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Local unitary invariants for N-qubit pure states
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The concept of negativity font, a basic unit of multipartite entanglement, is introduced. Transformation
properties of determinants of negativity fonts under local unitary (LU) transformations are exploited to obtain
relevant N -qubit polynomial invariants and construct entanglement monotones from first principles. It is shown
that entanglement monotones that detect the entanglement of specific parts of the composite system may be
constructed to distinguish between states with distinct types of entanglement. The structural difference between
entanglement monotones for an odd and even number of qubits is brought out.
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I. INTRODUCTION

In 1935, Schrödinger [1] coined the term “entanglement” to
describe quantum correlations that make it possible to alter the
properties of a distant system instantaneously by acting on a
local system. A spin singlet is an example of an entangled state
of two spin-half particles. A qubit is any two-level quantum
system with basis states represented by |i〉, i = 0 and 1.
The spin singlet is an entangled state of two qubits. For a
bipartite quantum system consisting of two distinguishable
parts A and B, each of arbitrary dimension, negativity [2] of
a partially transposed state operator [3] is known to be an
entanglement monotone [4]. How properties of one part of a
multipartite quantum system are altered by local operations on
other parts at distinct remote locations is a complex question.
In this article, we present an approach to construct meaningful
local unitary (LU) invariants for multiqubit systems from first
principles, that is, by examining the effect of local unitaries on
different parts of the composite system. Our method, illustrated
for the four-qubit case in Ref. [5], introduces the basic units of
entanglement, referred to as negativity fonts. A negativity font
is defined as a 2 × 2 matrix of probability amplitudes that de-
termines the negative eigenvalues of a specific 4 × 4 submatrix
of a partially transposed state operator. It was shown earlier [6]
that a partial transpose can be written as a sum of K-way (2 �
K � N ) partial transposes. A K-way partial transpose con-
tains information about K-body correlations of a multipartite
system. Contributions of partial transposes to global negativity,
referred to as partial K-way negativities are not unitary invari-
ants, but when calculated for canonical states for three qubits
[7,8] and four qubits [9] coincide with entanglement mono-
tones. This article complements our earlier work by outlining
a direct method to obtain multiqubit invariants relevant to
the construction of entanglement monotones without reaching
the canonical state or calculating partial K-way negativities.
Multiqubit unitary invariants are obtained by examining the
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transformation properties of negativity fonts present in global
partial transpose [3] and K-way (2 � K � N ) partially trans-
posed matrices [9] constructed from the N -qubit state operator.
The mathematical form of the resulting multiqubit invariants
for a given state reveals the entanglement microstructure of the
state.

Multiqubit invariants, written in terms of determinants of
negativity fonts, are essentially relations between intrinsic
negative eigenvalues of selected 4 × 4 submatrices of K-way
partially transposed matrices. A canonical form for the pure
states of a general multipartite system was found in Ref. [10]
by generalizing the concept of the Schmidt decomposition to
N -party systems. In the case of four qubits, the standard
approach from invariant theory has lead to the construction of
a complete set of Stochastic Local operations (SL) invariants
[11,12] and the algorithm for constructing N -qubit invariants
by computation of the Hilbert series of the LU and special
unitary invariants from the knowledge of the polynomial
covariants of the group of invertible local filtering operations
is given in Ref. [13]. The results for five qubits have also been
reported [12]. The N -qubit invariants for an even number of
qubits were reported earlier in Ref. [14] and for an even and odd
number of qubits in Ref. [15]. The focus is on the geometric
aspects of such invariants in Refs. [16–18]. Independent of
these approaches, a method based on the expectation values
of antilinear operators, with an emphasis on the permutation
invariance of the global entanglement measure [19,20], has
been suggested. The number of polynomial invariants is
known to increase very quickly with the number of qubits.
However, in general, a small number of invariants is needed
to qualify and quantify the entanglement. The advantage of
our approach is that it is easily applied to obtain the relevant
invariants for any state at hand, not necessarily the general
state or canonical state. Our results bring out the structural
difference between LU invariants for N -odd and N -even
qubits through the nature of K-way negativity fonts present
in the respective invariants. For the multipartite case, one
needs in-equivalent entanglement measures [14,21,22]. To
show that the method can be used to construct entanglement
monotones that detect the entanglement of specific parts
of the composite system, four-qubit invariants to detect the
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entanglement of a pair of qubits due to four-way correlations
are obtained.

