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We address the quantification of non-Gaussianity (nG) of states and operations in continuous-variable systems
and its use in quantum information. We start by illustrating in detail the properties and the relationships of two
recently proposed measures of nG based on the Hilbert-Schmidt distance and the quantum relative entropy (QRE)
between the state under examination and a reference Gaussian state. We then evaluate the non-Gaussianities of
several families of non-Gaussian quantum states and show that the two measures have the same basic properties
and also share the same qualitative behavior in most of the examples taken into account. However, we also show
that they introduce a different relation of order; that is, they are not strictly monotone to each other. We exploit
the nG measures for states in order to introduce a measure of nG for quantum operations, to assess Gaussification
and de-Gaussification protocols, and to investigate in detail the role played by nG in entanglement-distillation
protocols. Besides, we exploit the QRE-based nG measure to provide different insight on the extremality of
Gaussian states for some entropic quantities such as conditional entropy, mutual information, and the Holevo
bound. We also deal with parameter estimation and present a theorem connecting the QRE nG to the quantum
Fisher information. Finally, since evaluation of the QRE nG measure requires the knowledge of the full density
matrix, we derive some experimentally friendly lower bounds to nG for some classes of states and by considering
the possibility of performing on the states only certain efficient or inefficient measurements.
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I. INTRODUCTION

In the recent years we have witnessed a big effort in
the theoretical and experimental investigation of continuous-
variable (CV) quantum information. Gaussian states are
experimentally produced with an high degree of control,
especially in quantum optics, and Gaussian measurements
may be effectively implemented in different settings. Besides,
despite belonging to an infinite-dimensional Hilbert space,
Gaussian states are easy to handle from a theoretical point of
view, being fully described by the first and second moments of
the canonical operators [1–3]. The remarkable role of Gaussian
states has been highlighted in [4], where it has been proved
that they are extremal at fixed covariance matrix for several
relevant quantities as channel capacities and entanglement
measures and also in the framework of CV quantum key
distribution in [5–7], where it has been shown that Gaussian
attacks are optimal against all individual and collective
eavesdropping strategies. For these reasons, Gaussian states
played a prominent role in the development of CV quantum
information and, as a matter of fact, most of the protocols
designed for finite-dimensional Hilbert spaces have been first
translated in the CV setting for Gaussian states [8].

In the recent years, however, it has been realized that
there are situations wherein non-Gaussianity (nG) in the form
of non-Gaussian states or non-Gaussian operations is either
required or desirable to achieve some relevant tasks in quantum
information processing. As for example, it is known that nG is
crucial for the realization of entanglement distillation [9–11],
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quantum error correction [12], and cluster-state quantum
computation [13,14]. Besides, a non-Gaussian measurement
and/or non-Gaussian states are crucial for observing violations
of loophole-free Bell tests with CVs [15–24]. In addition,
improvement of quantum teleportation and quantum cloning
of coherent states can be obtained by using, respectively,
non-Gaussian states or non-Gaussian operations [25–28]. In
turn, bipartite Gaussian states have minimum entanglement for
given second moments and this influences their performances
in quantum information protocols. Non-Gaussian operations
also find application in noiseless amplification [29,30] ob-
tained in conditional fashion, whereas non-Gaussian states
have been proven useful in improving parameter estimation
in quantum optics [31,32]. The current state of the art is
schematically depicted in Fig. 1.

For the reasons outlined previously, several protocols
have been designed theoretically [33,34] and experimentally
realized [35–45] to produce single-mode or two-mode non-
Gaussian states in different physical settings and, in particular,
to perform squeezing purification [46] and CV entanglement
distillation [40,47–49]. Basically, they may be divided into two
main categories: those based on nonlinear interaction of order
higher than two [50,51], as for example the Kerr effect [52–54],
and those based on conditional measurements. Indeed, the
nonlinear dynamics induced by conditional measurements
has been analyzed for a large variety of schemes [55–69],
including, besides photon addition and subtraction schemes,
optical state truncation of coherent states [58], state filtering
by active cavities [59,60], synthesis of arbitrary unitary
operators [61], and generation of optical qubit by conditional
interferometry [62]. Conditional state generation has been
achieved in the low-energy regime [45,49,70] by using
single-photon detectors and also in the mesoscopic domain
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FIG. 1. The departure from the Gaussian world is required to
achieve specific tasks such as the distillation of Gaussian entangle-
ment, universal quantum computation with Gaussian cluster states,
and the violation of loophole-free Bell tests with CVs (bottom box)
and lead to an increase of entanglement at fixed covariance matrix,
with improvement of relevant protocols such as teleportation and
cloning of coherent states and parameter estimation of both unitary
and lossy channels (top box).

[71–73]. Realizations of non-Gaussian states have been also
reported in optical cavities [74] and in superconducting circuits
[75].

Being recognized as a resource for CV quantum informa-
tion, the need of quantifying the non-Gaussian character of
states and operations naturally arises and different measures
of nG have been proposed [76–78]. These measures have been
used to assess the role of nG in different quantum information
and communication tasks such as teleportation [79], quantum
estimation [31], experimental entanglement quantification
[80], and entanglement transfer between CV states and qubits
[81,82]. In [83] the relationship between nG and the Hudson’s
theorem [84] have been studied, obtaining at fixed purity an
upper bound for non-Gaussian states having a positive Wigner
function, while in [85] nG bounded uncertainty relations are
derived. The entropic measure proposed in [77] has been
used to quantify exactly the nG of experimentally produced
photon-added coherent states and a lower bound has been

evaluated experimentally in [86] for conditional states obtained
via an inefficient photodetection on classically correlated
thermal beams.

In this paper, we address in detail the quantification of nG
of states and operations in CV systems and analyze its use
in quantum information. At first, we review the two measures
proposed in [76] and [77] by studying in more detail their prop-
erties and their relationships and then exploit them to assess
some relevant Gaussification and de-Gaussification protocols,
and to investigate the role of nG in entanglement distillation,
quantum communication, and quantum estimation.

The paper is structured as follows: In the next section
we briefly review some topics on the quantification of nG
of a classical probability (density) distribution. In Sec. III
we introduce notation and give the definition of Gaussian
states along with their properties, while in Sec. IV we
review the two quantum measures of nG, proving their
properties and highlighting the relationships between them.
In Sec. V we evaluate the nG measures for some relevant
non-Gaussian states, comparing them and observing if and
when they give the same order relation. In Sec. VI we
employ the two measures of nG to address the Gaussification
process due to the interaction of the system with a bath of
harmonic oscillators in the vacuum state (i.e., dissipation a
zero temperature) and the de-Gaussification process due either
to phase-diffusion or to self-Kerr interaction. In Sec. VII
we study the role of nG in two paradigmatic examples of
entanglement-distillation protocols, while in Sec. VIII we
show how the amount of nG is related to some entropic-
informational quantities as the Holevo bound, conditional
entropy, and mutual information. In Sec. IX we deal with
parameter estimation and present a theorem relating the nG and
the quantum Fisher information. Finally, in Sec. X we address
the experimental evaluation of nG in situations where state
tomography is not available and present some experimentally
friendly bounds for the estimation of nG of some classes
of states. Section XI closes the paper with some concluding
remarks.

II. NON-GAUSSIANITY OF A CLASSICAL
PROBABILITY DISTRIBUTION

According to the central limit theorem, the Gaussian distri-
bution is ubiquitous in the description of natural phenomena.
In turn, deviations from the Gaussian behavior are often the
sign that an interesting phenomenon occurs [87–92], and
thus considerable attention has been devoted to the detection
and quantification of nG of a classical distribution. Basically,
there are two main approaches. The first one is based on the
evaluation of higher moments of the distribution, in particular,
the third and the fourth central moments, to assess skewness
and kurtosis of the distribution in comparison to those of a
Gaussian one. The second approach is based on the evaluation
of the Shannon entropy of the distribution, upon the fact that
Gaussian distributions maximize it at fixed variance. More
recently, it turned out that nG is relevant in the framework
of independent component analysis (ICA) [93]. ICA is a
method developed in the past decades in which the goal is
to find a linear representation of non-Gaussian data so that
the components are statistically independent. In this method
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the solution is obtained by the maximization of the nG of
the components and thus, to accomplish this goal, different
measures of nG have been proposed.

Let us consider a scalar-valued random variable Y with a
probability density function p(y) := P (Y = y). Its kth central
moments are defined as

E[(Y − µ)k] =
∫ +∞

−∞
dy (y − µ)k p(y), (1)

where

µ =
∫ +∞

−∞
dy y p(y) (2)

is the mean value of the distribution. We say that Y is Gaussian
distributed if its probability density function is a Gaussian
function, that is,

p(y) = 1√
2πσ 2

exp

{
−y − µ

2σ 2

}
, (3)

where σ 2 = E[(Y − µ)2] is the second moment of the distribu-
tion, called variance. In the following we present the definition
of two measures of nG for a classical scalar-valued random
variable.

A. Kurtosis

The fist considered measure of nG has been the kurtosis,
that is, the fourth-order cumulant defined by the formula

K(Y ) = E[(Y − µ)4] − 3σ 2. (4)

K(Y ) is zero for a Gaussian random variable, while for most
(but not all) non-Gaussian random variables it takes values
different from zero. kurtosis can be positive or negative.
Random variables that have negative kurtosis are called
sub-Gaussian and are characterized by a probability density
function with heavy tails. On the other hand, the ones with
positive kurtosis are called super-Gaussian and they have
typically a “flat” distribution (constant near the mean value
and very small for “distant” values of the variable). Anyway,
typically, the nG is measured by the absolute value or the
square of the kurtosis. While it is relatively simple to evaluate
it if the probability density function is known, kurtosis presents
some drawbacks when its value has to be estimated from a
measured sample. Indeed, it can be very sensitive to outliers
and its value may strongly depend on only a few observations
in the tails of the distribution. For these reasons kurtosis is not
considered a robust measure of nG.

