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Casimir force between integrable and chaotic pistons
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Cientı́ficas y Técnicas, Avenida General Paz 1499, 1650 San Martı́n, Argentina
(Received 29 July 2010; published 8 November 2010)

We have computed numerically the Casimir force between two identical pistons inside a very long cylinder,
considering different shapes for the pistons. The pistons can be considered quantum billiards, whose spectrum
determines the vacuum force. The smooth part of the spectrum fixes the force at short distances and depends
only on geometric quantities like the area or perimeter of the piston. However, correcting terms to the force,
coming from the oscillating part of the spectrum which is related to the classical dynamics of the billiard, could
be qualitatively different for classically integrable or chaotic systems. We have performed a detailed numerical
analysis of the corresponding Casimir force for pistons with regular and chaotic classical dynamics. For a family
of stadium billiards, we have found that the correcting part of the Casimir force presents a sudden change in the
transition from regular to chaotic geometries. This suggests that there could be signatures of quantum chaos in
the Casimir effect.
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I. INTRODUCTION

In the last few years, there has been an increasing interest in
the Casimir effect [1]. The Casimir force, which in its simplest
version consists of the interaction between two perfectly
conducting surfaces, involves the summation of the vacuum
energy of the electromagnetic modes allowed by those surfaces
and, therefore, depends in a complex way on the spectrum
associated with the considered geometry.

In this paper, we consider the following system: a pair of
identical pistons of arbitrary shape separated by a distance
a, contained in a very long cylinder with the same transversal
shape [2]. All surfaces are considered to be perfect conductors.
This system has been solved, in the sense that there is an exact
formula that relates the (renormalized) Casimir energy or force
with the spectrum of the two-dimensional Laplacian operator
constrained to the geometries that define the pistons [3]. The
exact formula, first derived in Ref. [3] [see Eq. (5) below],
involves a summation of functions of the eigenvalues of the
two-dimensional Laplacian. This summation is different from
the usual sum over modes that defines formally the vacuum
energy, since the latter involves the eigenvalues of the three-
dimensional problem and gives a convergent result only after
a proper subtraction. The (formal) sum over modes is not ade-
quate to implement direct numerical evaluations of the Casimir
energy, even in the simplest situations [4], because of its highly
oscillatory behavior. However, as we see in many specific
examples, this is not the case with the exact formula for pistons.

With the possibility to compute the Casimir force using the
spectra of two-dimensional pistons, considered as quantum
billiards, let us ask a natural question: Is there any signature of
the classical dynamics on the billiard in the Casimir effect?
This conceptual question is based on the fact that spectra
of chaotic and nonchaotic billiards are qualitatively different.
Whereas the spectrum of a classically chaotic system shows
level repulsion and its statistical properties are well described
by random matrix theory [5], the energy levels of a regular
classical system are Poisson distributed [6] (see Ref. [7] for a

general discussion). Moreover, the spectrum of a given geom-
etry can be written as the sum of a smooth plus an oscillating
part. The smooth contribution to the spectrum depends only on
geometric quantities like the area, the perimeter, and the curva-
ture of the border. But the oscillating part depends on quantities
related to the classical periodic orbits of the system (as action,
period, and stability), which are completely different in the
regular or chaotic case. Moreover, periodic orbits in regular
systems exist in continuous families, whereas in chaotic
systems they are isolated. As already shown in Refs. [8,9], the
smooth part of the spectrum gives the short distance behavior
of the force between pistons, the leading term being the well
known proximity force approximation (PFA). Therefore, any
signal of quantum chaos, if present, should pop out in the
difference between the full Casimir force and its smooth part.

The goal of this paper is to analyze the Casimir force
between pistons and to try to see some signature of chaos.
For this reason, we have computed the force between pistons
of different shapes with regular and chaotic classical dynamics.
In order to compute the Casimir force in our systems, it is nec-
essary to handle summations of functions of the eigenvalues
of the considered geometry. For very simple geometries, like a
rectangle or equilateral triangle, the eigenvalues have explicit
analytic expressions in terms of two quantum numbers, and the
computation is relatively easy (although, as we will see, a large
number of eigenvalues are necessary in order to reproduce the
PFA limit).

For circles, the eigenvalues are defined as the zeros of
Bessel functions. In this case, one can follow two different
approaches: to compute numerically the eigenvalues and then
perform the summation, or, alternatively, to perform the sum
over the eigenvalues by using the argument theorem.

In addition, for rectangular and equilateral triangular
billiards, the correcting part of the Casimir force, which
comes from the oscillating part of the spectrum, can be
computed using exact results from semiclassical periodic orbit
theory [10]. We remark that semiclassical techniques have
been already used in the computation of Casimir force [11].
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For more complex geometries, semiclassical theory is only
approximated and the effort to compute the periodic orbits
is enormous. The only alternative is to find the eigenvalues
associated to a given geometry using sophisticated meth-
ods. We show that, with some computational effort, the
exact formula is useful to evaluate the Casimir interac-
tion between pistons for both integrable and nonintegrable
geometries.