The entanglement of qubits A1 and A2 in pure state ρ̂A1A2 =
|�A1A2〉〈�A1A2 | where

|�A1A2〉 = a00|00〉A1A2 + a10|10〉A1A2 + a01|01〉A1A2

+ a11|11〉A1A2 , (1)

is measured by the negativity of a 4 × 4 matrix (ρA1A2 )T1
G

obtained by partially transposing the state of qubit A1 in ρ̂A1A2 .
We refer to the 2 × 2 matrix ν00 = [a00 a01

a10 a11
] as a negativity font

of (ρA1A2 )T1
G . The squared negativity of (ρA1A2 )T1

G is given by
(NA1

G )2 = 4| det ν00|2. If det ν00 = 0, the state is separable. A
general N -qubit pure state reads as

|�A1,A2,...,AN 〉 =
∑

i1i2,...,iN

ai1i2,...,iN |i1i2, . . . ,iN 〉, (2)

where |i1i2, . . . ,iN 〉 are the basis vectors spanning the
2N -dimensional Hilbert space, and Ap is the location of
qubit p. The coefficients ai1i2,...,iN are complex numbers.
The basis states of a single qubit are labeled by im = 0
and 1, where m = 1, . . . ,N . The global partial transpose of
the N -qubit state ρ̂ = |�A1A2,...,AN 〉〈�A1A2,...,AN | with respect
to qubit p is constructed from the matrix elements of ρ̂

through

〈i1i2, . . . ,iN |ρ̂ Tp

G |j1j2, . . . ,jN 〉
= 〈i1i2, . . . ,ip−1jpip+1, . . . ,iN |

× ρ̂ |j1j2, . . . ,jp−1ipjp+1, . . . ,jN 〉. (3)

If ρ̂ is a pure state, then the negative eigenvalue of the
4 × 4 submatrix of ρ̂

Tp

G in the space spanned by distinct
basis vectors |i1i2, . . . ,ip, . . . ,iN 〉, |j1j2, . . . ,jp, . . . ,jN 〉,

|i1i2, . . . ,jp, . . . ,iN 〉, and |j1j2, . . . ,ip, . . . ,jN 〉 is

λ− = −| det(ν
i1i2,...,ip,...,iN
K )| with ν

i1i2,...,ip,...,iN
K defined

as

ν
i1i2,...,ip,...,iN
K =

[
ai1i2,...,ip,...,iN aj1j2,...,ip,...,jN

ai1i2,...,jp,...,iN aj1j2,...,jp,...,jN

]
, (4)

where K = ∑N
m=1(1 − δim,jm

) (2 � K � N ), δim,jm
= 1 for

im = jm, and δim,jm
= 0 for im �= jm. In analogy with

ν00, the 2 × 2 matrix ν
i1i2,...,ip,...,iN
K is defined as a K-way

negativity font. The subscript K is used to group together
the negativity fonts arising due to the K-way coherences of the
composite system, that is, the correlations responsible for the
Greenberger-Horne-Zeilinger (GHZ)-state-like entanglement
of a K-partite system. For a given value of K , the negativity
of the K-way partial transpose ρ̂

Tp

K with respect to subsystem
p, as defined in Ref. [9], arises solely from K-way negativity
fonts. The determinants of negativity fonts are, in a sense,
intrinsic negative eigenvalues of a global or a K-way partial
transpose of the state operator. The global partial transpose
of an N -qubit state is a combination of K-way partially
transposed operators (2 � K � N ) [9] and can be expanded
as ρ̂

Tp

G = ∑N
K=2 ρ̂

Tp

K − (N − 2)ρ̂. The negativity of ρ̂
Tp

G ,
defined as NA

G = (‖ρTA

G ‖1 − 1),where ‖ρ̂‖1 is the trace norm

of ρ̂, arises due to all possible negativity fonts present in ρ̂
Tp

G .
Since K qubits may be chosen in ( N!