B. Negentropy

Given a discrete random variable X = {x1, . . . ,xn} with a
probability distribution p(xi) = P (X = xi), we can define its
(Shannon) entropy as

H (X) = −
∑

i

p(xi) ln p(xi). (5)

This definition can be generalized for a continuous-valued
random variable Y , in which case it is called differential
entropy:

H(Y ) = −
∫

dy p(y) ln p(y). (6)

A fundamental result of information theory states that at
fixed variance, Gaussian variables have the largest entropy.
Following this result, one may define a measure of nG, called
negentropy, as

N (Y ) = H(G) − H(Y ), (7)

where G is the Gaussian random variable with the same
variance of Y . Due to the previously mentioned result,
negentropy is always non-negative and it is equal to zero
only for Gaussian random variables. Negentropy is thus
well justified by statistical theory but its computation is
typically very difficult. However, simpler approximations
based on evaluations of moments of the random variable
have been introduced and used for ICA purposes [94]. In
the following we see that one of the two quantum measures
that are analyzed, even if defined starting from an another
quantity, result in the quantum analog of the negentropy here
presented.

III. QUANTUM GAUSSIAN STATES

For concreteness, we use here the quantum optical termi-
nology of modes carrying photons, but our approach may be
equally applied to any bosonic CV system. Let us consider
a system of n modes described by mode operators ak , k =
1, . . . ,n, satisfying the commutation relations [ak,a

†
j ] = δkj .

A quantum state � of the n modes is fully described by its
characteristic function [95],

χ [�](λ) = Tr[�D(λ)],

where D(λ) = ⊗n
k=1 Dk(λk) is the n-mode displacement

operator, with λ = (λ1, . . . ,λn)T , λk ∈ C, and where

Dk(λk) = exp{λka
†
k − λ∗

kak}
is the single-mode displacement operator. Analogously, quan-
tum states can be fully described by the Wigner func-
tion, that is, the Fourier transform of the characteristic
function:

W [�](α) =
∫

d2nλ

π2n
eλ∗α+α∗λχ [�](λ). (8)

The canonical operators are given by

qk = 1√
2

(ak + a
†
k),

pk = 1

i
√

2
(ak − a

†
k),

with commutation relations given by [qj ,pk] = iδjk . Upon
introducing the real vector R = (q1,p1, . . . ,qn,pn)T , the
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commutation relations can be rewritten as

[Rk,Rj ] = i�kj ,

where �kj are the elements of the symplectic matrix � =
i ⊕n

k=1 σ2, σ2 being the y-Pauli matrix. The covariance matrix
σ ≡ σ [�] and the vector of mean values X ≡ X[�] of a
quantum state � are defined as

Xj = 〈Rj 〉,
(9)

σkj = 1
2 〈{Rk,Rj }〉 − 〈Rj 〉〈Rk〉,

where {A,B} = AB + BA denotes the anticommutator and
〈O〉 = Tr[� O] is the expectation value of the operator O.

A quantum state �G is referred to as a Gaussian state if its
characteristic function or, equivalently, the Wigner function
have a Gaussian form, in the Cartesian notation

χ [�G](�) = exp
{− 1

2�T σ� + XT ��
}
, (10)

W [�G](Y ) = exp
{− 1

2 (Y − X)T σ−1(Y − X)
}

(2π )n
√

Det[σ ]
, (11)

where � and Y are real vectors,

� = (Re λ1,Im λ1, . . . ,Re λn,Im λn)T , (12)

Y = (Re α1,Im α1, . . . ,Re αn,Im αn)T . (13)

Of course, once the covariance matrix and the vector of mean
values are given, a Gaussian state is fully determined. For
example, the purity µ[�G] = Tr[�2

G] of an n-mode Gaussian
state may be expressed as

µ[�G] = 1

2n
√

det σ
. (14)

An n-mode Gaussian state can be always written as

�G = US

n⊗
k=1

νk(nk)U †
S,

where νk(nk) = (1 + nk)−1[nk/(1 + nk)]a
†
kak is a single-mode

thermal state with nk = Tr[a†
kakνk(nk)] average number of

photons and US denotes the unitary evolution generated
by a generic Hamiltonian at most bilinear in the mode
operators, which is an evolution corresponding to a symplectic
transformation in the phase space [96]. Any mapping, either
unitary or completely positive, transforming Gaussian states
into Gaussian states is a Gaussian operation.

For a single-mode system the most general Gaussian state
can be written as

�G = D(α)S(ζ )ν(n)S†(ζ )D†(α),

with D(α) being the displacement operator and S(ζ ) =
exp[ 1

2ζ (a†)2 − 1
2ζ ∗a2] the single-mode squeezing operator

with α,ζ ≡ reiϕ ∈ C. The corresponding covariance matrix
has entries

σ11 = (
n + 1

2

)
[cosh(2r) − sinh(2r) cos(ϕ)], (15)

σ22 = (
n + 1

2

)
[cosh(2r) + sinh(2r) cos(ϕ)], (16)

σ12 = σ21 = (
n + 1

2

)
sinh(2r) sin(ϕ). (17)

The Von-Neumann entropy S(�) = −Tr[� ln �] of a single-
mode Gaussian state may be written as

S(�G) = h(
√

det σ ) = h

(
1

2µ

)
= h

(
n + 1

2

)
= (n + 1) ln(n + 1) − n ln(n), (18)

where we have introduced the function

h(x) = (
x + 1

2

)
ln

(
x + 1

2

) − (
x − 1

2

)
ln

(
x − 1

2

)
. (19)

For a two-mode Gaussian state, the covariance matrix (CM)
is a real 4 × 4 symmetric-definite positive block matrix with
ten independent parameters:

σ =
(

A C

CT B

)
. (20)

Matrices A, B, and C are 2 × 2 real matrices, representing,
respectively, the autocorrelation matrices of the two modes and
their mutual correlation matrix. Any two-mode CM σ may be
brought to its standard-form local symplectic operations, that
is, local Gaussian operations. In the standard from, matrices A

and B are proportional to the identity and C is diagonal. Using
the four local symplectic invariants I1 ≡ det(A), I2 ≡ det(B),
I3 ≡ det(C), and I4 ≡ det(σ ), the symplectic eigenvalues,
denoted by d± with d− � d+, read as follows:

d± =
√

�(σ ) ±
√

�(σ )2 − 4I4

2
, (21)

where �(σ ) ≡ I1 + I2 + 2I3. Using the symplectic eigenval-
ues, the uncertainty relation can be rewritten as d− � 1/2 and
the Von-Neumann entropy as [97]

S(�G) = h(d−) + h(d+). (22)

IV. QUANTUM NON-GAUSSIANITY MEASURES:
DEFINITIONS AND PROPERTIES

In this section we review the definitions of the nG measures
for quantum states proposed in [76,77] and illustrate in detail
their properties. Although the two measures are based on
different quantities, the Hilbert-Schmidt distance and the
quantum relative entropy, they share the same basic idea: One
wants to quantify the nG of a quantum state � in terms of the
distinguishability of the state itself from a reference Gaussian
state τ , chosen as the Gaussian state with the same first and
second moments of �, such that

X[τ ] = X[�],
(23)

σ [τ ] = σ [�].

Notice that a similar line of reasoning has been adopted in
Refs. [98–100] to define a measure of nonclassicality via
the Hilbert-Schmidt distance. Here, roughly speaking, the
two nG measures provide the quantization of the classical
approaches to assess nG based on moments and negentropy,
respectively. In the following we review their properties and
provide a critical comparison with another quantities proposed
in literature [78].
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A. Measuring the non-Gaussianity using Hilbert-Schmidt
distance from a Gaussian reference

Given two quantum states �1 and �2, the Hilbert-Schmidt
distance is defined as

DHS[�1,�2] =
(

1

2
Tr[(�1 − �2)2]

)1/2

=
(

µ[�1] + µ[�2] − 2κ[�1,�2]

2

)1/2

,

where µ[�] is the purity of � and κ[�1,�2] = Tr[�1�2] denotes
the overlap between �1 and �2. We define the degree of nG of
the state � as the squared renormalized HS distance [76],

δA[�] = D2
HS[�,τ ]

µ[�]
, (24)

of the state � from the state τ , which is a reference Gaussian
state chosen as in Eq. (23). The relevant properties of δA[�]
are summarized by the following lemmas.

Lemma A1. δA[�] = 0 if and only if (iff) � is a Gaussian
state.

Proof. If δA[�] = 0, then � = τ and thus it is a Gaussian
state. If � is a Gaussian state, then it is uniquely identified by
its first and second moments and thus the reference Gaussian
state τ is given by τ = �, which, in turn, leads to DHS[�,τ ] = 0
and thus to δA[�] = 0. �

Lemma A2. If U is a unitary map corresponding to a
symplectic transformation in the phase space, that is, if
U = exp{−iH } with Hermitian H and at most bilinear in
the field operators, then δA[U�U †] = δA[�].

Proof. Let us consider �′ = U�U †. Then the covariance
matrix transforms as σ [�′] = �σ [�]�T , � being the sym-
plectic transformation associated with U . At the same time
the vector of mean values simply translates to X ′ = X + X0,
where X0 is the displacement generated by U . Since any
Gaussian state is fully characterized by its first and second
moments, then the reference state must necessarily transform
as τ ′ = UτU †, that is, with the same unitary transformation U .
Since the Hilbert-Schmidt distance and the purity of a quantum
state are invariant under unitary transformations the lemma is
proved. �

This property ensures that single-mode displacement and
squeezing operations, as well as two-mode evolutions such as
those induced by a beam splitter or a parametric amplifier, do
not change the Gaussian character of a quantum state. The
lemma also allows us to always consider state with zero mean
values.

