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Generalized entropic measures of quantum correlations
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We propose a general measure of nonclassical correlations for bipartite systems based on generalized entropic
functions and majorization properties. Defined as the minimum information loss due to a local measurement,
in the case of pure states it reduces to the generalized entanglement entropy, i.e., the generalized entropy of
the reduced state. However, in the case of mixed states it can be nonzero in separable states, vanishing just for
states diagonal in a general product basis, like the quantum discord. Simple quadratic measures of quantum
correlations arise as a particular case of the present formalism. The minimum information loss due to a joint local
measurement is also discussed. The evaluation of these measures in simple relevant cases is as well provided,
together with comparison with the corresponding entanglement monotones.
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I. INTRODUCTION

Quantum entanglement is well known to be an essential
resource for performing certain quantum information process-
ing tasks such as quantum teleportation [1,2]. It has also
been shown to be essential for achieving an exponential
speed-up over classical computation in the case of pure
state–based quantum computation [3]. However, in the case
of mixed-state quantum computation, such as the model of
Knill and Laflamme [4], such a speed-up can be achieved
without a substantial presence of entanglement [5]. This fact
has turned the attention to other types and measures of quantum
correlations, like the quantum discord (QD) [6,7], which, while
reducing to the entanglement entropy in bipartite pure states,
can be nonzero in certain separable mixed states involving
mixtures of noncommuting product states. It was in fact
shown in Ref. [8] that the circuit of Ref. [4] does exhibit a
non-negligible value of the QD between the control qubit and
the remaining qubits. As a result, interest on the QD [9–13] and
other alternative measures of quantum correlations for mixed
states [14–17] has grown considerably.

The aim of this work is to embed measures of quantum
correlations within a general formulation based on majoriza-
tion concepts [2,18,19] and the generalized information loss
induced by a measurement with unknown result. This frame-
work is able to provide general entropic measures of quantum
correlations for mixed quantum states with properties similar
to those of the QD, like vanishing just for states diagonal in a
standard or conditional product basis (i.e., classical or partially
classical states) and reducing to the corresponding generalized
entanglement entropy in the case of pure states. But as opposed
to the QD and other related measures [14,17], which are based
essentially on the von Neumann entropy

S(ρ) = −Trρ log2 ρ (1)

and rely on specific associated properties, the present measures
are applicable with general entropic forms satisfying minimum
requirements [18,20]. For instance, they can be directly applied
with the linear entropy

S2(ρ) = 2(1 − Trρ2), (2)

which corresponds to the linear approximation − ln ρ ≈ 1 − ρ

in (1) and is directly related to the purity Trρ2 and the

pure-state concurrence [21,22], and whose evaluation in a
general situation is easier than (1) as it does not require explicit
knowledge of the eigenvalues of ρ. We will show, however, that
the same qualitative information can nonetheless be obtained.
The positivity of the QD relies on the special concavity
property of the conditional von Neumann entropy [2,6,18],
which prevents its direct extension to general entropic forms.

The concepts of generalized entropies, generalized infor-
mation loss by measurement, and the ensuing entropic mea-
sures of quantum correlations based on minimum information
loss due to local or joint local measurements are defined and
discussed in Sec. II. Their explicit evaluation in three specific
examples is provided in Sec. III, where comparison with
the corresponding entanglement monotones is also discussed.
Conclusions are finally drawn in Sec. IV.

II. FORMALISM

A. Generalized entropies

Given a density operator ρ describing the state of a
quantum system (ρ � 0, Trρ = 1), we define the generalized
entropies [20]

Sf (ρ) = Trf (ρ), (3)

where f (p) is a smooth strictly concave real function defined
for p ∈ [0,1] satisfying f (0) = f (1) = 0 (f is continuous in
[0,1] and f ′ strictly decreasing in (0,1), such that f (qpi +
(1 − q)pj ) > qf (pi) + (1 − q)f (pj ) ∀ q ∈ (0,1) and pi �=
pj ). We will further assume here f ′′(p) < 0 ∀ p ∈ (0,1),
which ensures strict concavity. As in (1)–(2), we will normalize
entropies such that Sf (ρ) = 1 for a maximally mixed single
qubit state [2f (1/2) = 1]. While our whole discussion can be
directly extended to more general concave or Schur-concave
[19] functions, we will concentrate here on the simple forms (3)
which already include many well-known instances: The von
Neumann entropy (1) corresponds to f (p) = −p log2 p, the
linear entropy (2) to f (p) = 2(p − p2), and the Tsallis entropy
[23] Sq(ρ) ∝ 1 − Trρq to f (p) = (p − pq)/(1 − 21−q ) for
the present normalization, which is concave for q > 0. It
reduces to the linear entropy (2) for q = 2 and to the von
Neumann entropy (1) for q → 1. The Rényi entropy [18]
SR

q (ρ) = (log2 Trρq)/(1 − q) is just an increasing function
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of Sq(ρ). The Tsallis entropy has been recently employed to
derive generalized monogamy inequalities [24]. Entropies of
the general form (3) were used to formulate a generalized
entropic criterion for separability [25,26], on the basis of
the majorization based disorder criterion [27], extending the
standard entropic criterion [28].

While additivity among the forms (3) holds only in
the von Neumann case [S(ρA ⊗ ρB) = S(ρA) + S(ρB)], strict
concavity and the condition f (0) = f (1) = 0 ensure that all
entropies (3) satisfy [20] (i) Sf (ρ) � 0, with Sf (ρ) = 0 if and
only if ρ is a pure state (ρ2 = ρ), (ii) they are concave functions
of ρ [Sf (

∑
i qiρi) �

∑
i qiSf (ρi) if qi � 0,

∑
i qi = 1], and

(iii) they increase with increasing mixedness [18]:

ρ ′ ≺ ρ ⇒ Sf (ρ ′) � Sf (ρ), (4)

where ρ ′ ≺ ρ indicates that ρ ′ is majorized by ρ [18,19]:

ρ ′ ≺ ρ ⇔
i∑

j=1

p′
j �

i∑
j=1

pj , i = 1, . . . n − 1. (5)

Here pi , p′
i denote the eigenvalues of ρ and ρ ′ sorted in

decreasing order (pi � pi+1,
∑n

i=1 pi = 1) and n = n′ the
dimension of ρ and ρ ′ (if they differ, the smaller set of eigenval-
ues is to be completed with zeros). Essentially ρ ′ ≺ ρ indicates
that the probabilities {p′

i} are more spread out than {pi}.
The maximally mixed state ρn = In/n satisfies ρn ≺ ρ ∀ ρ

of dimension n, implying that all entropies Sf (ρ) attain their
maximum at such state: Sf (ρ) � Sf (ρn) = nf (1/n) ∀ ρ of
rank r � n.