The paper is organized as follows. In Sec. II we review the
main results for the force between pistons. We include a discus-
sion of the exact formula, the behavior of the Casimir energy
at large distance, and the relation between the short-distance
behavior and the smooth part of the spectrum. In Sec. III
we compute the Casimir force between pistons with integrable
classical dynamics. We consider rectangular, triangular, and
circular pistons. We use the large- and short-distance behaviors
as benchmarks for the numerical calculations and show that, up
to a given accuracy, it is possible to find analytic expressions
for the force for any distance between the pistons. We also
compute the correcting part of the force and find that circular
pistons have a different behavior in the short-distance limit:
the leading contribution to the correcting part of the force is
finite for triangles and rectangles, and diverges for circles. In
Sec. IV we present the results for the force between pistons that
are billiards with chaotic classical dynamics. The calculation
of the Casimir force in this case was done by computing the
corresponding eigenvalues through the scaling method [12].
In particular, we analyze a family of stadium billiards and
the uniformly hyperbolic Sinai-type billiard introduced in
Ref. [13]. For each considered geometry, we compute the full
Casimir force, paying particular attention to its correcting part.
We show that at short distances all geometries with curved
boundaries present a similar divergent behavior. Section V
contains an analysis of the Casimir force associated with
the oscillating part of the spectrum for both integrable and
chaotic pistons. The analysis is based on the computation of
the correcting part of the force for a family of billiards that
interpolates between a regular geometry (quarter of circle)
and chaotic billiards. We see that, in the short-distance limit,
the correcting part of the force has an abrupt change in the
transition from the quarter circle to a stadium billiard. We
present our conclusions in Sec. VI. Throughout this work
we use natural units, h̄ = c = 1.

II. CASIMIR FORCE BETWEEN PISTONS:
THE EXACT FORMULA

We consider a very long electromagnetic cylindrical cavity
with an arbitrary section (which we assume to be simply
connected). The cavity contains two plates (pistons) separated
by a distance a. All surfaces are perfectly conducting. The
z direction is the axis of the cavity, and we denote by x⊥
the coordinates in the transverse sections. At the classical
level, the electromagnetic field admits a description in terms of
independent transverse electric (TE) and transverse magnetic
(TM) modes, which are defined with respect to the z direction.
This is possible due to the particular geometry we are
considering, which has an invariant section along the z axis.
As the section is simply connected, there are no transverse
electromagnetic modes (TEMs). The relevance of TEMs in

the Casimir force between pistons with nonsimply connected
sections was analyzed in Ref. [14].

As discussed in Ref. [14], TE and TM Casimir energies
correspond to that of a set of massive scalar fields in 1 + 1
dimensions, with masses given by the eigenvalues associated
to the two-dimensional pistons, that we denote by λkN and λkD.
More explicitly, the eigenfrequencies associated with the TE
and TM modes are

wTE
k,n =

√(nπ

a

)2
+ λ2

kN (n = 1,2,3, . . .),
(1)

wTM
k,n =

√(nπ

a

)2
+ λ2

kD (n = 0,1,2, . . .),

where the eigenvalues are defined by

∇2
⊥ϕTE,TM = −λ2

N,DϕTE,TM. (2)

The eigenfunctions ϕTE,TM satisfy Neumann and Dirichlet
boundary conditions, respectively, on the border of the
transversal section. The ϕTE = const eigenfunction with λN =
0 should be excluded because it does not correspond to a
physical electromagnetic solution.

The Casimir energy Em and force Fm for a field of mass m

in 1 + 1 dimensions has been computed previously by many
authors [15]. They are given by

Em(a) = − 1

2π

+∞∑
l=1

mK1(2lma)

l
, (3)

and

Fm(a) = −∂Em

∂a
= 1

π

+∞∑
l=1

m2K ′
1(2lma), (4)

where K1 is the modified Bessel function of the second kind
and the prime denotes derivative with respect to the argument.
Using these results and the analogy between the TE and TM
eigenfrequencies with the eigenfrequencies of massive scalar
fields in 1 + 1 dimensions, we can easily obtain the TE and
TM contributions to the Casimir force between pistons in the
cylindrical cavity:

F TE(a) + F TM(a)

= 1

π

+∞∑
l=1

(∑
λkN

λ2
kNK ′

1(2lλkNa) +
∑
λkD

λ2
kDK ′

1(2lλkDa)

)
.

(5)

This equation was previously obtained in Ref. [3] using a
different method. We stress that the formula is valid for a cavity
of arbitrary section. In the rest of the paper we are mainly
concerned with the particular case of Dirichlet boundary
conditions (which correspond to TM modes), because this is
enough for our purposes. Therefore, we omit the subscript D
in the eigenvalues and the superscript TM in the forces.

In the next sections, we present numerical evaluations of
the Casimir force between pistons using Eq. (5). In the cases
where the eigenvalues are known analytically or numerically,
the evaluation is performed by computing explicitly the
summations over l and λk in Eq. (5). There are some cases
where the eigenvalues associated with a given geometry are
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known implicitly through the zeros of a function f (λ) = 0. In
this case, the sum over eigenvalues can be performed using the
argument theorem∑

λk

λ2
kK

′
1(2lλka) = 2πi

∮
C

dz z2K ′
1(2zla)

f ′(z)

f (z)
, (6)

where the integral is performed in the complex plane z along
a closed contour C that encloses all zeros of f (z).