Lemma A3. δA[�] is proportional to the squared L2(Cn)
distance between the characteristic functions (or alternatively
the Wigner functions) of � and of the reference Gaussian state
τ . This can be written as

δA[�] ∝
∫

d2nλ{χ [�](λ) − χ [τ ](λ)}2, (25)

δA[�] ∝
∫

d2nα{W [�](α) − W [τ ](α)]}2. (26)

Proof: Using the identities

Tr[O1O2] =
∫

d2nλ

πn
χ [O1](λ)χ [O2](−λ) (27)

= πn

∫
d2nαW [O1](α)W [O2](α) (28)

and the fact the characteristic functions of self-adjoint opera-
tors are even functions of λ, we obtain

D2
HS[�,τ ] = 1

2

∫
d2nλ

πn
{χ [�](λ) − χ [τ ](λ)}2 (29)

= πn

2

∫
d2nλ{W [�](α) − W [τ ](α)}2, (30)

which proves the lemma. �
Since the notion of Gaussianity of a quantum state is

connected to the shape of its characteristic (Wigner) function,
and since the characteristic function of a quantum state belongs
to the L2(Cn) space [95], we address L2(C) distance as a good
indicator for the non-Gaussian character of �.

Lemma A4. Consider a bipartite state � = �A ⊗ �G. If �G

is a Gaussian state, then δA[�] = δA[�A].
Proof. We have

µ[�] = µ[�A]µ[�G],

µ[τ ] = µ[τA]µ[τG],

κ[�,τ ] = κ[�A,τA]κ[�G,�G].

Therefore, since κ[�G,�G] = µ[�G], we arrive at

δA[�] = µ[�A]µ[�G] + µ[τA]µ[�G] − 2κ[�A,τA]κ[�G,�G]

2µ[�A]µ[�G]
= δA[�A]. (31)

�
Notice, however, that δA[�] is not generally additive (nor

multiplicative) with respect to the tensor product. If we
consider a (separable) multipartite quantum state in the product
form � = ⊗n

k=1�k , the nG is given by

δA[�] =
∏n

k=1 µ[�k] + ∏n
k=1 µ[τk] − 2

∏n
k=1 κ[�k,τk]

2
∏n

k=1 µ[�k]
,

(32)

where τk is the Gaussian state with the same moments of
�k . In fact, since the state � is factorizable, we have that the
corresponding Gaussian τ is a factorizable state too.

For single-mode quantum states we have collected several
numerical evidences that δA[�] = 1/2 represents an upper
bound for the HS nG of any quantum state [101]. The same
conclusion is indirectly suggested by the results obtained
in [83] and this leads to formulate the following conjecture.

Conjecture A1. For single-mode quantum states we have
that δA[�] � 1

2 .
In particular, the conjecture has been numerically verified

for single-mode CV states expressed as finite superposition of
Fock number states, that is, for truncated states of the form
� = ∑N

n,k=0 �nk|n〉〈k|. We have generated at random a large
number states for various values of the truncating dimension
N and evaluated the corresponding nG δA. Results have shown
that the value of the nG δA is bounded by 1/2 and the typical
nG (the value of δA with the largest occurrence) decreases with
both the purity and the truncating dimension.
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B. Measuring the non-Gaussianity using the quantum relative
entropy to a reference Gaussian

Given two quantum states �1 and �2, the quantum relative
entropy (QRE) is defined as

S(�1‖�2) = Tr[�1(ln �1 − ln �2)]. (33)

As for its classical counterpart, the Kullback-Leiber diver-
gence, it can be demonstrated that 0 � S(�1‖�2) < ∞ when
it is definite, that is, when the support of the first state in
the Hilbert space supp�1 ⊆ supp�2, is contained in that of
the second one. In particular, S(�1‖�2) = 0 iff �1 ≡ �2. This
quantity, though not defining a proper metric in the Hilbert
space (it is not symmetric in its arguments), has been widely
used in different fields of quantum information as a measure
of statistical distinguishability for quantum states [102,103]
because of its nice properties and statistical meaning. In fact,
if we consider two quantum states � and τ and perform N

measurements on �, the probability of confusing � with τ is
(for large N ) PN (� → τ ) ∼ exp{−NS(�‖τ )}.

The degree of nG of a state � may be quantified as [77]

δB[�] = S(�‖τ ),

where τ is the reference Gaussian state with the same first and
second moments as in Eq. (23). Notice that, because of the
choice of τ , Tr[τ ln τ ] = Tr[� ln τ ] and thus

δB[�] = Tr[� ln �] − Tr[� ln τ ] = S(τ ) − S(�), (34)

where S(�) is the von Neumann entropy of a quantum state
�. The nG measure δB may be considered as the quantum
analog of the negentropy introduced in Sec. II, where the
differential entropy is replaced by the von Neumann entropy
of the quantum states under investigation.

At fixed Von-Neumann entropy nG is determined by
the first two moments of the canonical operators, which in
turn uniquely determine the reference Gaussian state. Using
formulas from Sec. III we may write explicit formulas of δB

for single-mode and two-mode states:

δB[�] = h(
√

det σ ) − S(�) single-mode state, (35)

δB[�] = h(d−) + h(d+) − S(�) two-mode state, (36)

where d± are the symplectic eigenvalues of the two-mode CM
and h(x) is given in Eq. (19).

The relevant properties of δB[�] are summarized by the
following lemmas. As a matter of fact, the QRE measure of
nG has all the relevant properties proved for δA and shows
additional properties concerning the evolution under generic
(not unitary) Gaussian maps and under a tensor product.

Lemma B1. δB[�] = 0 iff � is a Gaussian state.
Proof. If δB[�] = 0, then � = τ and thus it is a Gaussian

state. If � is a Gaussian state, then it is uniquely identified by
its first and second moments and thus the reference Gaussian
state τ is given by τ = �, which, in turn, leads to S(�‖τ ) = 0
and thus to δB[�] = 0. �

Lemma B2. If U is a unitary map corresponding to a
symplectic transformation in the phase space, that is, if
U = exp{−iH } with Hermitian H that is at most bilinear in
the field operators, then δB[U�U †] = δB[�].

This property ensures that single-mode displacement and
squeezing operations, as well as two-mode evolutions as those
induced by a beam splitter or a parametric amplifier, do not
change the Gaussian character of a quantum state. The lemma
also allows us to always consider a state with zero mean values.

Proof. The lemma follows from the invariance of QRE
under unitary operation. �

Lemma B3. δB is additive for factorized states: δB[�1 ⊗
�2] = δB[�1] + δB[�2]. As a corollary we have that if �2 is a
Gaussian state, then δB[�] = δB[�1].

Proof. The overall reference Gaussian state is the tensor
product of the relative reference Gaussian states of �1 and �2,
τ = τ1 ⊗ τ2. The lemma follows from the additivity of QRE
and the corollary from Lemma B1. �

Lemma B4. δB monotonically decreases under partial trace;
that is, given a bipartite state �, then δB[�A] � δB[�] and
δB[�B] � δB[�], where �A = TrB[�], �B = TrA[�].

Proof. Let us consider the partial trace state �A (�B). Its
CM is the submatrix of σ [�] obtained by dropping lines
and rows involving expectation values on the system B (A).
Analogously, the first moment vector is the proper subvector
of X[�]. Therefore, the reference Gaussian state τA (τB) must
necessarily satisfy τA = TrB[τ ], where τ is the Gaussian ref-
erence of � (τB = TrA[τ ]). The QRE monotonically decreases
under partial trace and thus the lemma is proved. �

Actually, the preceding statement can be strengthened, as
expressed by the following lemma.

Lemma B5. Given a generic bipartite state �, we have δ[�] �
δ[�A] + δ[�B].

Proof. It has been shown in [104] that QRE decreases
monotonically under a generic (nonlinear) coarse graining.
A simple example of nonlinear coarse graining that cannot
be obtained via a completely positive quantum map is
the operation � → �A ⊗ �B . Because of this property we
have δ[�] � δ[�A ⊗ �B] = δ[�A] + δ[�B], where in the last
equality we have used Lemma B3. �

As an example, let us consider the class of pure two-mode
photon-number entangled states (PNES),

|ψP 〉〉 =
∑

n

ψn|n〉|n〉, (37)

together with their (equal) partial traces �A and �B , that is the
diagonal mixtures of Fock states given by

�P =
∑

n

|ψn|2|n〉〈n|. (38)

Relevant examples of non-Gaussian PNES are given by the
photon-subtracted squeezed vacua (PSSV) ψn ∝ (n + 1)xn+1

and the photon-added two-mode squeezed vacua (PASV)
ψn ∝ nxn−1, which are obtained from the Gaussian PNES
ψn ∝ xn 0 � x < 1 (twin-beam state) by the experimentally
feasible operations of photon subtraction � → a1a2�a

†
1a

†
2 and

addition � → a
†
1a

†
2�a1a2, respectively [36]. The pair-coherent

or two-mode coherently correlated states (TMCs) [105–107]
with Poissonian profile ψn ∝ λn

n! , λ ∈ R. The mean energy

of PNES is NP = 〈〈ψ |a†
1a1 + a

†
2a2|ψ〉〉 ≡ 2N , where N =∑∞

n=0 |ψn|2n, whereas correlations between the modes can be
quantified by C = Re

∑∞
n=0 ψ∗

nψn+1(n + 1) and entanglement
is given by the Von-Neumann entropy of the partial traces
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FIG. 2. (Color online) Non-Gaussianity δB [ψP ] of PNES states
(blue upper curves) and of their partial traces 2δB [�P ] (red lower
curves) as a function of the total energy of the PNES. Solid curves
are for TMC, dashed for PSSV, and dotted for PASV.

ε0 = −∑
n ψ2

n ln ψ2
n . In turn, the covariance matrix of a PNES

equals that of a symmetric Gaussian state in standard form,
with diagonal elements equal to N + 1

2 and off-diagonal blocks
given by C = diag(C, − C). In Fig. 2 we report the nG
δB[ψP ] of PNESs as a function of the overall energy NP

together with the sum of the nG of the partial traces, that
is, δB[�A] + δB[�b] = 2δB[�P ]. As predicted by the previous
lemmas, the nG of a PNES state is always larger than the one
of its partial traces and also of their sum.

Lemma B6. δB[�] monotonically decreases under Gaussian
quantum channels; that is δ[EG(�)] � δ[�].