Equation (4) follows from concavity [and the condition
f (0) = 0 if n �= n′] as for n = n′, ρ ′ ≺ ρ if and only if
ρ ′ is a mixture unitaries of ρ [2,18] (ρ ′ = ∑

i qiUiρU
†
i ,

qi > 0, U
†
i Ui = I ), and Sf (UiρU

†
i ) = Sf (ρ). Moreover, if

at least one of the inequalities in (5) is strict (<), then
Sf (ρ ′) > Sf (ρ), as Sf (ρ) = ∑

i f (pi) is a strictly decreasing
function of the partial sums si = ∑i

j=1 pj [25] [∂Sf /∂si =
f ′(pi) − f ′(pi+1) < 0 if pi+1 < pi , i < n].

While the converse of Eq. (4) does not hold in general
[Sf (ρ ′) � Sf (ρ) ⇒/ ρ ′ ≺ ρ], it does hold if valid for all Sf of
the present form (an example of a smooth sufficient set was
provided in Ref. [26]):

Sf (ρ ′) � Sf (ρ) ∀ Sf ⇒ ρ ′ ≺ ρ. (6)

Hence, although the rigorous concept of disorder implied by
majorization (ρ ′ ≺ ρ) cannot be captured by any single choice
of entropy, consideration of the general forms (3) warrants
complete correspondence through Eq. (6).

B. Generalized information loss by measurement

Let us now consider a general projective measurement M

on the system, described by a set of orthogonal projectors Pk

(
∑

k Pk = In, PkPk′ = δkk′Pk). The state of the system after
this measurement, if the result is unknown, is given by [2]

ρ ′ =
∑

k

PkρPk, (7)

which is just the “diagonal” of ρ in a particular basis
(ρ ′ = ∑

j 〈j ′|ρ|j ′〉|j ′〉〈j ′|, with |j ′〉 the eigenvectors of the

blocks PkρPk). It is well known that such diagonals are always
more mixed than the original ρ [18,19], i.e., ρ ′ ≺ ρ, and hence,
for any f of the present form,

Sf (ρ ′) � Sf (ρ). (8)

Moreover, Sf (ρ ′) = Sf (ρ) if and only if ρ ′ = ρ, i.e., if ρ

is unchanged by such measurement [if ρ = ∑
i pi |i〉〈i| �= ρ ′,

strict concavity implies Sf (ρ ′) = ∑
j f (

∑
i pi |〈j ′|i〉|2) >∑

i,j |〈j ′|i〉|2f (pi) = ∑
i f (pi)]. A measurement with un-

known result entails then no gain and most probably a loss
of information according to any Sf . The difference

IM
f (ρ) = Sf (ρ ′) − Sf (ρ) (9)

quantifies, according to the measure Sf , this loss of infor-
mation, i.e., the information contained in the off-diagonal
elements of ρ in the basis {|j ′〉}. It then satisfies IM

f (ρ) � 0,
with IM

f (ρ) = 0 if and only if ρ ′ = ρ.
In the case of the von Neumann entropy (1), Eq. (9) reduces

to the relative entropy [2,18,29] between ρ and ρ ′, since their
diagonal elements in the basis {|j ′〉} coincide:

IM (ρ) = S(ρ ′) − S(ρ) (10a)

= Trρ(log2 ρ − log2 ρ ′) = S(ρ||ρ ′). (10b)

The relative entropy S(ρ||ρ ′) is well known to be non-
negative ∀ ρ,ρ ′, vanishing just if ρ = ρ ′ [2,18]. In the case of
the linear entropy (2), Eq. (9) becomes instead

IM
2 (ρ) = 2Tr(ρ2 − ρ ′2) (11a)

= 2Trρ(ρ − ρ ′) = 2||ρ − ρ ′||2, (11b)

where ||A|| =
√

TrA†A is the Hilbert-Schmidt or Frobenius
norm. Hence, IM

2 (ρ) is just the square of the norm of the off-
diagonal elements in the measured basis, being again verified
that IM

2 (ρ) = 0 only if ρ ′ = ρ.
Let us remark, however, that the general positivity of (9)

arises just from the majorization ρ ′ ≺ ρ and the strict concavity
of Sf , the specific properties of the measures (10b)–(11b)
being not invoked. In fact, if the off-diagonal elements of
ρ in the measured basis are sufficiently small, a standard
perturbative expansion of (9) shows that

IM
f (ρ) ≈

∑
j<k

f ′(p′
k) − f ′(p′

j )

p′
j − p′

k

|〈j ′|ρ|k′〉|2, (12)

where p′
j = 〈j ′|ρ|j ′〉. The fraction in (12) is positive

∀ p′
j �= p′

k due to the concavity of f [if p′
j = p′

k , it should
be replaced by −f ′′(p′

j ) > 0]. Equation (12) is just the square
of a weighted quadratic norm of the off-diagonal elements. In
the case (2), Eq. (12) reduces of course to Eq. (11b).

For generalized measurements [2] leading to

ρ ′ =
∑

k

MkρM
†
k , (13)

Eq. (8) and the positivity of (9) remain valid ∀ Sf if both

conditions (i)
∑

k M
†
kMk = I and (ii)

∑
k MkM

†
k = I are

fulfilled: If |j ′〉 and |i〉 denote the eigenvectors of ρ ′ and ρ,
we then have

∑
j,k |〈j ′|Mk|i〉|2 = ∑

i,k |〈j ′|Mk|i〉|2 = 1
and hence Sf (ρ ′) = ∑

j f (
∑

k,i |〈j ′|Mk|i〉|2pi) �
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∑
j,k,i|〈j ′|Mk|i〉|2f (pi) =∑

i f (pi), i.e., ρ ′ ≺ ρ. While (i)
ensures trace conservation, (ii) warrants that the eigenvalues
of ρ ′ are convex combinations of those of ρ. If not valid,
Eq. (8) no longer holds in general, as already seen in trivial
single qubit examples [M0 = |0〉〈0|, M1 = |0〉〈1| will change
any state ρ into the pure state |0〉〈0|, yet fulfilling (i)]. For
projective measurements, Mk = Pk .