(N−K)!K! ) ways the form of
a K-way font must specify the set of K qubits it refers to. To
distinguish between different K-way negativity fonts we shall
replace subscript K in Eq. (4) by a list of qubit states for which
δim,jm

= 1. In other words, a K-way font involving qubits A1

to AK , that is,
∑N

m=1(1 − δim,jm
) = ∑K

m=1(1 − δim,jm
) = K ,

reads as

ν
i1i2,...,ip,...,iN
(AK+1)iK+1 (AK+2)iK+2 ,...,(AN )iN

=
[

ai1i2,...,ip,...,iK iK+1iK+2,...,iN ai1+1i2+1,...,ip,...,iK+1iK+1iK+2,...,iN

ai1i2,...,ip+1,...,iK iK+1iK+2,...,iN ai1+1i2+1,...,ip+1,...,iK+1iK+1,iK+2,...,iN

]
, (5)

and its determinant is represented by

D
i1i2,...,ip,...,iK
(AK+1)iK+1 ,(AK+2)iK+2 ,...,(AN )iN

= det
(
ν

i1i2,...,ip,...,iN
(AK+1)iK+1 ,(AK+2)iK+2 ,,...,(AN )iN

)
. (6)

Here im + 1 = 0 for im = 1 and im + 1 = 1 for im = 0. In
this notation no subscript is needed for an N -way negativity
font that is ν

i1i2,...,ip,...,iN
N = νi1i2,...,ip,...,iN .

II. TRANSFORMATION OF N-WAY NEGATIVITY FONTS
UNDER LOCAL UNITARY ON A SINGLE QUBIT

Determinant of an N -way negativity font

Di1i2,...,ip=0,...,iN

= det

[
ai1i2,...,ip=0,...,iN ai1+1,i2+1,,...,ip=0,...,iN +1

ai1i2,...,ip=1,...,iN ai1+1,i2+1,,...,ip=1,...,iN +1

]
, (7)

is an invariant of LU UAp acting on qubit Ap. After applying

unitary transformation UAq = 1√
1+|x|2 [1 −x∗

x 1 ] on qubit Aq

with q �= p we obtain

UAq |�A1,A2,...,AN 〉 =
∑

i1i2,...,iN

bi1i2,...,iN |i1i2, . . . ,iN 〉. (8)

Using primed symbols for determinants of negativity fonts
calculated from coefficients bi1i2,...,iN , we can write four
transformation equations
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(Di1i2,...,ip=0,iq=0,...,iN )′