Proof. Any Gaussian quantum channel can be written as
EG(�) = TrE[Ub(� ⊗ τE)U †

b ], where Ub is a unitary operation
corresponding to a Hamiltonian at most bilinear in the field
modes and where τE is a Gaussian state [108]. Then, by using
Lemmas B2, B3, and B4, we obtain δB[EG(�)] � δ[Ub(� ⊗
τE)U †

b ] = δB[�]. �
In turn, this lemma provides a necessary condition for a

channel to be Gaussian: Given a quantum channel E and a
generic quantum state �, if the inequality δB[E(�)] � δB[�]
is not fulfilled, the channel is non-Gaussian. It is also worth
noticing that the monotonicity is fulfilled only for a proper
completely positive (CP) map. As we see in Sec. VII, even
if we consider the conditional evolution corresponding to a
Gaussian measurement operator, the nG of the output states
may increase. Indeed, in this case, we do not consider a full
CP map, but only one Krauss operator corresponding to the
chosen (Gaussian) measurement operator.

Lemma B7. For a set of states {�k} having the same first and
second moments, then nG is a convex functional, that is,

δB

[∑
k

pk�k

]
�

∑
k

pkδB[�i],

with
∑

k pk = 1.
Proof. The states �k , having the same first and second mo-

ments, have the same reference Gaussian state τ which in turn
is the reference Gaussian state of the convex combination � =∑

k pk�k . Since conditional entropy S(�‖τ ) is a jointly convex
functional with respect to both states, we have δB[

∑
k pk�k] =

S(
∑

k pk�k‖τ ) �
∑

k pkS(�k‖τ ) = ∑
k pkδ[�k]. �

Notice that, in general, δB is not convex, as it may easily
proved upon considering the convex combination of two
Gaussian states with different parameters.

Lemma B8. At a fixed average number of photons N =
〈a†a〉, the maximum value of nG measured by δB for single-
mode states is achieved by pure superpositions of Fock
states |ψN 〉 = ∑

k αk|n + lk〉, where n � 0, lk � lk−1 + 3 or
lk = 0, and with the constraint N = {det σ [ν(N )]} 1

2 − 1
2 =

n + ∑
k |αk|2lk .

Proof. Since δB[�] = S(τ ) − S(�) we have to maximize
S(τ ) and, at the same time, minimize S(�). For a single-mode
system the most general Gaussian state can be written as �G =
D(α)S(ζ )ν(nt )S†(ζ )D†(α), with D(α) being the displacement
operator, S(ζ ) the squeezing operator, α,ζ ∈ C, and ν(nt ) a
thermal state with nt average number of photons. Displacement
and squeezing applied to thermal states increase the overall
energy, while entropy is an increasing monotonous function
of the number of thermal photons nt and is invariant under
unitary operations. Thus, at fixed energy, S(τ ) is maximized
for τ = ν(N ). Therefore, the state with the maximum amount
of nG must be a pure state [in order to have S(�) = 0] with
the same CM σ = (N + 1

2 )I of the thermal state ν(N ). One
can easily check now that the state with this property is the
one indicated in the lemma. One can also observe that by
choosing n = N and lk = 0, we obtain that Fock states |N〉
are maximum non-Gaussian states at fixed energy. �

As is clear from the examples presented in the next sections,
the two nG measures induce different ordering on the set of
quantum states; that is, we may find a pair of states �1 and
�2 such that δA[�1] > δA[�2] and δB[�1] < δB[�2], or vice
versa. One may conjecture that, as it happens for entanglement
measures [109], we indeed do not have a unique nG measure
and that different measures correspond to different operational
meanings. As also remarked in Sec. VIII, an operational
meaning for δB may be found in terms of information-theoretic
quantities, while an operational meaning for δA, besides its
connection with the distance in the phase space, is still missing.
The two measures are connected to each other by means of the
inequality S(�‖τ ) � D2

HS[�,τ ] [110], which, in turn, implies
the inequality

δB[�] � δA[�]µ[�]. (39)

For pure states, (39) reduces to δB[�] � δA[�].

C. A measure of non-Gaussianity based on the Wehrl entropy

A different measure of nG has been proposed in [78], based
on the difference between the Wehrl entropies of the reference
Gaussian state and the quantum state in exam,

δC[�] = HW (τ ) − HW (�), (40)

where

HW (�) = −
∫
C

d2αQ�(α) ln[πQ�(α)] (41)

is the Wehrl entropy, that is, the differential entropy of the
normalized Q-Husimi function,

Q�(α) = 1

π
〈0|D(α)†�D(α)|0〉,

of the state �. The quantity δC owns reasonable properties in
the phase space, which are inherited from those of the the
Q function. However, it lacks an operational meaning and
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FIG. 3. (Color online) The Wehrl entropy-based nG
δC[S(r)|n〉〈n|S(r)†] for squeezed Fock states as a function of
the squeezing parameter r . From bottom to top, the nG for
n = 1,2,3,4.

is not invariant under Gaussian unitary operations. In order to
illustrate this behavior we have (numerically) evaluated the nG
δC for Fock number states |n〉 subjected to squeezing. In Fig. 3
we show δC[S(r)|n〉〈n|S(r)†] as a function of r for different
values of n. As is apparent from the plot, the nG is neither
constant nor monotone with the squeezing parameter r .

D. Non-Gaussianity of a quantum operation

Once one obtains a good measure for the nG of quantum
state, this may be exploited to define a measure for the non-
Gaussian character of a quantum operation. Let us denote by
G the whole set of Gaussian states. A convenient definition for
the nG of a map E reads as follows:

δ[E] = max
�∈G

δ[E(�)],

where E(�) denotes the quantum state obtained after the
evolution imposed by the map. Indeed, we have δ[Eg] = 0
iff E is a Gaussian map Eg , that is, a map which transforms any
input Gaussian state into a Gaussian state. Other properties
follow from those of the nG measures for states.

Despite the conceptual simplicity of the preceding defini-
tion, the evaluation of δ[E] is, in general, a challenging task
using either the HS-based or the QRE-based measure of nG.
As a consequence, it has not been used so far for a systematic
classification of maps.

V. NON-GAUSSIANITIES OF SPECIFIC FAMILIES
OF QUANTUM STATES

This section is devoted to a sort of zoology of nG; that
is, we consider different families of relevant quantum states
and evaluate their non-Gaussianities, δA and δB . In this way,
we analyze in some detail the relationships between the two
measures and illustrate their basic features also in connection
with the analytical properties of their density operators and the
intuition coming from their phase-space quasidistributions.

A. Fock states and superpositions

We consider single-mode Fock states |n〉 and superpositions
of Fock states of the form

|ψnk〉 = 1√
2

[|n〉 + |n + k〉]

for n > 0 and k > 2. The reference Gaussian states are thermal
states τnk = ν(n + k

2 ) with n + k
2 average photons. Non-

Gaussianity can be analytically evaluated for both measures,
obtaining (for k = 0 and k > 2)

δA[ψnk] = 1

2

(
1 + 1

2n + k
− 2Onk

)
, (42)

δB[ψnk] = h

(
n + k + 1

2

)
, (43)

where the overlap Onk = 〈ψnk|ν(n + k
2 )|ψnk〉 is given by

Onk = 1

2

[ (
n + k

2

)n(
n + k

2 + 1
)1+n

+
(
n + k

2

)n+k(
n + k

2 + 1
)1+n+k

]
.

As is apparent from Fig. 4, both measures increase with both
n and k and are monotone functions of each other for these
families of states; that is, if δA[�1] > δA[�2], then δB[�1] >

δB[�2]. As stated in Lemma B7 Fock states have the maximum
nG at fixed number of photons according to the measure δB .
Though it has not been proved yet, we observe the same result
for the HS-based δA in all the examples considered up to now.

B. Mixtures of Fock states

We now investigate the monotonicity of the two measures
for other one-parameter families of quantum states. In this case
we consider mixtures of Fock states of the form

�D =
∞∑

n=0

qn(λ)|n〉〈n|, (44)

where 0 � qn(λ) � 1,
∑

n qn(λ) = 1, and n̄λ = ∑
n nqn(λ) is

the average photon number of the state. The reference Gaussian
state for any diagonal mixtures of Fock states is a thermal state
ν(n̄λ) with the same average photon number. The nG can be
thus written as

δA[�D] = 1

2

[
1 −

∑
n τn(2qn − τn)∑

n q2
n

]
,

(45)
δB[�D] = h(n̄λ + 1/2) +

∑
n

qn ln qn,

0.36 0.4 0.44 0.48
δA

1.5
2.0
2.5
3.0
3.5

δ B

FIG. 4. (Color online) QRE-based nG δB as a function of HS
distance nG δA for Fock states |n〉 with n = 1, . . . ,15 (red circles) and
for superpositions |ψnk〉 with n = 1, . . . 15 and k = 3 (blue squares),
k = 4 (green diamonds), and k = 5 (black triangles).
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where τn = 〈n|ν(n̄λ)|n〉 are the matrix elements of the
(thermal) Gaussian reference state. We have numerically
evaluated the non-Gaussianities for several one-parameter
families including the diagonal states obtained as partial
traces of TMS, PSSV, and PASV states [see Eq. (38) and the
discussion following Lemma B4], as well as diagonal states
with Poissonian profile or given by a � distribution of the form
q(k)

n (λ) ∝ nk exp{−n/λ}. Results are shown in the left panel of
Fig. 5: The two measures are monotone to each other for all the
considered families and the behavior of δB[�D] vs δA[�D] is
almost independent of the kind of states. These results suggest
that a general relation between the two measures may exist for
mixtures of Fock states. However, so far we have not been able
to prove it analytically starting from the expressions of δA[�D]
and δB[�D] in Eqs. (45).

We have also considered (truncated) random mixtures of
the form

�H =
H∑

n=0

pn|n〉〈n|,

where H is the truncation dimension, and have numerically
evaluated the non-Gaussianities using Eqs. (45) for a sample
of 104 states. Results are reported in the right panel of Fig. 5 and
show that despite the large number of involved parameters (up
to H = 1000) the two measures are almost monotone to each
other. As H increases, the distribution of the two measures
concentrates around the typical values.