C. Minimum information loss by a local measurement

Let us now consider a bipartite system A + B whose state
is specified by a density matrix ρAB . Suppose that a complete
local projective measurement MB in system B is performed,
defined by one dimensional local projectors P B

j = |jB〉〈jB |.
The state after this measurement [Eq. (7) with Pk → IA ⊗ P B

j ]
becomes

ρ ′
AB =

∑
j

qjρA/j ⊗ P B
j , (14)

where qj = Tr[ρABIA ⊗ P B
j ] is the probability of outcome j

and ρA/j = TrB[ρABIA ⊗ P B
j ]/qj the reduced state of A after

such outcome. The quantity

I
MB

f (ρAB) = Sf (ρ ′
AB) − Sf (ρAB) (15)

will quantify the ensuing loss of information.
We can now define the minimum of Eq. (15) among all such

measurements, which will depend just on ρAB :

IB
f (ρAB) = Min

MB

I
MB

f (ρAB). (16)

Equation (8) implies IB
f (ρAB) � 0, with IB

f (ρAB) = 0 if and
only if there is a complete local measurement in B which leaves
ρAB unchanged, i.e., if ρAB is already of the form (14). These
states are in general diagonal in a conditional product basis
{|ij j 〉 ≡ |iAj 〉 ⊗ |jB〉}, where {|iAj 〉} is the set of eigenvectors
of ρA/j , and can be considered as partially classical, as there
is a local measurement in B (but not necessarily in A) which
leaves them unchanged. They are the same states for which
the QD vanishes [6,7]. Equation (16) can then be considered
a measure of the deviation of ρ from such states, i.e., of
quantum correlations. One may similarly define IA

f (ρAB) as
the minimum information loss due to a local measurement in
system A, which may differ from IB

f (ρAB).
The states (14) are separable [30], i.e., convex super-

positions of product states (ρs
AB = ∑

α qαρα
A ⊗ ρα

B , qα > 0).
Nonetheless, for a general ρs

AB the different terms ρα
A ⊗ ρα

B

may not commute, in contrast with (14). Hence, Eq. (16) will
be positive not only in entangled (i.e., unseparable) states but
also in all separable states not of the form (14), detecting
those quantum correlations emerging from the mixture of
noncommuting product states.

Equation (14) and concavity imply the basic bound
Sf (ρ ′

AB) �
∑

j qjSf (ρA/j ). In addition, we also have the less
trivial lower bounds

IB
f (ρAB) � Sf (ρA) − Sf (ρAB), (17a)

IB
f (ρAB) � Sf (ρB) − Sf (ρAB), (17b)

where ρA,B = TrB,AρAB are the local reduced states. The right-
hand side in (17) is negative or zero in any separable state
[25,27] but can be positive in an entangled state.

Proof. Any separable state is more disordered globally than
locally [27], as in a classical system [18]: ρs

AB ≺ ρs
A, ρs

AB ≺
ρs

B [27], or equivalently [25], Sf (ρs
AB) � Sf (ρs

A), Sf (ρs
AB) �

Sf (ρs
B) ∀ Sf . For the state (14) this implies

Sf (ρ ′
AB) � Sf (ρ ′

A) = Sf (ρA), (18a)

Sf (ρ ′
AB) � Sf (ρ ′

B) � Sf (ρB), (18b)

since ρ ′
A = TrBρ ′

AB = ∑
j qjρA/j = ρA, while ρ ′

B =
TrAρ ′

AB = ∑
j qjP

B
j is just the diagonal of the actual ρB in

the basis determined by the local projectors P B
j and hence

ρ ′
B ≺ ρB . Equations (18) lead then to Eqs. (17). The same

inequalities (17) hold of course for IA
f (ρAB).

One may be tempted to choose as the optimal local
measurement which minimizes Eq. (15) that based on the
eigenvectors of the reduced state ρB , in which case it will
remain unchanged after measurement (ρ ′

B = ρB). Although
this choice is optimal in the case of pure states (see Sec. II D)
and other relevant situations (see Sec. III), it may not be
so for a general ρAB . For instance, even if local states are
maximally mixed, the optimal local measurement may not
be arbitrary (see example 3 in Sec. III). In such a case a
minor perturbation can orientate the local eigenstates along
any preferred direction, differing from that where the lost
information is minimum.

D. Pure states and generalized entanglement entropy

If ρAB is pure (ρ2
AB = ρAB), then

IB
f (ρAB) = IA

f (ρAB) = Sf (ρA) = Sf (ρB), (19)

i.e., Eq. (16) reduces to the generalized entropy of the
subsystem (generalized entanglement entropy), quantifying
the entanglement between A and B according to the measure
Sf . In the von Neumann case (1), Eq. (19) becomes the
standard entanglement entropy [31] EAB = S(ρA) = S(ρB),
whereas in the case of the linear entropy (2), Eq. (19) becomes
the square of the pure-state concurrence (i.e., the tangle) [22],
C2

AB = S2(ρA) = S2(ρB).
Proof. For a pure state ρAB = |�AB〉〈�AB |, Sf (ρAB) =

0 and both ρA, ρB have the same nonzero eigenvalues.
Equations (17) then imply IB

f (ρAB) � Sf (ρA) = Sf (ρB).
There is also a local measurement which saturates Eqs. (17):
It is that determined by the Schmidt decomposition

|�AB〉 =
ns∑

k=1

√
pk

∣∣kA
s

〉 ⊗ ∣∣kB
s

〉
, (20)

where ns is the Schmidt number and pk the nonzero eigenval-
ues of ρA or ρB [2]. Choosing the local projectors in (14) as
P B

k = |kB
s 〉〈kB

s |, we then obtain

ρ ′
AB =

∑
k

pkP
A
k ⊗ P B

k , (21)

which leads to local states ρ ′
A = ρA = ∑

k pkP
A
k , ρ ′

B = ρB =∑
k pkP

B
k and hence to

Sf (ρ ′
AB) = Sf (ρA) = Sf (ρB) =

∑
k

f (pk), (22)

052342-3



R. ROSSIGNOLI, N. CANOSA, AND L. CILIBERTI PHYSICAL REVIEW A 82, 052342 (2010)

implying Eq. (19). For pure states, entanglement can then be
considered as the minimum information loss due to a complete
local measurement, according to any Sf .