We now describe some general properties of the force
between pistons given in Eq. (5). The function

K ′
1(x) = − 1

2 [K0(x) + K1(x)]

is a negative and increasing function for real and posi-
tive arguments, and it vanishes exponentially for x → ∞.
Therefore, the force between pistons is always attractive and
decreases with distance. Moreover, at large distances, the sum
is dominated by the term with the lowest eigenvalue λ1 and
l = 1, that is,

F (a) ≈ F∞(a) = − 1

2π
λ2

1[K0(2λ1a) + K1(2λ1a)]

≈ −1

2

(
λ3

1

πa

)1/2

e−2λ1a . (7)

The exponential behavior is due to the finite size of the pistons,
which produce a gap in the spectrum. The above approximation
is valid as long as aλ1 � 1.

The behavior at short distances requires a deeper analysis.
As the distance between pistons decreases, more and more
eigenvalues give a sizable contribution to the force. Taking into
account the exponential behavior of the Bessel functions, if in
the numerical computation one neglects terms that are smaller
than e−D for a given accuracy, all terms with 2lλkamin < D

should be kept in the calculation, where amin is the minimum
distance for which the force is numerically computed.

It is useful to rewrite Eq. (5) in an integral form,

F (a) = 1

π

∞∑
l=1

∫
dεεK ′

1(2la
√

ε)ρ(ε), (8)

where ρ(ε) = ∑
k δ(ε − λ2

k) = dN
dε

is the density of states
(or energy levels). The number of energy levels N below
a given energy ε can be approximated using the so-called
Weyl theorem [7], which for two-dimensional billiards with
Dirichlet boundary conditions gives

N (ε) =
(

A

4π
ε − P

4π
ε1/2 + χ

)
	(ε) + Ñ (ε), (9)

where A is the area of the piston, P is its perimeter, and χ is
related to the shape of the boundary through

χ = 1

24

∑
i

(
π

αi

− αi

π

)
+ 1

12π

∑
j

∫
γj

κ(γj ) dγj . (10)

Here αi is the interior angle of each corner and κ(γj ) is the
curvature of each smooth section γj of the border. The term
Ñ (ε) contains lower-order contributions that vanish in the limit
ε → ∞. It oscillates rapidly with energy and is related to the
classical periodic orbits of the billiard. [For TE modes, the

sign of the perimeter term changes and the factor χ should be
replaced by χ − 1 in Eq. (9)].

Introducing the first three terms of the Weyl expansion into
Eq. (8), we can solve the integral and the infinite sum over l,
giving

F (a) ≈ FW (a) = − 3ζ (4)

8π2a4
A + ζ (3)

32πa3
P − ζ (2)χ

4πa2
. (11)

This result has already been shown, using different methods,
in Refs. [3,8,9]. The first term is the usual PFA proportional
to the area. There are also corrections of lower order on a

related to the perimeter and curvature of the boundary of the
billiard, although the regular or chaotic classical dynamics on
the surface does not enter in this expression.

III. PISTONS WITH REGULAR CLASSICAL DYNAMICS

In this section we use the preceding results to compute
numerically the Casimir force between pistons with rectan-
gular, triangular, and circular shapes. If we think of these
shapes as billiards, they all have regular dynamics as they
have two constants of motion (as required for two-dimensional
systems). We verify that the results converge to the expected
FW expression, Eq. (11), for short distances and to the F∞
expression, Eq. (7), for large distances.

In order to compute the Casimir force from Eq. (5), it is
necessary to obtain the eigenvalues of the Laplace equation for
each geometry. For a rectangular piston of sides Lx and Ly ,
these eigenvalues are trivially

λnm =
√(

πn

Lx

)2

+
(

πm

Ly

)2

(12)

with indices n,m � 1 for Dirichlet boundary conditions (TM
modes). For Neumann boundary conditions (TE modes), one
of the indices can be zero (but not both at the same time).

For an equilateral triangle of side L,

λnm = 4π

3L

√
n2 + m2 − nm (13)

with n � 1 and m � n + 1 for Dirichlet boundary conditions
(BCs), and n � 0 and m � n for Neumann boundary condi-
tions, excluding the term (n,m) = (0,0) (see Refs. [10,16] for
further details about the equilateral triangular billiard).