C. Schrödinger cat states

Let us now consider the two-parameter family of quantum
states given by the Schrödinger cat-like states, that is,
superpositions of coherent states |α〉 = D(α)|0〉 and |−α〉,

|ψS〉 = cos φ|α〉 + sin φ|− α〉√
1 + sin(2φ) exp{−2α2} . (46)

For φ = ±π/4, |ψS〉 reduces to the so-called odd and even
Schrödinger cat states. Using the fact that the reference

0.0 0.1 0.2 0.3 0.4
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0.2
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1.4

δ B
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FIG. 5. (Color online) (Left) QRE-based nG δB as a function
of HS distance nG δA for mixtures of Fock states �D . Solid red
circles refer to a Poissonian distribution, whereas open black circles
are for the diagonal states obitained as partial trace of TMC; green
squares and black diamonds are for mixtures coming from partial
traces of photon-added and photon-subtracted two-mode squeezed
vacuum, respectively; blue and purple triangles correspond to �

distributions q (2)
n (λ) and q (4)

n (λ), respectively. (Right) QRE-based nG
δB as a function of HS distance nG δA for a sample of 104 truncated
random mixtures �H of Fock states. The red cloud refers to H = 10,
green for H = 100, and black for H = 1000.
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FIG. 6. (Color online) HS-based nG δA (topmost left panel) and
QRE-based nG δB (topmost right panel) for Schrödinger cat states
|ψS〉 as a function of φ and for different values of the amplitude α.
Solid bue line, α = 0.5; red dashed line, α = 5. The corresponding
Wigner functions for the odd and the even cats are also shown in the
lower panels: α = 0.5, φ = +π/4 (top left); α = 0.5, φ = −π/4 (top
right); α = 5, φ = +π/4 (bottom left); α = 5, φ = −π/4 (bottom
right).

Gaussian state is a displaced squeezed thermal state τS =
D(C)S(r)ν(N )S†(r)D†(C), where the real parameters C, r ,
and N are analytical function of φ and α, we have evaluated
the nG measures δA and δB for different values of α and φ.
Results are shown in Fig. 6.

As is apparent from the plots, upon varying the value of
the parameters the two measures exhibit similar qualitative
behavior. In particular, for low values of the amplitude (e.g.,
α = 0.5), we observe an asymmetric behavior with respect to
φ: nG is almost zero for positive φ, while for φ < 0 one achieve
high values of nG. By increasing the value of the amplitude,
say α = 5, both measures become even functions of φ. This
can be understood by looking at the Wigner functions of even
and odd Schrödinger cat states. In fact, for low amplitudes, the
even cat (φ = π/4) Wigner function is similar to a Gaussian
state, in particular to the vacuum state, while for φ = −π/4 it
presents a non-Gaussian hole in the origin of the phase space;
for higher values of α, one can observe similar non-Gaussian
beahviors both for the even and the odd cat state.

Although the two nG measures capture the same qualitative
non-Gaussian behavior, it is apparent from the parametric plot
of Fig. 7 that they induce different ordering on the set of
states. In fact, upon varying the two parameters α and φ, one
may find pair of states �1, �2 for which δA[�1] > δA[�2] and
δB[�1] < δB[�2]. As discussed before, we do accept that the
two measures may induce different ordering on quantum states.
Notice, however, that upon fixing one of the parameters and
varying the other, one observes again a monotonous behavior:
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FIG. 7. (Color online) QRE-based nG δB as a function of HS
distance nG δA for Schrödinger cat states |ψS〉. Solid blue lines refer
to fixed amplitudes of coherent states α, varying the angle −π/2 <

φ < π/2; from bottom to top, we have α = 0.5,2.5. The dashed red
lines are for fixed angles φ and varying the amplitude 0 < α < 2.5;
from bottom to top, φ = −π/3,π/6,2π/5. The gray area denotes all
the allowed values for the two nG measures for the considered range
of values of the two parameters.

the red dashed lines in Fig. 7 show δB vs δA for fixed values
of φ and varying the amplitude α. This appears to be a typical
behavior: For all the one-parameter families of states we have
considered so far, the two measures are monotone with respect
to each other and induce the same ordering of nG.

VI. GAUSSIFICATION AND DE-GAUSSIFICATION
PROCESSES

In this section we consider a single-mode Gaussification,
the loss mechanism due to the interaction with a bath
of harmonic oscillators at zero temperature, and two
de-Gaussification processes due either to phase diffusion or
Kerr interaction. Other Gaussification and de-Gaussification
protocols are considered in the next section, where we discuss
the case of entanglement distillation.

A. Loss mechanism

The evolution of a single-mode quantum state interacting
with a bath of harmonic oscillators at zero temperature is
described by the Lindblad master equation

�̇ = γ

2
L[a]�, (47)

where �̇ denotes time derivative, γ is the damping factor, and
the superoperator L[O] acts as follows:

L[O]� = 2O†�O − O†O� − �O†O. (48)

Upon writing η = e−γ t the solution of the master equation can
be written as

�(η) =
∑
m

Vm�V †
m,

(49)

Vm =
√

(1 − η)m

m!
amη

1
2 (a†a−m),

where � is the initial state. In particular, if the system is initially
prepared in a Fock state �p = |p〉〈p|, after the evolution we
obtain the mixed state

�p(η) =
∑
m

Vm�pV †
m =

p∑
l=0

αl,p(η)|l〉〈l|, (50)

with

αl,p(η) =
(

p

l

)
(1 − η)p−lηl . (51)

Since the state is diagonal in the Fock basis, the reference
Gaussian state is a thermal state τp(η) = ν(pη) with average
photon number pη. Non-Gaussianity δA can be evaluated
analytically,

δA = 1

2(1 − η)2m
2F1

(− m, − m,1; η2

(η−1)2

)
×

{
(1 − η)2m

2F1

(
−m, − m,1;

η2

(η − 1)2

)
+ (1 + 2mη)−1 − 2[1 + (m − 1)η]m

(1 + mη)m+1

}
,

where 2F1(a,b,c,; x) denotes the hypergeometric function, and
δB can be evaluated numerically via the formula

δB = pη ln

(
pη + 1

pη

)
+ ln(1 + pη)

+
∞∑
l=0

αl,p(η) ln[αl,p(η)].

Because of Lemma B6 we know for sure that δB is decreasing
with time ηt , while this property is not guaranteed for δA.
In Fig. 8 we plot both non-Gaussianities as a function of
dimensionless time ηt and for different values of p, observing
that also δA is decreasing with time and that both are
monotonically increasing functions of p, that is, at fixed time
t the higher the initial photon number p, the larger is the nG
of the evolved state. Although they present a different shape,
due also to their different scale (δA for single-mode states is
bounded by 1/2, while δB is in general unbounded), we observe
a similar trend for both nG which, in particular, approach zero
for the same values of the parameters η, t , and p.

0.5 1.0 1.5 2.0 2.5
ηt

0.5
1.0
1.5
2.0
2.5
3.0

δ B

0.5 1.0 1.5 2.0 2.5
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FIG. 8. (Color online) HS-based nG δA (left) and QRE-based nG
δB (right) for a Fock state |p〉 under loss mechanism as a function of
dimensionless time ηt and for different values of p. From bottom to
top, p = {2,4,6,8}.
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B. Phase-diffusion evolution

Let us consider single-mode systems evolving according to
the following master equation:

�̇ = �L[a†a]�, (52)

where the superoperator L[A] has been defined in Eq. (48)
and � is the noise factor. This master equation describes the
evolution of a quantum state subjected to a phase-diffusive
noise. These non-Gaussian fluctuations are an important
source of noise in optical communication links, and protocols
able to purify squeezing or distilling entanglement have been
recently proposed [46,48]. Upon writing � in the Fock state
basis, the master equation leads to differential equations for
the matrix elements �nm = 〈n|�|m〉, where �̇nm = − 1

2�(n −
m)2�nm, whose solutions read as follows:

�nm(t) = e−�2(n−m)2
�nm(0). (53)

In the preceding equation we defined �2 ≡ �t/2, whereas
�nm(0) denote the matrix elements of the initial state. From
Eq. (53) it is clear that the off-diagonal elements of the density
matrix are progressively destroyed, whereas the diagonal ones
are left unchanged and, in turn, energy is conserved.

It is worth noting that the same evolution as in (53) can
be also obtained by the application of a random, zero-mean
Gaussian-distributed phase-shift to the quantum state. Since
the phase shift of an amount ϕ is described by the unitary
operator Uϕ ≡ exp(−iϕa†a), we can write the state degraded
by the Gaussian phase noise as follows:

�Gn =
∫
R

dϕ
e−ϕ2/(4�2)

√
4π�2

Uϕ�(0)U †
ϕ (54)

=
∑
nm

∫
R

dϕ
e−ϕ2/(4�2)

√
4π�2

e−iϕ(n−m)�nm(0)|n〉〈m| (55)

=
∑
nm

e−�2(n−m)2
�nm(0)|n〉〈m|. (56)

The parameter � is related to the width of the Gaussian
distribution of the random phase-shift by the relation σ 2

rnd =
2�2: As one may expect, the broader the Gaussian distribution,
the higher is the phase-noise affecting the quantum state.