Just to verify Eq. (19), we note that for an arbitrary local
measurement defined by projectors P B

j = |jB〉〈jB |, we may
rewrite Eq. (20) as

|�AB〉 =
∑

j

√
qj |�A/j 〉 ⊗ |jB〉, (23)

where |�A/j 〉 = ∑
k

√
pk/qj 〈jB |kB

s 〉|kA
s 〉 and qj =∑

k pk|〈jB |kB
s 〉|2, such that ρA/j = |�A/j 〉〈�A/j | in (14).

Hence, by concavity Sf (ρ ′
AB) = ∑

j f (qj ) �
∑

k f (pk) ∀ Sf ,
i.e., {qj } ≺ {pk}. Thus, for pure states, a local measurement in
the basis where ρB is diagonal (local Schmidt basis) provides
the minimum of Eq. (15) ∀ Sf . For a maximally entangled
state leading to a maximally mixed ρB (pk = 1/nB ∀ k)
Eq. (15) becomes obviously independent of the choice of
local basis [any choice in B leads to a corresponding basis in
A, leaving (20) unchanged].

A pure state |�I
AB〉 can be said to be absolutely more

entangled than another pure state |�II
AB〉 if Sf (ρI

A) � Sf (ρII
A )

∀ Sf , i.e., if ρI
A ≺ ρII

A ({pI
k } ≺ {pII

k }). This concept has a clear
deep implication: According to the theorem of Nielsen [32],
a pure state |�II

AB〉 can be obtained from |�I
AB〉 by local

operations and classical communication (LOCC) only if ρI
A ≺

ρII
A , i.e., if and only if |�I

AB〉 is absolutely more entangled
than |�II

AB〉. This condition cannot be ensured by a single
choice of entropy, requiring the present general measures for an
entropic formulation [the exception being two-qubit or 2 × d

systems, where any Sf (ρA) is a decreasing function of the
largest eigenvalue p1 of ρA and hence Sf (ρI

A) � Sf (ρII
A ) if

and only if ρI
A ≺ ρII

A ].
The convex roof extension [22,33] of the generalized

entanglement entropy (19) of pure states will lead to an
entanglement measure for mixed states,

Ef (ρAB) = Min∑
α qαρα

AB=ρAB

∑
α

qαEf

(
ρα

AB

)
, (24)

where qα > 0, ρα
AB = |�α

AB〉〈�α
AB | are pure states and

Ef (ρα
AB) = Sf (ρα

A) is the generalized entanglement entropy
of |�α

AB〉. Minimization is over all representations of ρAB

as convex combinations of pure states. Equation (24) is a
non-negative quantity which clearly vanishes if and only if
ρAB is separable. It is also an entanglement monotone [33]
(i.e., it cannot increase by LOCC) since Ef (ρα

AB) is a concave
function of ρα

A invariant under local unitaries, satisfying then
the conditions of Ref. [33]. In the case of the von Neumann
entropy, Eq. (24) becomes the entanglement of formation
(EOF) E(ρAB) [34], while in the case of the linear entropy,
it leads to the mixed state tangle τ (ρAB) [22,35]. The general
mixed state concurrence C(ρAB) [22] (denoted there as I

concurrence) is recovered for Ef (ρα
AB) = √

S2(ρα
A) (τ = C2

in two qubit systems [35], but not necessarily in general).
While IB

f (ρAB) = 0 implies Ef (ρAB) = 0 [as (14) is sepa-
rable] the converse is not true since IB

f (ρAB) can be nonzero in
separable states. Nonetheless, and despite coinciding for pure
states, there is no general order relation between these two
quantities for a general ρAB .

E. Minimum information loss by a joint local measurement

We now consider the information loss I
MAB

f (ρAB) due to
a measurement MAB based on products P A

i ⊗ P B
j of one

dimensional local projectors, such that ρ ′
AB is the diagonal

of ρAB in a standard product basis {|ij 〉 = |iA〉 ⊗ |jB〉}:
ρ ′

AB =
∑
i,j

pijP
A
i ⊗ P B

j , (25)

where pij = 〈ij |ρAB |ij 〉. Such measurement can be con-
sidered as a subsequent local measurement in A after a
measurement in B (if the results are of course unknown),
implying I

MAB

f (ρAB) � I
MB

f (ρAB), where MB = {P B
j } is the

measurement in B. The ensuing minimum

IAB
f (ρAB) = Min

MAB

I
MAB

f (ρAB) (26)

will then satisfy in general

IAB
f (ρAB) � IB

f (ρAB), (27)

with IAB
f (ρAB) = 0 if and only if ρAB is of the form (25).

The state (25) represents a classically correlated state [14,36].
For such states there is a local measurement in A as well as
in B which leaves the state unchanged, being equivalent in
this product basis to a classical system described by a joint
probability distribution pij . Equation (26) is then a measure
of all quantumlike correlations. The states (25) are of course
a particular case of (14), i.e., that where all ρA/j are mutually
commuting. Product states ρA ⊗ ρB are in turn a particular case
of (25) (pij = pA

i pB
j ∀ i,j ) and correspond to ρA/j independent

of j in (14).
In the case of pure states we obtain, however,

IAB
f (ρAB) = IB

f (ρAB) = Sf (ρA) = Sf (ρB), (28)

since the state (21) is already of the form (25), being left
unchanged by a measurement based on the Schmidt basis
projectors P A

k′ ⊗ P B
k . Pure-state entanglement can then be also

seen as the minimum information loss due to a joint local
measurement.