On the other hand, for a circular piston of radius R, the
eigenvalues of the Laplace equation are given implicitly as the
solutions of

Dirichlet BC → Jn(R λnm) = 0, (14)

Neumann BC → J ′
n(R λnm) = 0, (15)

where n � 0 is an integer which labels the order of the
Bessel function, and m refers to its mth root. For n = 0,
the eigenvalues are nondegenerated, and for n � 1, they are
double degenerated. For Neumann boundary conditions, the
first trivial zero of J ′

0, that is, λ01 = 0, is excluded. Therefore,
the Casimir force can be computed using Cauchy’s theorem as
in Eq. (6). Alternatively, the eigenvalues can be computed
numerically from Eq. (14), and then Eq. (5) can be used
to calculate the force. We have used both methods (see
Appendix A for details on the samples of eigenvalues used).
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FIG. 1. (Color online) Ratio of the numeric Casimir force
between squared-shaped pistons to the Weyl expression [Eq. (11)],
Fnum/FW , and to the large-distance asymptotic expression [Eq. (7)],
Fnum/F∞. For those converging to 1 at small a, from bottom to
top corresponds to the leading order (red), next-to-next-to-leading
order (blue), and next-to-leading order (green) in FW [Eq. (11)],
respectively. For those converging to 1 at large a, from top to bottom
corresponds to the ratio of the numeric force to the large-distance
expression (black) [Eq. (7)] and to the next-to-leading-order asymp-
totic expression (gray), i.e., including the two first eigenvalues. All
others shapes (rectangle, triangle, circle, and also the nonintegrable
shapes discussed in the next section) behave qualitatively the same.
The distance a is expressed in units of

√
area.

A. Casimir force

We have computed numerically the Casimir force F (a)
for the three regular pistons and compared it to the predicted
behavior for short piston separation, FW (a), and long sepa-
ration, F∞(a). The criterion to define whether a separation
is long or short depends on the value of a compared to the
characteristic lengths of each shape. Since the results for all
shapes are qualitatively the same, we have only plotted the
results of this comparison for the square with area A = 1 in
Fig. 1. (Observe that setting the area to unity is equivalent

to using units of
√

area for the distance a and 1/area for
the resulting Casimir force. All figures and results in this
paper are to be understood in these units.) As can be seen
in the short-distance region, the convergence improves as
we include each term of the Weyl expression, Eq. (11).
On the other hand, in the large-distance region, we verify
the convergence to the expression in Eq. (7), which is a
function of the smallest eigenvalue. Moreover, in this region
we have also plotted the next-to-leading-order large-distance
asymptotic expression (including the first two eigenvalues) to
show explicitly that it is possible—and simple—to obtain, by
choosing different approximations in each region, an analytic
approximation of the Casimir force which agrees within a
given accuracy with the numerical result. Indeed, adding a few
additional terms in the large-distance expansion is possible to
describe the numerical results with analytic approximations
within 1% for any value of a.

In order to compare the Casimir force for the integrable
pistons, we have plotted in Fig. 2 the numeric Casimir force
for the different geometries while keeping constant the area
A = 1 for all shapes. Given the short-distance expression
FW (a), we find that the differences between the forces at
short distances must come from the different perimeters of the
pistons. However, in the large-distance region, the difference
must come from the first eigenvalue λ1 [see Eq. (7)]. In
table of Fig. 2, we give the perimeter and first eigenvalue
for the geometries under study, as well as the geometrical
χ factor. As can be seen, there is no crossover of the lines
in Fig. 2 from large to short distances. However, this is
not a general property, since a spectral theory exists that
states that if region R contains region R′ then the lowest
eigenvalue of the Laplacian operator restricted to Dirichlet
boundary conditions on R is smaller than the lowest eigenvalue
of R′ [17]. Therefore, it is possible to imagine pistons A

and B, where A is contained in B, but A has a larger
perimeter and, therefore, the ordering in the Casimir forces
for short distances is contrary to the one for large distances.
We see an explicit example in Sec. IV. Another interesting
property is that, among all possible two-dimensional shapes

0.15 0.25 0.30 0.35 0.40 0.45 0.50

2.5

2.0

1.5

1.0

0.5

a
Fnum(a)

shape P χ λ1

circle 3.54 0.16 4.26

square 4 0.25 4.44

triangle 4.56 0.33 4.77

rectangle 4:1 5 0.25 6.47

FIG. 2. (Color online) Casimir force between integrable-shaped pistons with area equal to unity. The ordering for small and large a may
be understood from the corresponding asymptotic expressions in Eqs. (11) and (7), respectively, as a function of the ordering in the perimeter
and first eigenvalue for each geometry. From top to bottom, the lines correspond to a 4:1 rectangle (green), an equilateral triangle (blue), a
square (red), and a circle (black), respectively. The table shows the different parameters of each geometry that enter into Eqs. (11) and (7). As
mentioned in the text, the distance a is expressed in units of

√
area, whereas the force is in units of 1/area.
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with a given area, the circle has the lowest first eigenvalue
[17]. Therefore, at large distances the interaction between
circular pistons is stronger than for pistons of any other
shape.

We end this section with some comments on Neumann
boundary conditions (TE modes) concerning the pistons
studied in this section. We have computed the Casimir force
in each shape for TE modes. The ordering of the results for
small and large distances is the opposite of that for Dirichlet
boundary conditions (TM modes). At short distances, this
follows from the expression of FW : as already mentioned
after Eq. (11), the term proportional to the perimeter changes
sign for Neumann boundary conditions. On the other hand, at
large distances, the opposite order comes from the relative
values of the first eigenvalue of each geometry. The first
eigenvalue of the billiards considered here, for Neumann
boundary conditions, is always smaller than the first one for
Dirichlet boundary conditions. Therefore, the force decreases
more slowly as a → ∞.