If we consider the mode initially prepared in a coherent
state |α〉 with real amplitude, the phase-diffused state is a
non-Gaussian mixed state with density operator given by

��,α = e−|α|2
∞∑
n,m

αn+me−�2(n−m)2

√
n!m!

|n〉〈m|, (57)

in the Fock basis.
We have evaluated numerically the nG δB[��,α] for differ-

ent values of the noise parameter � and of the average number
of photons |α|2. The results are shown in Fig. 9. In the left
panel we report δB as a function of � and for different values
of α: large values of nG are achieved and the more intense the
initial coherent state, the more non-Gaussian is the output. For
large values of the noise parameter the off-diagonal elements
of the density matrix are completely destroyed and the nG
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FIG. 9. (Color online) (Left) QRE-based nG δB for coherent states
undergoing phase-diffusion as a function of the noise parameter � and
for different values of the average number of photons. From bottom to
top, |α|2 = {1,2,3,4,5}. (Right) QRE-based nG δB for coherent states
undergoing phase diffusion as a function of the average number of
photons |α|2 for different values noise parameter: dashed lines, from
bottom to top, � = {0.25,0.5,∞}. The black solid line represents the
maximum value of nG at fixed number of photons.

approaches its asymptotic value, corresponding to the nG of a
diagonal mixture of Fock states with a Poissonian distribution.
The asymptotic value may be evaluated using Eq. (45) and
choosing qn as a Poissonian distribution with mean value
λ = |α|2. Before approaching the asymptotic value, δB[��,α]
is not monotone: A not much pronounced maximum of δB

may be seen for intermediate values of �. In the right panel
of Fig. 9 we plot the nG for different values of � as a function
of the number of photons |α|2. As we noticed earlier, the
maximum value of δB[��,α] at fixed |α|2 is not the asymptotic
value. However, the difference is very small and thus, upon
observing the behavior for different values of �, we conclude
that the maximum nG cannot be achieved by this family of
quantum states.

C. Kerr interaction

One of the simplest unitary non-Gaussian evolutions is
provided by the so-called self-Kerr effect taking place in
third-order nonlinear χ (3) media. The interaction Hamiltonian
is given by

Hkerr = �(a†a)2 (58)

and the evolution operator by Ukerr = exp{−iγ (a†a)2}, where
γ = �t is a dimensionless coupling constant. Kerr interaction
has been suggested to realize quantum nondemolition mea-
surements, to enhance quantum estimation performances in
quantum optics and to generate quantum superpositions [111,
112], as well as squeezing [113] and entanglement [52,53]. A
known example of Kerr medium is provided by optical fibers
where, however, nonlinearities are small and accompanied by
other unwanted effects. Recently, larger Kerr nonlinearities
have been proposed in many different physical systems [114]
and have been observed with electromagnetically induced
transparency [115], with Bose-Einstein condensates [116], and
with cold atoms [117]. These results renewed the interest for
the quantum effects of Kerr interaction, which are always
accompanied by the generation of nG. In the following,
we consider the nG features of an initial coherent state |α〉
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FIG. 10. (Color online) QRE-based nG δB of coherent states
undergoing Kerr interaction as a function of the average number of
photons and for different values of the coupling constant γ . Dashed
lines from left to right γ = {10−6,10−4,10−2}. The black solid line is
the maximum nG at fixed number of photons.

undergoing Kerr interaction,

|αγ 〉 = Ukerr|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

e−iγ n2 |n〉. (59)

Since the evolution is unitary, the output state is still pure and
the evaluation of the nG δB is straightforward and involves
only the computation of the covariance matrix of the evolved
state. Non-Gaussianity δB[|αγ 〉] is plotted in Fig. 10 as a
function of the average number of photons n = |α2| and for
different values of the coupling constant γ . The maximum nG
achievable for a given number of photons is also reported for
comparison. As expected, nG is an increasing function of the
initial energy n and, for the range of values here considered,
of the the coupling constant γ .

For γ ≈ 10−2 the maximum nG achievable at fixed energy
is quite rapidly achieved, while for more realistic values of
the Kerr coupling nG is obtained only for large values of the
average number of photons. In the experiments proposed to
obtain entanglement via the Kerr interaction [52,53], pulses
with an average number up to 108 photons are needed to com-
pensate for the small nonlinearities of standard glass fibers.
Therefore, in these regimes, the generation of entanglement is
always accompanied by a large degree of nG.

VII. NON-GAUSSIANITY AND DISTILLATION
OF ENTANGLEMENT

Long-distance quantum communication requires that the
communicating parties share highly entangled states over a
long distance. One has therefore to deal with the daunting task
of distributing highly entangled states over long distances,
overcoming losses and decoherence due to the unavoidable
coupling of the system with the environment. For discrete-
variable states (qudit) entanglement-distillation protocols,
where a subset of states with an high degree of entanglement
are extracted from an enemble of less entangled states, have
been proposed and experimentally demonstrated. As regards
CV entanglement, it has been proved that entanglement
distillation cannot be performed within the Gaussian world,
that is, by starting from Gaussian entangled states and by
linear optical components, homodyne detection, and classical
communication. Non-Gaussianity is a necessary ingredient
in an entanglement-distillation protocol. In particular, two

different main approaches can be adopted: In the first approach,
for example, the protocol of [47,48], one starts with an entan-
gled non-Gaussian state and then uses Gaussian operations
based on linear optical elements, homodyne detection, or
vacuum projective measurements. In the second approach one
starts with an entangled Gaussian beam and tries to increase
its entanglement by using non-Gaussian operations such as
photon number conditional measurements. In [25–27] it has
been proved that two-mode squeezed states with photons
subtracted on the two modes can be used to obtain better
teleportation fidelities. A first full scheme of entanglement
distillation based on this idea has been presented in [49],
where increase of entanglement by means of local photons
subtraction from two-mode Gaussian states has been observed.
In the following we review the protocols of [47] and [49] point
out the role played by nG and its amount in the success of the
protocols.

The protocol proposed in [47], from now on the B protocol,
makes use of beam splitters and on/off detectors, that is,
detectors only able to distinguish the presence or the absence of
photons. The input state of the protocol is the state � ⊗ �, that
is, two replicas of a two-mode non-Gaussian. The two copies
are mixed in a balanced beam splitter and then two of the output
modes are directed into on/off photon detectors. The state is
kept if both the local detectors are registering the outcome
“zero,” that is, at least in ideal conditions, the presence of the
vaccum state. In [47] it has been proved that the B protocol
drives the initial state toward a zero-displacement Gaussian
state, which in turn constitute the only fixed points of the
map. Moreover, under some assumptions on the initial state,
the protocol acts as a purifying protocol as well, distilling
the initial non-Gaussian entangled mixed state into a pure
Gaussian entangled state. Notice that despite the fact that the
output state of each step is obtained via (Gaussian) passive
linear operations and Gaussian measurements (the projection
on the vacuum state), the map cannot be described by a proper
completely positive Gaussian operation [118].

As an illustrative example, let us consider the B protocol
applied to the non-Gaussian pure state with the following
nonzero matrix elements in the Fock basis �(a,b,c,d) =
〈a,b|�|c,d〉:

�a(0,0,0,0) = 1

1 + λ2
,

�a(0,0,1,1) = �a(1,1,0,0) = λ

1 + λ2
, (60)

�a(1,1,1,1) = λ2

1 + λ2
.

In Fig. 11 we show the nG quantified by δB as a function of the
parameter λ for states obtained after different number of steps
of the protocol. As a matter of fact, at fixed λ, nG is not always
monotonically decreasing under the iteration of the protocol,
and for λ ≈ 1 the value of nG may increase, even achieving
very high values. On the other hand, the overall effectiveness
of the protocol is confirmed by our measure, since the range
of values of λ for which δB ≈ 0 increases at each step of the
protocol. Overall, the use of our nG measure may help to tailor
the distillation protocol depending on the initial conditions.
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FIG. 11. Non-Gaussianity in the B protocol. The plot shows the
QRE-based nG δB of the output state after s steps of the B protocol,
when the initial state �a is given in Eq. (60), as a function of the
parameter λ. Step: s = 0, black solid line; s = 5, black dashed line;
s = 10, gray solid line; s = 20, gray dashed line.

Let us now consider as initial states the pure state �a of
Eq. (60) and the mixed state �b with nonzero matrix elements:

�b(0,0,0,0) = 1

1 + λ2
,

�b(0,0,1,1) = �b(1,1,0,0) = λ

2(1 + λ2)
, (61)

�b(1,1,1,1) = λ2

1 + λ2
.

Both states converge toward pure Gaussian entangled states,
and it has been shown [47] that entanglement increases at
each step of the protocol. Here we investigate how much
the gained entanglement is related to the nG of the initial
state. For this purpose, since both entanglement and nG
are increasing quantities with the number of photons, we
consider a renormalized version of nG δR[�] and the relative
entanglement gain at each step �(i). The maximum amount of
nG for a two-mode state with N = Tr[�(a†a + b†b)] photons
is

δ
(2)
M (N ) = 2[(1 + N/2) ln(1 + N/2) − (N/2) ln(N/2)],

and the renormalized nG is defined as

δR[�] = δB[�]

δ
(2)
M (N )

. (62)

We define the relative entanglement gain at the step i as

�(i) = EN (�(i)) − EN (�(0))

EN (�(0))
, (63)

where �(i) is the output state at the ith step of the protocol. The
degree of entanglement is quantified in terms of the logarithmic
negativity, that is,

EN (�) = ln ‖��‖1, (64)

where ‖‖1 denotes the trace-norm and �� is the partial
transpose of � [119]. In Fig. 12 we plot for both states
�a and �b, the increase of entanglement �(i) as a function
of the renormalized nG δR[�]. We observe that the more
non-Gaussian the initial state, the larger is the entanglement
increase at each step of the protocol. Therefore, we may say

0.45 0.55 0.65
δR

0.5

1.0

1.5

i

0.2 0.4 0.6
δR

0.5

1.0

1.5

i

FIG. 12. (Color online) The relative increase of entanglement
�(i) at the ith step of the B protocol as a function of the renormalized
nG of the initial state (left, �A; right, �B ). From bottom to top, i =
{1,2,5,∞}

that at least for this particular protocol nG plays a relevant role,
and it is quantitatively responsible for the good performances
of the protocol.