For an arbitrary product measurement on a pure state, the
expansion

|�AB〉 =
∑
i,j

cij |iA〉 ⊗ |jB〉, (29)

with cij = ∑
k

√
pk〈iA|kA

s 〉〈jB |kB
s 〉, leads to pij = |c2

ij | in (25).
Equations (25)–(28) then imply Sf (ρ ′

AB) = ∑
i,j f (|c2

ij |) �∑
k f (pk) ∀ Sf . Since I

MAB

f (ρAB) � I
MB

f (ρAB) � IB
f (ρAB),

Eqs. (23), (28), and (29) lead to

{|c2
ij |} ≺ {qj } ≺ {pk}. (30)

The first relation is apparent as qj = ∑
i |c2

ij | is just the
marginal of the joint distribution |c2

ij |. The state (21) can then
be rigorously regarded as the closest classical state to the pure
state ρAB , since it provides the lowest information loss among
all local or joint local measurements for any Sf . Pure states
have therefore an associated least mixed classical state, such
that the state obtained after any complete local measurement
is always majorized by it.
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Let us finally mention that it is also feasible to consider more
general product measurements MA/B based on conditional
product projectors P A

ij
⊗ P B

j , leading to a ρ ′
AB diagonal in

a conditional product basis,

ρ ′
AB =

∑
i,j

pijP
A
ij

⊗ P B
j (31)

where pij = 〈ij j |ρAB |ij j 〉. The ensuing information loss

will satisfy again I
MA/B

f (ρAB) � I
MB

f (ρAB), as (31) can still
be considered as the diagonal of (14) in a conditional
product basis {|ij j 〉}, where the {|iAj 〉} are not necessarily the
eigenvectors of ρA/j . However, if chosen as the latter, we have

I
MA/B

f (ρAB) = I
MB

f (ρAB) and, hence,

I
A/B

f (ρAB) = Min
MA/B

I
MA/B

f (ρAB) = IB
f (ρAB), (32)

as (14) remains unchanged under a measurement in the
optimum conditional product basis formed by the eigenvectors
of the ρA/j times the states |jB〉.

F. Von Neumann–based measures

If Sf (ρ) is chosen as the von Neumann entropy (1), Eq. (15)
becomes [see Eq. (10b)]

IMB (ρAB) = S(ρ ′
AB) − S(ρAB) = S(ρAB ||ρ ′

AB). (33)

The ensuing minimum IB(ρAB) is also the minimum relative
entropy between ρAB and any state ρd

AB diagonal in a standard
or conditional product basis:

IB(ρAB) = Min
MB

IMB (ρAB) = Min
ρd

AB

S
(
ρAB

∣∣∣∣ρd
AB

)
, (34)

where ρd
AB denotes a state of the general form (14) with both

the local projectors P B
j = |jB〉〈jB | as well as the probabilities

qj and states ρA/j being arbitrary.
Proof. For a given choice of conditional product ba-

sis, the minimum relative entropy is obtained when ρd
AB

has the same diagonal elements as ρAB in that ba-
sis (as −∑

i pi log2 qi is minimized for qi = pi). Hence,
S(ρAB ||ρd

AB) � S(ρAB ||ρ ′
AB) = IMA/B (ρAB) � IB(ρAB), where

ρ ′
AB denotes here the postmeasurement state (31) in that basis.

The same property holds for IAB(ρAB) if ρd
AB is restricted

to states diagonal in a standard product basis:

IAB(ρAB) = Min
MAB

IMAB (ρAB) = Min
ρd

AB

S
(
ρAB

∣∣∣∣ρd
AB

)
, (35)

where ρd
AB is here of the form (25) with pij arbitrary. Equation

(35) is precisely the bipartite version of the quantity D

introduced in Ref. [17] as a measure of quantum correlations
for composite systems.

The quantity (34) is also closely related to the quantum
discord [6–8], which can be written in the present notation as
DB(ρAB) = MinMB

DMB (ρAB), with

DMB (ρAB) = S(ρ ′
AB) − S(ρ ′

B) − [S(ρAB) − S(ρB)], (36)

= IMB (ρAB) − IMB (ρB), (37)

where ρ ′
AB is the measured state (14) and ρ ′

B , ρB the
reduced states after and before the measurement. Thus,

DB(ρAB) � IB(ρAB). They will coincide when the optimal
local measurement is the same for both (15) and (36) and
corresponds to the basis where ρB is diagonal, such that
ρ ′

B = ρB [IMB (ρB) = 0]. This coincidence takes place, for
instance, whenever ρB is maximally mixed (as in this case
ρ ′

B = ρB for any choice of local basis). Both DB(ρAB) and
IB(ρAB) also vanish for the same type of states [i.e., those of
the form (14)] and both reduce to the standard entanglement
entropy EAB = S(ρA) for pure states [although Eq. (16)
requires a measurement in the local Schmidt basis, whereas
(36) becomes independent of the choice of local basis, as ρA/j

is pure and hence S(ρ ′
AB ) = S(ρ ′

B) for any local measurement].
A direct generalization of (36) to a general entropy Sf (ρ) is no
longer positive for a general concave f , since the positivity of
(36) relies on the concavity of the conditional von Neumann
entropy S(A|B) = S(ρAB) − S(ρB ) [18], which does not hold
for a general Sf .

Minimum distances between ρAB and classical states of the
form (25) were also considered in Ref. [14], where the attention
was focused on the decrease Q of the mutual information
S(ρA) + S(ρB) − S(ρAB) after a measurement MAB in the
product basis formed by the eigenstates of ρA and ρB . Such
quantity coincides with present IMAB (ρAB) for this choice of
basis as ρA and ρB remain unchanged. Nonetheless, for a
general ρAB the minimum (35) may be attained at a different
basis.

G. Quadratic measure

If Sf (ρ) is chosen as the linear entropy (2), Eq. (15)
becomes [see Eq. (11b)]

I
MB

2 (ρAB) = 2Tr
(
ρ2

AB − ρ ′2
AB

) = 2||ρAB − ρ ′
AB ||2, (38)

where ||ρAB − ρ ′
AB ||2 = ∑

j �=j ′,i,k |〈ij |ρAB |kj ′〉|2 is just the
squared norm of the off-diagonal elements lost after the local
measurement. It therefore provides the simplest measure of the
information loss. Its minimum is the minimum squared Hilbert-
Schmidt distance between ρAB and any state ρd

AB diagonal in
a general product basis:

IB
2 (ρAB) = Min

MB

I
MB

2 (ρAB) = Min
ρd

AB

∣∣∣∣ρAB − ρd
AB

∣∣∣∣2
, (39)

where the last minimization is again over all states of the form
(14), with P B

j , qj , and ρA/j arbitrary.
Proof. For a general product basis, ||ρAB − ρd

AB ||2 =
||ρAB − ρ ′

AB ||2 + ||ρ ′
AB − ρd

AB ||2, where ρ ′
AB is again the

diagonal of ρAB in this basis. Hence, the optimum choice in
this basis is ρd

AB = ρ ′
AB , whence ||ρAB − ρd

AB ||2 � ||ρAB −
ρ ′

AB ||2 = I
MA/B

2 (ρAB) � IB
2 (ρAB). Actually, we could also

extend the last minimization in (39) to all operators Od
AB

diagonal in a general product basis.
The same property holds for IAB

2 (ρAB) if ρd
AB is restricted

to states diagonal in a standard product basis:

IAB
2 (ρAB) = Min

MAB

I
MAB

2 (ρAB) = Min
ρd

AB

∣∣∣∣ρAB − ρd
AB

∣∣∣∣2
, (40)

where ρd
AB is here of the general form (25). Note that

I
MAB

2 (ρAB) = I
MB

2 (ρAB) + ∑
j,i �=k |〈ij |ρAB |kj 〉|2 is just the

squared norm of all off-diagonal elements. In the case of pure
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states, Eqs. (39) and (40) reduce to the squared pure-state
concurrence [22] C2

AB = S2(ρA).

III. EXAMPLES

We will now evaluate the general measures (16) and (26)
for any Sf in a few simple relevant examples.

A. Mixture of a general pure state with the
maximally mixed state

For a convex mixture of |�AB〉 = ∑ns

k=1
√

pk|kA
s kB

s 〉
[Eq. (20)] with the maximally mixed state, i.e.,

ρAB(x) = x|�AB〉〈�AB | + 1 − x

n
IA ⊗ IB, (41)

where x ∈ [0,1] and n = nAnB , the minimum IB
f (x) ≡

IB
f [ρAB(x)] corresponds again to a measurement in the local

Schmidt basis for |�AB〉 and is given by

IB
f (x) =

ns∑
k=1

[
f

(
xpk + 1 − x

n

)
− f

(
δk1x + 1 − x

n

)]
,

(42)

with IA
f (x) = IAB

f (x) = IB
f (x). Equation (42) is a strictly

increasing function of x ∀ Sf if ns � 2 (i.e., if |�AB〉 is
entangled), implying IB

f (x) > 0 ∀ x ∈ (0,1].
Proof. After a local measurement in the basis {|kB

s 〉}, the
joint state becomes

ρ ′
AB(x) = x

ns∑
k=1

pkP
A
k ⊗ P B

k + 1 − x

n
IA ⊗ IB, (43)

which is diagonal in the Schmidt basis {|k′A
s 〉 ⊗ |kB

s 〉} with
diagonal elements pk′k = δk′kxpk + 1−x

n
. For any other com-

plete local measurement, ρ ′
AB will be diagonal in a basis

{|iAj 〉 ⊗ |jB〉}, where we set |jA
j 〉 = |�A/j 〉 [Eq. (23)], with

diagonal elements p′
ij = δij xqj + 1−x

n
. The latter are always

majorized by pkk′ ({p′
ij ′ } ≺ {pkk′ }) since {qj } ≺ {pk} [Eq. (30)]

and x � 0. Hence, Sf (ρ ′
AB) is minimum for a measurement

in the basis {|kB
s 〉}, which leads to Eq. (42). Moreover,

IAB
f (x) = IA

f (x) = IB
f (x) since (43) is diagonal in a standard

product basis.
Equation (43) is again the closest classical state to (41),

majorizing any other state obtained after a local or product
measurement.

To verify the monotonicity, we note that

dIB
f

dx
=

ns∑
k=1

[(
pk − 1

n

)
f ′(px

k

) −
(

δk1 − 1

n

)
f ′(λx

k

)]

�

⎛
⎝n′

s − 1

n
+

∑
pk<1/n

pk

⎞
⎠ [

f ′(λx
2

) − f ′(λx
1

)]
� 0, (44)

since λx
2 = 1−x

n
� px

k � λx
1 = x + 1−x

n
and hence f ′(λx

2) �
f ′(px

k ) � f ′(λx
1), where px

k = xpk + 1−x
n

and n′
s � 1 is the

number of Schmidt probabilities pk not less than 1/n. Equation
(42) is then strictly increasing if f is strictly concave and
ns � 2, implying IB

f (x) = 0 only if x = 0 or ns = 1.

A series expansion of (42) around x = 0 shows that

IB
f (x) = −1

2
x2f ′′

(
1

n

) (
1 −

∑
k

p2
k

)
+ O(x3), (45)

in agreement with Eq. (12), indicating a universal quadratic
increase of IB

f (x) for small x [f ′′(1/n) < 0]. For the quadratic
measure (38) we obtain in fact a simple quadratic dependence
∀ x ∈ [0,1]:

IB
2 (x) = x2IB

2 (1) = 2x2

(
1 −

∑
k

p2
k

)
. (46)

Hence, for |�AB〉 entangled, IB
f (x) > 0 as soon as the mixture

(41) departs from the maximally mixed state. In contrast,
any entanglement measure, like the monotones (24) or the
negativity [37], requires a finite threshold value xc > 0, since
Eq. (41) is separable for small x: Any bipartite state ρ

is separable if Tr(ρ − In/n)2 � 1
n(n−1) [38], which ensures

here separability for x � 1
n−1 � xc (n � 4). In the maximally

entangled case pk = 1/d, with nA = nB = d, (41) is in fact
separable if and only if x � 1/(d + 1) [22,39]. In general, the
negativity will be positive for x > xc = 1

1+n
√

p1p2
, sorting the

pk in decreasing order.
Let us finally note that given two pure states |�I

AB〉 and
|�II

AB〉, the ensuing mixtures (41) will satisfy, at fixed x ∈
(0,1], IBI

f (x) � IBII
f (x) ∀ Sf if and only if |�I

AB〉 is absolutely
more entangled than |�II

AB〉 ({pI
k } ≺ {pII

k }). This is apparent as
Sf (ρI

AB(x)) = Sf (ρII
AB(x)), whereas ρ ′I

AB(x) ≺ ρ ′II
AB(x) if and

only if {pI
k } ≺ {pII

k } [Eq. (43)], in which case Sf (ρ ′I
AB(x)) �

Sf (ρ ′II
AB(x)).