B. Correcting part of the force

To analyze the effects of the classical dynamics on the
Casimir force we should investigate the difference

δF (a) = F (a) − FW (a), (16)

since the Weyl term FW only depends on geometrical quan-
tities. The difference δF is related to the oscillating part of
the spectrum and contains information on classical periodic
orbits. From Eq. (11), where the last term proportional to χ

goes as a−2, we typically expect that

lim
a→0

a2δF (a) = 0. (17)

To see if there is a qualitatively different behavior as a →
0 for different types of dynamics, we study numerically the
difference of the force for regular as well as for chaotic (next
section) geometries.

We have plotted δF for the integrable shapes studied in
Fig. 3. As can be seen, the geometries consisting only of
straight lines and angles (square, rectangle, and triangle)
reach a constant for short distances. For these geometries,
semiclassical expansion can be done in an exact way, and the
short-distance behavior can be obtained explicitly in terms
of periodic orbits (see Appendix B). The constant can be
precisely computed and, as can be seen in the figure (dashed
asymptotes), matches perfectly with the numerical evaluation
of δF . On the other hand, the circle shows a divergence in δF

for a → 0. Based on the examples studied in next sections, we
would conjecture that this is a general property for billiards
with curved boundaries.

It is worth mentioning that, had we forgotten to sum a
single eigenvalue in Eq. (5) of those required by the accuracy
sought [see discussion after Eq. (7)], then the condition of
Eq. (17) would be violated. Indeed, the contribution of a given
eigenvalue λk to the force is

Fk(a) = 1

π

+∞∑
l=1

λ2
kK

′
1(2lλka), (18)

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.06

0.04

0.02

a

δF (a)

FIG. 3. (Color online) Correcting part of the force (δF = F −
FW ) for integrable geometries. Solid lines from top to bottom at
a = 1 correspond to triangle (blue), square (red), circle (black),
and rectangle 4:1 (green), respectively. The dashed lines are the
asymptotes to which the polygon geometries converge according to
the explicit calculations in Appendix B.

and a simple numerical analysis shows that Fk diverges as 1/a2

for a → 0. Therefore, the wrongly computed δF (a) would
diverge as 1/a2, violating Eq. (17). We have verified that this
is not the case for all the numerical calculations.

IV. PISTONS WITH CHAOTIC CLASSICAL DYNAMICS

In this section, we compute the Casimir force between
pistons with nonintegrable shapes. We study a family of
stadium billiards and a Sinai-type billiard. A stadium consists
of a rectangle of sides r and � with a quarter circle of radius r ,
as shown in Fig. 4. It has been shown that the classical motion
of a particle inside a stadium is fully chaotic [18]. The second
kind of chaotic billiard is also shown in Fig. 4. It has been
extensively studied in Ref. [13], and its eigenvalues have been
computed [19].

The computation of the Casimir force requires the knowl-
edge of the eigenvalues of the Laplace operator with a given
boundary condition. The eigenvalues of the chaotic billiards
were computed using the scaling method [12]. This powerful
method was proposed by Saraceno and Vergini and to date is
one of the most efficient methods for solving the Helmholtz
eigenvalue problem in a hard-walled billiard (with Dirichlet
boundary conditions). Using this method it is possible to find

(a)

(b)

FIG. 4. Shape of chaotic billiards pistons used in the calculations.
(a) Stadiums are a family of figures formed by the union of a rectangle
(of sides r and �) and a quarter circle (of radius r); once the area is
fixed to unity, it is labeled by the ratio �/r . A stadium with �/r = 1
(solid) and �/r = 0.2 (dashed) is shown. (b) Uniformly hyperbolic
Sinai-type chaotic billiard, also used in this work, with area fixed to
unity (see Ref. [13] for details).
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ÁLVAREZ, MAZZITELLI, MONASTRA, AND WISNIACKI PHYSICAL REVIEW A 82, 052504 (2010)

all eigenvalues and eigenfunctions in a narrow energy range by
solving a generalized eigenvalue problem in terms of quantities
over the boundary of the cavity. The gain is that, in a single
computational step, a number of accurate eigenvalues are ob-
tained in a constant proportion to the dimension of the matrices
scaling as O(k), where k = 2π/λ is a referential wavenumber.
The success of the method is essentially based on the fact that
eigenstates are quasiorthogonal on the boundary. The scaling
method was used to numerically compute extremely high-lying
energy levels of two-dimensional (2D) and three-dimensional
billiards [20,21].

A. Casimir force

We have computed the Casimir force between stadium
pistons with Dirichlet boundary conditions for �/r = 1, 0.705,
0.7, 0.205, 0.2, 0.005, and 0, as well as for the Sinai-type
billiard, all with area A = 1 (see Appendix A for the details
in the samples of eigenvalues). We have verified the correct
convergence of the numerical computation to the expected
short- and long-distance behavior using Eqs. (11) and (7),
respectively, for all billiards.

We present in Fig. 5 the numeric Casimir force for
three relevant shapes. At this level there are no qualitative
differences with the force of integrable geometries. However,
in this case, we do see a crossover of the forces between
the Sinai-type piston and the stadiums, since the ordering in
the perimeter (see table in Fig. 5) is contrary to the order in the
first eigenvalue and, therefore, the ordering for the asymptotic
small and large distances is reversed (see discussion in previous
section).