= 1

1 + |x|2
[
Di1i2,...,ip=0,iq=0,...,iN − |x|2Di1i2,...,ip=0,iq=1,...,iN + xD

i1i2,...,ip=0,...,iq−1,iq+1,...,iN
(Aq )0

− x∗Di1i2,...,ip=0,...,iq−1,iq+1,...,iN
(Aq )1

]
,

(9)
(Di1i2,...,ip=0,iq=1,...,iN )′

= 1

1 + |x|2
[
Di1i2,...,ip=0,iq=1,...,iN − |x|2Di1i2,...,ip=0,iq=0,...,iN + xD

i1i2,...,ip=0,...,iq−1,iq+1,...,iN
(Aq )0

− x∗Di1i2,...,ip=0,...,iq−1,iq+1,...,iN
(Aq )1

]
,

(10)[
D

i1i2,...,ip=0,...,iq−1,iq+1,...,iN
(Aq )0

]′

= 1

1 + |x|2
[−x∗(Di1i2,...,ip=0,iq=0,...,iN + Di1i2,...,ip=0,iq=1,...,iN ) + D

i1i2,...,ip=0,...,,iq−1,iq+1,...,iN
(Aq )0

+ (x∗)2D
i1i2,...,ip=0,...,iq−1,iq+1,...,iN
(Aq )1

]
,

(11)[
D

i1i2,...,ip=0,...,iq−1,iq+1,...,iN
(Aq )1

]′

= 1

1 + |x|2
[
x(Di1i2,...,ip=0,iq=0,...,iN + Di1i2,...,ip=0,iq=1,...,iN ) + D

i1i2,...,ip=0,...,iq−1,iq+1,...,iN
(Aq )1

+ x2D
i1i2,...,ip=0,...,iq−1,iq+1,...,iN
(Aq )0

]
(12)

relating N -way and (N − 1)-way negativity fonts. Eliminating the variable x, the invariants of UApUAq are found to be

(Di1i2,...,ip=0,iq=0,...,iN )′ − (Di1i2,...,ip=0,iq=1,...,iN )′ = Di1i2,...,ip=0,iq=0,...,iN − Di1i2,...,ip=0,iq=1,...,iN , (13)

[(Di1i2,...,ip=0,iq=0,...,iN )′ + (Di1i2,...,ip=0,iq=1,...,iN )′]2 − 4
(
D

i1i2,...,ip=0,...,iN
(Aq )0

)′(
D

i1i2,...,ip=0,...,iN
(Aq )1

)′

= (Di1i2,...,ip=0,iq=0,...,iN + Di1i2,...,ip=0,iq=1,...,iN )2 − 4D
i1i2,...,ip=0,...,iN
(Aq )0

D
i1i2,...,ip=0,...,iN
(Aq )1

, (14)

(Di1i2,...,ip=0,iq=0,...,iN )′(Di1i2,...,ip=0,iq=1,...,iN )′ − (
D

i1i2,...,ip=0,...,iN
(Aq )0

)′(
D

i1i2,...,ip=0,...,iN
(Aq )1

)′

= Di1i2,...,ip=0,iq=0,...,iN Di1i2,...,ip=0,iq=1,...,iN − D
i1i2,...,ip=0,...,iN
(Aq )0

D
i1i2,...,ip=0,...,iN
(Aq )1

. (15)

Relevant multiqubit invariants for a given value of N can be
written down from these general results. The invariants of
UApUAr for K-way fonts (2 � K � N ) with qubits p and r

in the superscript and N−K subscripts are analogous to those
for the N -way fonts.

III. N-EVEN N-WAY INVARIANT

The invariant of UA1UA2UA3 is obtained by taking a
combination of N -way invariants of UA1UA2 such that Eq. (13)
is satisfied for the third qubit, for example,

I (UA1UA2UA3 )

= D0000,...,0 − D0100,...,0 − D0010,...,0 + D0110,...,0. (16)

Using the same reasoning, the four-qubit N -way invariant
looks like

I (UA1UA2UA3UA4 )

= D0000,...,0 − D0100,...,0 − D0010,...,0 + D0110,...,0

−D0001,...,0 + D0101,...,0 + D0011,...,0 − D0111,...,0, (17)

and the N -way invariant for N qubits reads as

IN =
∑

i2 ,...,iN

(−1)i1+i2,...,+ip,...,+iN D0i2,...,iN . (18)

Noting that D00i3,...,iN = −D01i3+1,...,iN +1, we have

[D00i3,...,iN + (−1)N−1D01i3+1,...,iN+1]

= Di1i2,...,ip=0iq=0,...,iN [1 + (−1)N ], (19)

giving IN−odd = 0, while for N -even

IN−even =
∑

i3 ,...,iN

(−1)i3+i4+,...,+iN D00i3,...,iN . (20)