B. Two-qubit case

Let us now explicitly consider the mixture (41) in the two-
qubit case, where |�AB〉 can be always written as

|�AB〉 = √
p|00〉 +

√
1 − p|11〉, (47)

with |ij 〉 ≡ |iAs 〉 ⊗ |jB
s 〉 and p ∈ [0,1]. For a local spin

measurement along an axis forming an angle θ with the z axis,
it is easy to show that the information loss is

I
θB

f (x) =
∑
ν=±

[
f

(
1 + x(1 + 2ν cos θ (2p − 1))

4

)

− f

(
1 + (1 + 2ν)x

4

)]
. (48)

It is verified that for p �= 1/2, I
θB

f (x) is minimum for θ = 0,
i.e., for a measurement in the local Schmidt basis for |�AB〉
(as ρ ′(θ ) ≺ ρ ′(0)), while for p = 1/2 (Bell state) I

θB

f (x) is θ

independent, as the local Schmidt basis becomes arbitrary. The
minimum becomes then

IB
f (x) = f

(
1 + x(4p − 1)

4

)
+ f

(
1 + x(3 − 4p)

4

)

− f

(
1 + 3x

4

)
− f

(
1 − x

4

)
(49)

[Eq. (42)], being a strictly increasing function of x if f

is strictly concave and p ∈ (0,1) (if p = 0 or 1, |�AB〉 is
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separable and IB
f (x) = 0 ∀ x). It is also a decreasing function

of p for p ∈ [ 1
2 ,1] at fixed x.

In particular, for Sf (ρ) = S2(ρ), Eq. (49) becomes

IB
2 (x) = 4x2p(1 − p). (50)

We may compare (50) with the corresponding entanglement
monotone (24) (the tangle), which coincides here with the
squared concurrence [21,22] C2(x) of ρAB(x). For a general
two-qubit mixed state the concurrence can be calculated as [21]
C = Max[2λM − TrR,0], where λM is the largest eigenvalue

of R =
√

ρ
1/2
AB ρ̃ABρ

1/2
AB , with ρ̃AB = σA

y ⊗ σB
y ρ∗

ABσA
y ⊗ σB

y .
This leads here to

C(x) = Max

[
2x

√
p(1 − p) − 1 − x

2
,0

]
, (51)

which vanishes for x � xc = 1
1+4

√
p(1−p)

. It is then verified
that for the present mixture,

IB
2 (x) � C2(x),

∀ p, x, with IB
2 (x) = C2(x) just for x = 0 or x = 1 if p ∈

(0,1), as seen in the top panel of Fig. 1 (such inequality does
not hold for any two-qubit mixed state).

In contrast, the von Neumann–based measure IB(x)
[Eq. (34)] is not an upper bound to the EOF E(x) of ρAB(x),
as seen in the central panel, even though they both coincide for
x = 1 ∀ p. For any two qubit state, E can be evaluated in terms
of the concurrence C as [21]

E =
∑
ν=±

f

(
1 + ν

√
1 − C2

2

)
, (52)

for f (p) = −p log2 p, which is just the relation between Sf (ρ)
and S2(ρ) = C2 for a single qubit state ρ. Hence, for x close to
1, E(x) − IB(x) ≈ − 1−x

4 log2(1 − x) > 0, as E(x) decreases
linearly, whereas IB(x) decreases logarithmically as 1 − x

increases from 0. Note that IB(x) coincides with the QD ∀
p,x, as Eq. (36) is also minimized by a measurement along
the z axis (θ = 0), in which case ρ ′

B = ρB .
The bottom panel depicts the behavior of Eq. (49) for the

Tsallis case f (p) = fq(p) ≡ p−pq

1−21−q . As q increases above 2,
IB
q (x) becomes less sensitive to weak quantum correlations [as

f ′′
q (1/n) in (45) becomes small], resembling the behavior of

the entanglement measures.
One may here ask if it is also possible to employ Eq. (52)

with a general f for evaluating the corresponding generalized
EOF (24). According to the arguments of Ref. [21] and Ref.
[24], this is feasible provided Eq. (52), which is a strictly
increasing function of C ∀ concave f , is also convex. In the
Tsallis case f (p) = fq(p), this allows the applicability of (52)
for

5 − √
13

2
� q � 5 + √

13

2

(as obtained from the condition E′′(C) � 0 ∀ C ∈
[0,1]), i.e., 0.7 <∼ q <∼ 4.3, in agreement with the nu-
merical results of Ref. [24]. Denoting the ensuing

0 0.5 1
0

0.5

1

I 2B
x

,C
2

x

I2
B x

C2 x

p 1 2

p 0.9

0 0.5 1
0

0.5

1

IB
x

,E
x

IB x

E x

p 1 2

p 0.9

0 0.5 1
x

0

0.5

1

I qB
x

q 1 2
q 1
q 2
q 4
q 8

FIG. 1. (Color online) Measures of quantum correlations and
entanglement for the mixture (41) of the pure state (47) with the
maximally mixed state for p = 1/2 and p = 0.9. (Top) The quadratic
measure IB

2 [Eqs. (39) and (50)] and the squared concurrence C2

[Eq. (51)], satisfying IB
2 (x) > C2(x) for x ∈ (0,1). (Center) The von

Neumann–based measure IB [Eqs. (34), (49) for f (p) = −p log2 p]
and the entanglement of formation E, again coincident for x = 1 but
exhibiting no fixed order relation for x ∈ (0,1). (Bottom) Behavior of
IB
q [Eq. (49) for f (p) = p−pq

1−21−q ] for different q and p = 1/2. IB
1 = IB

is the von Neumann measure while IB
2 the quadratic measure.

quantity as Eq(x), we then obtain, for the present
normalization,

E2 = E3 = C2, (53)

as for any single qubit state ρ, S2(ρ) = S3(ρ) = 4det(ρ).
The inequality IB

q (x) � Eq(x) ∀ x ∈ [0,1] will then hold in
a certain finite interval around q = 2, namely 1.27 <∼ q <∼ 3.5
for p = 1/2 and 1.3 <∼ q <∼ 4.3 for p = 0.9. These boundaries

are actually determined by the slope condition IB
q

′
(1) < E′

q(1).
For instance, for p = 1/2 and a general entropic f such that
(52) is convex, we have

IB
f (x) ≈ 1 − 1

4

[
f ′(0) + 2f ′( 1

2

) − 3f ′(1)
]
(1 − x), (54)

Ef (x) ≈ 1 + 3
4f ′′( 1

2

)
(1 − x), (55)
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for x → 1 such that IB
f (x) > Ef (x) in this limit if and only if

f ′(0) + 2f ′(1/2) − 3f ′(1) < −3f ′′(1/2). This leaves out the
von Neumann entropy [f ′(0) → ∞] as well as all q < 1 in
the Tsallis case, leading in the latter to the previous interval
1.27 <∼ q <∼ 3.5.