B. Correcting part of the force

In this section we investigate the correcting part of the
Casimir force that comes from the oscillating part of the
spectrum for the nonintegrable geometries under study. In
all cases we found that, in the limit of short distances,

lima→0 δF (a) = ±∞. This is contrary to the the straight-line-
contour integrable pistons (rectangle and equilateral triangle),
but similar to the curved-line contour (circle). Moreover, as in
the circle, for these chaotic pistons with curved contours, δF ∼
1/a as a → 0, because it is observed that lima→0 aδF (a) =
const. These results are plotted in Fig. 6. By virtue of the
discussion in the previous section, we verified that a2δF (a) →
0 as a → 0, and therefore we have not omitted any relevant
eigenvalue.

V. CHAOTIC TRANSITION STUDY

In order to look for chaotic distinctive signals, we have
studied F (a) and δF (a) in a transition from chaotic to regular
geometries. These correspond to the maximal-chaotic �/r = 1
stadium to the nonchaotic �/r = 0 stadium, which corresponds
to the quarter circle. In this transition, for reasons that become
clear below, we have stepped in the �/r = 1, 0.705, 0.7, 0.205,
0.2, 0.005, and �/r = 0 (quarter circle) stadiums.

In a first stage, we have numerically computed F (a) and,
as expected, we have found no differences in these geometries
that could come from a chaotic versus a nonchaotic behavior.
This would have been the case if the �/r = 0 stadium (quarter
circle) would have had a distinctive behavior in relation to the
other (�/r 
= 0) stadiums. We have plotted Fnum(a) for some
relevant stadiums in Fig. 7. For small a, we have that since
all stadiums have the same area and geometrical χ factor,
Fnum(a) is ruled by the perimeter term in FW (a) [Eq. (11)].
It is interesting to notice that, for fixed area, the perimeter
as a function of �/r is not a monotone function but, instead,
has a minimum at �/r = 1 − π/4 ≈ 0.21. This ordering in
the perimeter of the stadiums is also observed in δF (a) for
large a.

On the other hand, the study of δF (a) has shown a
qualitative separation between the chaotic stadiums and
the nonchaotic �/r = 0 quarter circle. Since the expected
differences should show up for small a and δF (a) diverges as
a → 0, we found it suitable to study this qualitative behavior

1.97 2

10 8

0.21

5.5

0.15 0.25 0.30 0.35 0.40 0.45 0.50

2.5

2.0

1.5

1.0

0.5

a
Fnum(a)

shape P χ λ1

stadium = 1 4.16 0.23 4.86

stadium = 0.2 4.00 0.23 4.68

Sinai-type billiard 4.52 0.43 4.64

FIG. 5. (Color online) Casimir force for different-shaped chaotic pistons. For small a (lower inset) from top to bottom: Sinai-type billiard
(blue), stadium �/r = 1 (red), and stadium �/r = 0.2 (green). For large a (upper inset) from top to bottom: stadium �/r = 1 (red), Sinai-type
billiard (blue), and stadium �/r = 0.2 (green). Due to the relationship between the perimeters and the first eigenvalue, there is crossover of the
forces from the small- to the large-distance regime. At distances larger than those plotted in this figure, there is a crossover between the green
and blue curves, as expected from the fact that the lowest eigenvalue of the �/r = 0.2 stadium is slightly larger than that of the Sinai-type
billiard.
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FIG. 6. (Color online) (a) Correcting part of the Casimir force for chaotic geometries, which all diverge as a → 0. (b) a δF (a) for these
same geometries. We find that all converge to a constant. In both parts of the figure, from top to bottom the plots correspond to the Sinai-type
billiard (blue), the stadium �/r = 0.2 (green), and the stadium �/r = 1 (red), respectively.

in the product a δF (a), where we avoid the divergence. We
have found that a small variation of �/r produces a small
variation of a δF (a) for �/r 
≈ 0. On the other hand, for
�/r ≈ 0 we have found that a δF (a) is very sensitive to
�/r . To show this behavior we have plotted in Fig. 8 the
product a δF (a) for three characteristic values of �/r and
a tiny variation on each of them. As can be seen in the
figure, the plots for �/r 
≈ 0 (�/r = 0.2, 0.205, 0.7, and 0.705)
show practically no difference, whereas the plots for �/r = 0
and �/r = 0.005 show a large variation. In other words, the
function U (�/r) = lima→0 a δF (a) has a smooth behavior at
�/r 
= 0 and a sudden change at �/r = 0.

The results of this section suggest that the discontinuity that
we have found in the function U could be a manifestation of
classical chaos in the force between pistons. However, addi-
tional numerical and analytical analysis is needed to confirm
this conjecture. On the one hand, one could explore other
families of geometries that interpolate between integrable and
chaotic billiards as, for instance, the transition from a Sinai to
a rectangular billiard. On the other hand, one could compute

the correcting part of the force using recent developments in
periodic orbit theory, as in Ref. [22].

VI. FINAL REMARKS

In this work we have studied numerically the Casimir
force between two identical pistons of several shapes inside
a cylindrical cavity. We summarize our main results and
conclusions.

