths and spectator
populations differ from Chantler et al.’s [15] and Deutsch’s [9]
due to the sensitivity of these parameters to the position of the
satellite lines.

The fitted satellite population contributions are much
greater than prevailing theoretical calculations predict. Kochur
[12] and Mukoyama [25] predict 3d spectator populations of
14.5% and 10.3%, respectively, compared with the 26% found
herein. However, all experimental determinations have so far
shown this significant discrepancy [9,15,26,28], suggesting
incomplete theoretical treatment of the shake-off process.

IV. CONCLUSION

We have shown that a complete MCDF treatment of highly
excited open-shell atoms is possible and can yield results with
an accuracy of < 0.1 eV. Our calculations of the Kα transitions
in copper agree well with experimental data. However, as
previously observed, spectator intensities are greater than
predicted theoretically. In principle, accurate data should be
obtainable for the rest of the transition metals using these
methods; however, our experience with copper suggests that
problems encountered even within the transition-metal group
are likely to be unique to each element and nontrivial to
overcome.
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