C. Decoherence of a Bell state

Let us now consider the state

ρAB(z) = 1

2
[|00〉〈00| + |11〉〈11| + z(|00〉〈11| + |11〉〈00|)]

= 1 + z

2
|�+〉〈�+| + 1 − z

2
|�−〉〈�−|, (56)

where |z| � 1 and |�±〉 = |00〉±|11〉√
2

. It corresponds to the
partial decoherence of |�±〉 and can be also seen as a mixture
of these two Bell states. Even though the reduced states ρA

and ρB are maximally mixed ∀ z, a local spin measurement
along an axis forming an angle θ with the z axis leads
to a postmeasurement state ρ ′(θ ) with twofold degenerate

eigenvalues
1±

√
1−sin2 θ(1−z2)

4 and hence, to a θ -dependent
information loss if |z| < 1:

I
θB

f (z) =
∑
ν=±

[
2f

(
1 + ν

√
1 − sin2 θ (1 − z2)

4

)

−f

(
1 + νz

2

) ]
. (57)

Its minimum for any z ∈ (−1,1) and concave f corresponds
again to θ = 0, as ρ ′(θ ) ≺ ρ ′(0) = 1

2 (|00〉〈00| + |11〉〈11|) ∀ θ .
We then obtain, setting again 2f (1/2) = 1,

IB
f (z) = 1 − f

(
1 + z

2

)
− f

(
1 − z

2

)
, (58)

with IAB
f (z) = IA

f (z) = IB
f (z) as ρ(0) is diagonal in a standard

product basis. Hence, IB
f (z) > 0 if z �= 0, with IB

f (z) =
− 1

4f ′′( 1
2 )z2 + O(z3) for z → 0. Moreover, IB

f (z) is an increas-

ing [IB
f

′
(z) > 0] convex [IB

f

′′
(z) > 0] function of z ∀ Sf .

In the case of the linear entropy, Eq. (58) becomes

IB
2 (z) = z2 = C2(z), (59)

where C(z) = |z| is the concurrence of (56). Thus, here IB
2 (z)

and E2(z) coincide exactly ∀ z ∈ [0,1]. In contrast, the von
Neumann measure IB(z) is smaller than the EOF E(z) =∑

ν=± f ( 1+ν
√

1−z2

2 ) (f (p) = −p log2 p) ∀ z ∈ (0,1) (Fig. 2).

0 0.5 1
x

0

0.5

1

I fB
z

,C
2

z
,E

z

I2
B z

C2 z

IB z

E z

FIG. 2. (Color online) Same details as Fig. 1 for the state (56).
Here IB

2 (z) = C2(z) while E(z) > IB (z) ∀ z ∈ (0,1).

For small z we have in particular E(z) ≈ − 1
4z2 log2

z2

4e
>

IB(z) ≈ 1
2z2/ ln 2. Again, IB(z) coincides here with the QD

as ρB is maximally mixed.
Let us finally remark that Eqs. (53) and (58) also imply

IB
3 (z) = z2 = E3(z).

It can then be seen that for 2 < q < 3, IB
q (z) > Eq(z) ∀ z ∈

(0,1) (although the difference is small), whereas for q < 2
or q > 3 [within the limits allowed by the validity of (52)]
IB
q (z) < Eq(z) ∀ z ∈ (0,1). These intervals can be corroborated

from the expansions

IB
f (z) − Ef (z) = 1

4

[ − f ′′( 1
2

) − f ′(0) + f ′(1)
]
z2 + O(z3),

= 1
4

[ − f ′′( 1
2

) − f ′(0) + f ′(1)
]
(1 − z)

+O(1 − z)2,

for z → 0 and z → 1, which imply IB
f (z) > Ef (z) in these

limits if and only if f ′(0) − f ′(1) < −f ′′(1/2), leading to
2 < q < 3 in Tsallis case.

IV. CONCLUSION

We have constructed a general entropic measure of quantum
correlations IB

f (ρAB), which represents the minimum loss of
information, according to the entropy Sf , due to a complete
local projective measurement. Its basic properties are similar to
those of the quantum discord, vanishing for the same partially
classical states (14) and coinciding with the corresponding
generalized entanglement entropy in the case of pure states.
Its positivity relies, however, entirely on the majorization
relations fulfilled by the postmeasurement state, being hence
applicable with general entropic forms based on arbitrary
concave functions. In particular, for the linear entropy, it leads
to a quadratic measure IB

2 (ρAB) which is particularly simple
to evaluate yet provides the same qualitative information as
other measures. The minimum loss of information due to a
joint local measurement IAB

f (ρAB) has also been discussed
and shown to coincide with IB

f (ρAB) in some important cases,
vanishing just for the classically correlated states (25).

The explicit evaluation of these measures for the general
mixtures (41) has been provided and indicates a universal
quadratic increase for small weights x, i.e., in the separable
ball around the maximally mixed state. While there is
no general order relation between these measures and
the associated entanglement monotones (24), the use of
generalized entropies allows at least to find such a relation
in particular cases: The quadratic measure IB

2 (ρAB) provides
for instance an upper bound to the squared concurrence of the
two-qubit states (41)–(47) (unlike the von Neumann–based
measures) and coincides with it in the mixture (56). Moreover,
generalized entropies such as Sq(ρ) allow us to find in
these previous cases an interval of q values where an order
relationship holds, which requires a delicate balance between
the derivatives of f at different points.

Let us finally mention that some general concepts emerge
naturally from the present formalism, like that of absolutely
more entangled and in particular that of the least mixed
classically correlated state that can be associated with certain
states, such as pure states or the mixtures (41) or (56). This
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state majorizes any other state obtained after a complete local
measurement, thus minimizing the entropy increase (15) or
(26) for any choice of entropy Sf . It allows for an unambiguous
identification of the least perturbing local measurement.
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