We have presented explicit numerical calculations for the
force between pistons of different shapes. The numerical
calculations were verified using the large- and small-distance
behaviors, which are known analytically. Moreover, we have
shown that it is easy to obtain accurate analytic expressions
for the force in the whole range of distances.

For the simplest geometries (rectangles and triangles), the
eigenvalues are known analytically, and the evaluation of
the force is relatively simple. For the case of the circle, the
eigenvalues are known implicitly, and we used two different
methods to compute the sum over eigenvalues: Cauchy’s
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FIG. 7. (Color online) (a) Numeric Casimir force for several stadiums. The lines correspond from top to bottom to stadiums with �/r = 1
(red), 0.7 (green), 0 (black dashed), and 0.2 (blue), respectively. (b) Perimeter of a stadium of area equal to 1 as a function of �/r . Observe the
correlation between both figures, since the perimeter rules the force ordering for the equal-area stadiums.

052504-7
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FIG. 8. (Color online) Plot of a δF (a) for different values of �/r

and a tiny variation on it. From top to bottom, �/r = 0.205 (blue),
0.2 (blue dashed), 0.705 (green), 0.7 (green dashed), 0.005 (black),
and 0 (black dashed). The plot shows the sensitivity of δF (a) in �/r

at �/r ≈ 0, where the transition from nonchaotic to chaotic occurs.

theorem and a numerical evaluation of the eigenvalues. Finally,
for the more complex geometries, the only alternative is to
compute the eigenvalues numerically and then use the exact
formula for the force. The evaluation of the force at short
distances involves a very large number of eigenvalues, and
therefore a precise and efficient method to compute thousands
of eigenvalues is necessary. We have used a particular method
developed in the context of quantum billiards. At this point we
would like to stress that the combination of this or alternative
methods to compute eigenvalues [23] with Cauchy’s theorem
could be particularly useful to compute the Casimir energy for
other geometries (see, for instance, Ref. [24]).

One of the original motivations of this work was to look
for signals of quantum chaos in the Casimir force for the
piston geometry. For this reason, we evaluated the part of the
force originated by the oscillating part of the spectrum. On
the one hand, we have seen a set-apart behavior depending on
whether the boundary of the piston contains curved lines. In
the first case, δF diverges as a → 0, while in the second case it
converges. A more detailed analysis of the transition between
chaotic and regular geometries shows, in the example studied,
a different behavior for the nonchaotic geometry in the part
of the force coming from the oscillatory part of the spectrum,
more explicitly in the finite limit U = lima→0 a δF (a). We
analyzed a one-parameter (�/r) family of stadiums, which
starts with an integrable geometry (a quarter circle, �/r = 0).
The finite limit is a function of this parameter, U = U (�/r),
which has a smooth behavior for �/r 
= 0 and a jolt at
�/r = 0.

This work has many numerical results which have given us
clues to the behavior of the Casimir force for different shapes
of pistons. It would be very interesting analytically to explore
and verify these results. For instance, a relevant open question
is to see whether the behavior of the correcting part of the
Casimir force that we have found is generic in the transition
from chaotic to integrable billiards or a property of the family
of stadiums that we have analyzed. If this is a generic property,
the sudden change in the function U would be a footprint of
quantum chaos in the Casimir force. We hope to address this
interesting problem in a forthcoming publication.
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APPENDIX A: EIGENVALUE SAMPLES

For the different-shaped pistons we have used different sets
of eigenvalues. The following table summarizes the required
information to reproduce our results.

Total Maximum
Shape Eigenvalues Eigenvalue

Square 30 000 615.95
Rectangle 4 : 1 30 000 616.45
Triangle 61 075 963.35
Circle 19 984 549.38
Quarter circle 16 111 451.95
Stadium �/r = 1 17 247 467.59
Stadium �/r = 0.705 17 254 467.7
Stadium �/r = 0.7 21 439 521.08
Stadium �/r = 0.205 17 258 467.67
Stadium �/r = 0.2 18 000 477.58
Stadium �/r = 0.005 17 257 467.63
Sinai-type billiard 62 076 885.47

APPENDIX B: CORRECTING PART OF THE FORCE FOR
RECTANGLES AND TRIANGLES

As expression (5) for the Casimir force, the Casimir energy
can be rewritten in an integral form:

ETM(a) + ETE(a)

= − 1

2π

∞∑
l=1

1

l

∫
dε

√
εK1(2la

√
ε)[ρD(ε) + ρN(ε)], (B1)

where

ρD,N(ε) =
∑

k

δ
(
ε − λ2

kD,N

) = ρ̄D,N(ε) + ρ̃D,N(ε) (B2)

is the density of states with Dirichlet (Neumann) boundary
conditions and where we have already split the density into a
Weyl smooth part plus an oscillating part. For both rectangular
and equilateral triangular billiards, there are explicit exact
formulas for this semiclassical expansion using the Poisson
summation formula from explicit expressions (12) and (13)
for the eigenvalues (see Ref. [16] for details). The smooth part
has the usual form for 2D billiards:

ρ̄D,N(ε) = A

4π
∓ P

8π
√

ε
+ χD,Nδ(ε), (B3)

where A = LxLy , P = 2(Lx + Ly), χD = 1/4, and χN =
−3/4 for a rectangular billiard of sides Lx and Ly , and
A = √

3L2/4, P = 3L, χD = 1/3, and χN = −2/3 for an
equilateral triangular billiard of side L. The contribution of
this smooth part of the Weyl series to the Casimir energy can
be evaluated analytically, giving an exact result that has already
been discussed [see Eq. (11)].
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The oscillating parts have the following exact expressions
in terms of periodic orbits:

rectangle → ρ̃D,N(ε) = A

4π

∑
M

J0(LM
√

ε)

∓ 1

2π
√

ε

∞∑
m=1

[Lx cos(2Lxm
√

ε)

+Ly cos(2Lym
√

ε)], (B4)

triangle → ρ̃D,N(ε) = A

4π

∑
M

J0(LM
√

ε)

∓ 3L

4π
√

ε

∞∑
m=1

cos[(3L/2)m
√

ε],

(B5)

with double index M = (M1,M2) running over integer num-
bers, excluding from the sum the term (M1,M2) = (0,0),
which indeed had given the area term in the Weyl series. The
lengths of periodic orbits are LM = 2

√
(M1Lx)2 + (M2Ly)2

for the rectangle and LM =
√

3(M2
1 + M2

2 + M1M2)L for the
equilateral triangle.

We see that for both shapes, and both boundary conditions,
the structure of the formulas is very similar. We must first
evaluate the integral of terms with the J0 function that can be
solved analytically:∫ ∞

0
dε

√
εK1(2la

√
ε)J0(LM

√
ε) = l

2a3[l2 + (LM/2a)2]2

(B6)

Using this in Eq. (B1), the resulting l sum can also be
performed:

∞∑
l=1

1

(l2 + α2)2

= 2π2α2 + 2πα sinh(πα) cosh(πα) − sinh2(πα)

8α4 sinh2(πα)

= π

4α3
− 1

2α4
+ O(e−2πα) (B7)

with α = LM/2a. We used the approximation α � 1, corre-
sponding to the limit of small plate separation a (compared to
the typical plate’s size). The final contribution of the J0 terms
to the Casimir energy is

− A

2π

(
1

4

∑
M

1

L3
M

− a

π

∑
M

1

L4
M

)
, (B8)

which is the same for TE and TM modes, and both shapes. As
a function of plate separation a, there is a constant term plus a
linear term on a.

For the terms in ρ̃ with cosines, we have integrals of type∫ ∞

0
dεK1(2la

√
ε) cos(Rm

√
ε) = πl

4a2[l2 + (Rm/2a)2]3/2

(B9)

with R = 2Lx or 2Ly for the two terms in the rectangular
billiard, and R = 3L/2 for the equilateral triangle. Now the

sum over l cannot be done analytically, but we give an
approximation,

∞∑
l=1

1

(l2 + α2)3/2
= 1

α2
− 1

2α3
+ O(e−α), (B10)

which is valid for α = Rm/2a � 1. The sum over index m

can be done in terms of a Riemann ζ function. Finally, the
contribution of the cosine terms to the Casimir energy of TM
modes (given by the Dirichlet density of states) is

rectangle → ζ (2)

16π

(
1

Lx

+ 1

Ly

)
− ζ (3)

32π

(
1

L2
x

+ 1

L2
y

)
a,

(B11)

triangle → ζ (2)

6πL
− ζ (3)

9πL2
a. (B12)

For TE modes, the contribution has exactly the opposite sign.
We see again a constant plus a linear term on plate separation a.
We remark here that in semiclassical approximation (ε → ∞),
usually terms coming from the cosine in Eqs. (B4) and (B5)
are ignored compared to the main terms from periodic orbit,
and even the J0 function is approximated by its asymptotic
expression for big arguments. But, due to the integration
from low energies, we see that both J0 and cosine terms
give contributions of the same order on a. This is the reason
why a general semiclassical approximation, only valid for high
energies, is not enough to compute the contributions to Casimir
energy.

Collecting all terms, we have the correcting part of the
Casimir energy for the rectangle,

δED,N(a) = −LxLy

8π

∑
M

1

L3
M

± π

96

(
1

Lx

+ 1

Ly

)

+ a
LxLy

2π2

∑
M

1

L4
M

∓ a
ζ (3)

32π

(
1

L2
x

+ 1

L2
y

)
,

(B13)

and for the equilateral triangle,

δED,N(a) = −
√

3L2

32π

∑
M

1

L3
M

± π

36L

+ a

√
3L2

8π2

∑
M

1

L4
M

∓ a
ζ (3)

9πL2
. (B14)

Deriving with respect to a we finally obtain, up to
exponentially small terms, the correcting part of the Casimir
force,

rectangle → δFD,N = −LxLy

2π2

∑
M

1

L4
M

± ζ (3)

32π

(
1

L2
x

+ 1

L2
y

)
,

(B15)

triangle → δFD,N = −
√

3L2

8π2

∑
M

1

L4
M

± ζ (3)

9πL2
, (B16)

which are constants.
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