Let us now consider the distillation protocol proposed
in [49], from now on the T protocol. In this protocol, an
entangled Gaussian state is obtained by mixing a single-mode
squeezed state |ψ〉 = S(r)|0〉 with the vacuum in a balanced
beam splitter. Then, both the modes are split to perform a
photon-subtraction and the state is kept if one or both detectors
clicks (see [49] for details). The two possible output states of
the distillation procedure can be written in a compact form as∣∣ψ (i)

out

〉
AB

= Na
nA

A a
nB

B B̂AB(π/4)ŜA(r)|0〉A|0〉B (65)

= N B̂AB(π/4)anA+nB

A ŜA(r)|0〉A|0〉B, (66)

where if (nA,nB ) = (1,0) = (0,1) we have a single-photon
subtracted state |ψ (1)

out〉, while for (nA,nB) = (1,1) we obtain
the two-photon subtracted state |ψ (2)

out〉. The non-Gaussianities
of the two states can be easily evaluated by using the
properties of the measure δB , and in particular by exploiting
the invariance under Gaussian unitary operation such as beam-
splitter evolution and squeezing. After some calculations, it
turns out that

δB

[∣∣ψ (1)
out

〉] = δB[|1〉],
δB

[∣∣ψ (2)
out

〉] = δB[N ′(µ|0〉 +
√

2ν|2〉)],
where µ = cosh(r), ν = sinh(r), and N ′ is a normalization
factor. We can immediately observe that for |ψ (1)

out〉 the nG does
not depend on the squeezing parameter r . In Fig. 13 we plot as
a function of r in the left panel the entanglement and in the right
panel the non-Gaussianities of the two possible output states.
We observe that for small values of r the entanglement and
the nG of the output states have a similar beahvior. However,
this similarity is lost when we consider higher values of the
squeezing; that is, we can say nothing in general about the
relationship between the distilled entanglement and the nG for
this protocol.

In summary, the role of the amount of nG in CV
entanglement-distillation protocols is still not fully understood
and worth studying for protocols employing non-Gaussian en-
tangled states as an initial resource. In particular, an interesting
open question that arises in this framework is whether there is
a maximum amount of distillable entanglement at fixed nG of
the resource state.
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FIG. 13. (Color online) Entanglement-based (left) and QRE-

based nG (right) of the distilled states in the T protocol as a function
of the squeezing parameter r . Dotted red line, one-photon subtracted
state |ψ (1)

out〉; solid blue line, two-photon subtracted state |ψ (2)
out〉.

VIII. NON-GAUSSIANITY AND QUANTUM
COMMUNICATION

As anticipated in the Introduction, Gaussian states play
a relevant role in quantum communication, in particular for
being extremal, at fixed covariance matrix for several relevant
quantities [4]. For example, channel capacities are maximized
by Gaussian states, whereas most of the entanglement mea-
sures are minimized by Gaussian states. In this section we
prove the extremality conditions for some of these quantities
by using our nG measure δB and studying the role played by
nG itself in these inequalities

As a first example, let us consider a very important and
well-known quantity in quantum information, that is, the
χ -Holevo quantity. Let us suppose to transmit information
by encoding the symbols ai , chosen with probabilities pi from
an alphabet A, in a set of quantum states �i . At each use
of channel, the state preparation is described by the overall
state � = ∑

i pi�i , and the Holevo quantity, which quantifies
the amount of accessible information, is given by the formula
χ (�) = S(�) − ∑

i piS(�i). If we fix the covariance matrix of
the overall state � and consider pure encoding states �i , we
obtain (we denote δB = δ in the rest of the paper)

χ (�) = S(τ ) − δ[�]. (67)

The maximum value of χ is attained by considering the
Gaussian state and the nG δ[�] exactly quantifies how much
information is lost by considering a non-Gaussian overall
state.

Let us now consider bipartite states and rephrase the
extremality condition for two quantities: the quantum mutual
information and the quantum conditional entropy. The quan-
tum mutual information, given a bipartite state �AB is defined
as I (A:B) = S(�A) + S(�B) − S(�AB) [120]. It quantifies the
amount of correlations (classical and quantum) in a bipartite
state and for pure states corresponds to the entanglement.
In [121] it has been shown that at fixed covariance matrix
I (A:B) is minimized by Gaussian states. By using our measure
δ the proof is simply based on the Lemma B5; that is,

I (A:B) = S(�A) + S(�B) − S(�AB)

= S(τA) + S(τB) − S(τAB)

+ (δ[�AB] − δ[�A] − δ[�B])

� IG(A:B), (68)

where IG(A:B) = S(τA) + S(τB) − S(τAB) is the quantum
mutual information obtained by considering the reference
Gaussian states. The two mutual informations I (A : B) and
IG(A : B) differ exactly by the quantity

�2 = I (A : B) − IG(A : B) = δ[�AB] − δ[�A ⊗ �B];

that is, the amount of correlations that are lost upon considering
the Gaussian counterpart of �AB is equal to the amount of nG
that is lost by considering the tensor product of the partial
states �A ⊗ �B instead of the (correlated) bipartite state �AB .

Another quantity that is known to be maximized, at fixed
covariance matrix, by Gaussian states is the conditional
entropy [108]. Conditional entropy is defined, given a bipartite
state �AB as S(A|B) = S(�AB) − S(�B) [120]. The proof
of the extremality can be easily obtained by means of our
QRE-based measure in the following way:

S(A|B) = S(�AB) − S(�B)

= S(τAB) − S(τA) − (δ[�AB] − δ[�B])

� SG(A|B), (69)

where we used the monotonicity of the measure under
partial trace, and where we defined the Gaussian conditional
entropy SG(A|B) = S(τAB) − S(τB) as the one evaluated by
considering the reference Gaussian states. The two conditional
entropies differ exactly by the quantity �1 = δ[�AB] − δ[�B];
thus, the more robust the nG of the overall state under
discarding a subsystem, the more the difference between
the two quantities SG(A|B) and S(A|B) is near to zero.
This extremality condition is important for several reasons:
the negative of the conditional entropy is a lower bound
for the distillable entanglement, and thus, one can evaluate,
given a generic bipartite state �AB , a simple lower bound on
the distillable entanglement based only on first and second
moments of the state. Moreover, according to the operational
meaning of QRE given in [122] in the framework of quantum
state merging, we observe that at fixed covariance matrix,
it is always more convenient to use the non-Gaussian state.
Indeed, for positive values, the quantum conditional entropy
quantifies how much quantum information Alice needs to send
to Bob so that he gains the full knowledge of the bipartite
state �AB given his previous knowledge about the partial state
�B , while for negative values it turns out that Alice needs to
send only classical information and moreover the two users
gain entanglement to perform, for example, teleportation.
As a consequence, at fixed covariance matrix, by using a
non-Gaussian state you have to send less information or,
for negative values, you gain more entanglement; the gain
is exactly given by the degradation of the nG under partial
trace, that is, how much nG is lost from the initial state �AB

tracing out the first Hilbert space.
A different interpretation of the conditional entropy has

been also given in [123], in the context of the so-called private
quantum decoupling. It has been shown that, in the limit of
infinitely many copies of the initial state �AB , the ineliminable
correlations between the two parties are quantified by the
negative of the conditional entropy. Again we have that, at
fixed covariance matrix, the non-Gaussian state has more
ineliminable quantum correlations than the corresponding
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Gaussian one and that the more nG is lost under partial trace
operation, the more these quantum correlations are present.

The preceding results lead one to speculate about non-
Gaussian correlations which, being encoded in a larger set
of degrees of freedom, are, at fixed covariance matrix, higher
than the Gaussian ones. In particular, we have observed this
nontrivial connection between the robustness of nG under
partial trace and decoupling operations, as well as in the
quantum correlations present in non-Gaussian bipartite states.
Recently, arguments have been supporting the conjecture that
at fixed energy Gaussian entanglement is most robust against
noise in a Markovian Gaussian channel [124]. On the other
hand, the same analysis has also shown that robustness of non-
Gaussian states is comparable with that of Gaussian states for
sufficiently high energy of the states. This implies that in these
regimes non-Gaussian resources can be exploited to improve
quantum communication protocols over approximately the
same distances.

IX. NON-GAUSSIANITY AND PARAMETER ESTIMATION

In an estimation problem one tries to infer the value the of
a parameter λ by measuring a different quantity X, which
is somehow related to λ. This often happens in quantum
mechanics and quantum information where many quantities
of interest, for example, entanglement [125,126], do not cor-
respond to a proper observable and should be estimated from
the measurement of one or more observable quantities [127].
Given a set {�λ} of quantum states parametrized by the value
of the quantity of interest, an estimator λ̂ for λ is a real function
of the outcomes of the measurements performed on �λ. The
quantum Cramer-Rao theorem [128,129] establishes a lower
bound for the variance Var(λ) of any unbiased estimator, that
is, for the estimation precision,

Var(λ) � 1

MH (λ)
, (70)

in terms of the number of measurements M and the so-called
quantum Fisher information, which captures the statistical
distinguishability of the states within the set and itself, is pro-
portional to the Bures distance between states corresponding
to infinitesimally close values of the parameter, that is,

H (λ) = 4d2
B (�λ+dλ,�λ)

= 2
∑
nm

|〈ψm|∂λ�λ|ψn〉|2
�n + �m

, (71)

where we have used the eigenbasis �λ = ∑
n �n|ψn〉〈ψn|.

In an estimation problem where the variation of a param-
eter affects the Gaussian character of the involved states,
one may expect the amount of nG to play a role in
determining the estimation precision. This is indeed the case:
The nG δB provides an upper bound to the quantum Fisher
information at fixed covariance matrix. This is more precisely
expressed by the following.

Theorem 1. If τλ is a Gaussian state and an infinitesimal
variation of the value of λ drives it into a state �λ+dλ with the
same covariance matrix, then the nG δB[�λ+dλ] provides an
upper bound to the quantum Fisher information.

Proof. If �λ+dλ and τλ have the same CM then the
nG of �λ+dλ, δB[�λ+dλ] = S(�λ+dλ||τλ) equals the so-
called Kubo-Mori-Bogolubov information H̃ (λ) [130,131],
which itself provides an upper bound for the quantum
Fisher information H (λ) � H̃ (λ) [132], thus proving the
theorem. �

The theorem says that the more non-Gaussian is the
perturbed state, the more it may be distinguishable from the
original one, thus allowing a more precise estimation. One
may wonder that when �λ+dλ is itself a Gaussian state τλ+dλ

the theorem requires H (λ) = 0; that is, no reliable estimation
is possible. Indeed, this should be the case, since Gaussian
states are uniquely determined by the first two moments and
thus the requirement of having the same covariance matrix
implies that τλ+dλ and τλ are actually the same quantum state.

For situations where the CM is changed by the perturbation,
we have no general results. On the other hand, it has
already been shown that non-Gaussian states improve quantum
estimation of displacement and squeezing parameters [31]
and of the loss parameter [32] compared to optimal Gaussian
probes.

X. EXPERIMENTALLY FRIENDLY LOWER BOUNDS
TO QRE NG

A drawback of the nG measure δB is that its evaluation
requires the knowledge of the full density matrix �. For
this reason, it is often hard to compute when one has only
partial information coming from some, maybe inefficient,
measurements. In the literature different approaches have
been proposed to estimate squeezing [133] and entanglement
[80] of Gaussian and non-Gaussian states when only certain
measurement are available in the laboratory. In the following
we derive some lower bounds to the QRE-based nG measure
for some classes of states by considering the possibility to
perform on the states only certain efficient or inefficient
measurements.

A. Diagonal state and inefficient photodetection

Let us consider a generic single-mode state diagonal in the
Fock basis � = ∑

n pn|n〉〈n|. Its nG can be evaluated as

δ[�] = S(νN ) − S(�) = S(νN ) − H (pn), (72)

where νN is a thermal state with the same average photon
number N = ∑

n npn, and from now on

H (pn) = −
∑

n

pn ln pn

denotes the Shannon entropy corresponding to the distribution
{pn}.

Let us consider now an inefficient photodetector described
by POVM operators,

�m =
∞∑

s=m

αm,s(η)|s〉〈s|,

with αm,s(η) defined in Eq. (51) and where η is the efficiency of
the detector. Using this kind of detection one can reconstruct
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the probability distribution qm = Tr[��m]. We want to show
that the quantity

εA[�] = S(νM ) − H (qm), (73)

with M = ∑
m mqm = ηN , is a lower bound on the actual nG

δ[�]. To this aim we remind that an inefficient photodetection
can be described by mixing the quantum state � with a
vacuum state at a beam splitter with transmissivity η followed
by a perfect photodetection with projective operators Pm =
|m〉〈m|. The corresponding probability distribution is therefore

qm = Tr12[UBS(η)� ⊗ |0〉〈0|U †
BS(η)|m〉〈m| ⊗ 1]

= Tr1[E(�)|m〉〈m|],

where E(�) = Tr2[UBS(η)� ⊗ |0〉〈0|U †
BS(η)] is the loss chan-

nel applied on the quantum state �. Since � is diagonal in the
Fock basis we can easily show that E(�) is still diagonal,

E(�) =
∑

n

pnE(|n〉〈n|) =
∑

n

n∑
l=0

pnαl,n(η)|l〉〈l|, (74)

where we used that E(|n〉〈n|) = ∑n
l=0 αl,n(η)|l〉〈l|. By per-

forming an efficient photodetection we can experimentally
obtain the probability distribution

qm = Tr[E(�)|m〉〈m|] =
∞∑

n=m

pnαm,n(η).

The quantum state E(�) in fully described by qm and by
observing Eq. (72) and (73) we can easily see that εA[�] =
δ[E(�)]. By simply using the fact the nG measure δ[�] is
nonincreasing under Gaussian maps, such as E , we finally
obtain

εA[�] = δ[E(�)] � δ[�]. (75)

This inequality tells us that by performing an inefficient
photodetection on a given quantum state � diagonal in the
Fock basis, i.e. by measuring qm, one can use Eq. (73) to
obtain a lower bound on the actual nG δ[�].

B. State with a thermal reference Gaussian state
and ideal photodetection

Let us consider a quantum state � = ∑
n,m pn,m|n〉〈m|

such that Tr[�a] = Tr[�a2] = 0. The corresponding reference
Gaussian state is a thermal state νN with the same average
number of photons N = Tr[�a†a]. Let us consider now the
quantum state �|d obtained considering only the photon
number distribution pn,n and removing all the off-diagonal
elements, that is, �|d = ∑

n pn,n|n〉〈n|. The reference Gaus-
sian state of �|d is again the thermal state νN . Let us consider
now the state

N�(�) =
∑
n,m

e−�2(n−m)2
pn,m|n〉〈m|, (76)

which physically corresponds to a phase diffusion applied to
the initial state. As a matter of fact, the same kind of evolved

state may be obtained by the application of a random zero-
mean Gaussian distributed phase shift to �, that is,

N�(�) =
∫

R

dφ
e−φ2/(4�2)

√
4π�2

Uφ�U
†
φ, (77)

where Uφ = exp{−ia†aφ}. Upon using the invariance under
unitary operators and the concavity of the von Neumann
entropy, one may show that

S(N�(�)) �
∫

R

dφ
e−φ2/(4�2)

√
4π�2

S(Uφ�U
†
φ) = S(�). (78)

From Eq. (76) we have that �|d = lim�→∞ N�(�) and because
of Eq. (78) we arrive at

H (pn,n) = S(�|d ) � S(�). (79)

It is straightforward to see that the nG of � is lower bounded
by the nG evaluated by considering only the photon-number
distribution of the state, that is,

εB[�] = S(νN ) − H (pn,n) � S(νN ) − S(�) = δ[�]. (80)

C. State with a thermal reference Gaussian state
and inefficient photodetection

Let us take a quantum state � as in the previous section, but
considering the case of an inefficient photodetection. From the
measurement, we obtain the distribution qm = Tr[��m], and
we can thus define a quantum state

θM =
∑
m

qm|m〉〈m|, (81)

having M = ∑
m mqm average photons. As in Sec. X A, we

have θM = E(�|d ), with �|d defined as before and E denoting
the loss channel. Then, by using the monotonicity of nG under
Gaussian maps, and the previous results, we obtain

εC[�] = S(νM ) − H (qm) = δ[θM ] � δ[�|d ] � δ[�]. (82)

D. Generic state with known covariance matrix
and ideal photodetection

Let us consider a generic single-mode state � =∑
n,m pn,m|n〉〈m| with a reference Gaussian state τ . Its nG

is evaluated as

δ[�] = S(τ ) − S(�). (83)

Let us consider the quantum state �|d = ∑
n pn,n|n〉〈n| as in

the previous case and suppose that we are able to evaluate its
covariance matrix of � (and thus the entropy of the reference
Gaussian state τ ). We proved before that H (pn,n) = S(�|d ) �
S(�) and thus we have the computable lower bound on the nG:

εD[�] = S(τ ) − H (pn,n) � δ[�]. (84)
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E. Generic state with inefficient photodetection

Let us consider a generic single-mode state � =∑
n,m pn,m|n〉〈m| with a reference Gaussian state τ . Because

of the monotonicity of the measure under Gaussian maps, we
have

δ[�] � δ[E(�)] = S(τη) − S(E(�)), (85)

where τη = E(τ ). Again, by using the inequality derived in
Eq. (79) we obtain

εE[�] = S(τη) − H (qm) � δ[�], (86)

where qm = Tr[��m]. This general lower bound can be useful
when the covariance matrix of the state can be easily derived
from the photon number statistics of � (e.g., for phase-averaged
coherent states).

XI. CONCLUSIONS

Non-Gaussianity is a resource for quantum information
processing and thus we urge a measure able to quantify the
non-Gaussian character of a quantum state. In this paper we
have addressed nG of states and operations in CV systems
and have illustrated in detail two measures of nG proposed
in [76,77], along with their properties and the relationships
between them. We used them to assess some Gaussification
and de-Gaussification processes, and in particular we studied
the role of the amount of nG in two entanglement-distillation
protocols proposed in the literature. The role of nG appears
to depend on the protocol itself, and at least in one of the
two protocols the amount of gained entanglement at each
step of the protocol is monotonous with the nG of the initial
low-entangled state. We have also reconsidered the extremality
of Gaussian states in terms of our measure based on the
QRE, for some relevant quantities in quantum communication,
such as conditional entropy, mutual information, and Holevo
bound. In particular, we found that in the bipartite setting there
is a, probably not entirely understood, connection between
correlations and nG: At fixed covariance matrix non-Gaussian
states have more correlations and this excess of correlations is
related to the amount of nG that the quantum state loses under
partial trace operation or under decoupling. These results,
together with recent ones on the robustness of non-Gaussian
entanglement in noisy Markovian channels implies that there
are regimes where non-Gaussian resources can be exploited to
improve quantum communication protocols. We have also seen
that QRE nG is a bound for the quantum Fisher information at

fixed covariance matrix and thus the nG features of quantum
states may also be used to improve parameter estimation with
continuous variables. Finally, since the evaluation of the QRE
nG measure requires the knowledge of the full density matrix,
we derive some experimentally friendly lower bounds to nG
for some classes of states and by considering the possibility
of performing on the states only certain efficient or inefficient
measurements.

Our analysis of the properties and the applications of the
two measures of nG has shown that they provide a suitable
quantification of nG for the purposes of quantum information.
In particular, the QRE-based nG δB has several operational
characterizations and it is not too difficult to evaluate. Since
all states � with the same first two moments at fixed purity have
the same amount of nG δB[�], an interesting and remarkable
picture emerges: For many purposes the effects of nG may be
described by a single global parameter rather than ascribed to a
specific higher moment. This is perhaps our main conclusion.
Overall, our results suggest that in terms of resources for
quantum information, the amount of nG of a quantum state
can be evaluated using δB , with δA serving as a fine-tuning
tool for specific purposes.

There are several open problems requiring further investiga-
tion about nG of quantum states. Among them we mention the
following ones, which provides a summary of the unanswered
questions posed in our paper: (i) Is there any general relation
between the two measures of nG, at least for specific class
of states? (ii) Is there a maximum amount of distillable
entanglement at fixed nG? (iii) What is the role of nG in
parameter estimation involving a change in the covariance
matrix?

In conclusion, nG is a resource that can be quanti-
fied. Our results pave the way for further development
and suggest that a deeper understanding of the geometrical and
analytical structures underlying the non-Gaussian features of
states and operations could be a powerful tool for the effective
implementation of quantum information processing with CVs.
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