The invariant for N even has permutation symmetry, as such
it may be used to define N tangle as

τN−even = 4

∣∣∣∣∣∣
∑

i1 ,i2 ,,...,ip−1 ,ip+1 ,...,iq−1 ,iq+1 ,,...,,iN

(−1)i1+i2,...,+ip,...,+iN Di1i2,...,ip=0iq=0,...,iN

∣∣∣∣∣∣
2

. (21)
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Degree-four invariants for N qubits are obtained by starting
with the N − 2-qubit N -way invariants and using Eq. (14) to
obtain an N -qubit invariant.

A four-qubit four-way invariant with negativity fonts lying
solely in a four-way partial transpose is written from Eq. (20)
as I4 = D0000 + D0011 − D0010 − D0001. We identify I4 with
invariant H of degree two as given in Ref. [11]. A four-qubit
state with four-qubit entanglement arising due to quantum
correlations of the type present in a four-qubit GHZ state is
distinguished from other entangled states by a nonzero I4. This
entanglement is lost without leaving any residue on the loss of
a single qubit. The entanglement monotone based on I4 is

τ4 = 4|[D0000 + D0011 − (D0010 + D0001)]2|,
called four tangle in analogy with three tangle [21]. Four tangle
τ4 vanishes on the W -like state of four qubits, however, it fails
to vanish on the product of two-qubit entangled states.

We now apply the method to construct entanglement
monotones that detect the entanglement of specific parts
of the composite system, an entangled qubit pair in this
case. To obtain degree-four invariants that detect products of
two-qubit states, consider the combination of four-way fonts
J = D0000 − D0100 + D0010 − D0110, which is an invariant of
UA1UA2 . Using Eq. (14), applied to four-way and three-way
fonts, the four-qubit invariant is found to be

JA1A2 = (D0000 − D0100 + D0010 − D0110)2

+ 8D00
(A3)0(A4)0

D00
(A3)1(A4)1

+ 8D00
(A3)1(A4)0

D00
(A3)0(A4)1

− 4
[
D000

(A3)0
− D010

(A3)0

][
D000

(A3)1
− D010

(A3)1

]
− 4

[
D000

(A4)0
− D010

(A4)0

][
D000

(A4)1
− D010

(A4)1

]
. (22)

Similarly, an invariant obtained by starting with the four-way
UA1UA3 invariant form is

JA1A3 = (D0000 − D0010 + D0001 − D0011)2

+ 8D00
(A2)0(A4)0

D00
(A2)1(A4)1

+ 8D00
(A2)1(A4)0

D00
(A2)0(A4)1

− 4
[
D000

(A2)0
− D010

(A2)0

][
D000

(A2)1
− D010

(A2)1

]
− 4

[
D000

(A4)0
− D001

(A4)0

][
D000

(A4)1
− D001

(A4)1

]
, (23)

and starting with the UA1UA4 invariant we get

JA1A4 = (D0000 − D0001 + D0010 − D0011)2

+ 8D00
(A2)0(A3)0

D00
(A2)1(A3)1

+ 8D00
(A2)1(A3)0

D00
(A2)0(A3)1

− 4
[
D000

(A2)0
− D001

(A2)0

][
D000

(A2)1
− D001

(A2)1

]
− 4

[
D000

(A3)0
− D001

(A3)0

][
D000

(A3)1
− D001

(A3)1

]
, (24)

with the corresponding entanglement monotones defined as
βA1Ai = 4

3 |JA1Ai |, i = 2−4. By construction, |JA1Ai | detects
entanglement between qubits A1Ai , provided the pair A1Ai is
entangled to its complement in the four-qubit state. For qubit
A1, the invariants JA1A2 , JA1A3 , and JA1A4 satisfy the relation
(I4)2 = 1

3 (JA1A2 + JA1A3 + JA1A4 ). An interesting four-qubit
state reported in Ref. [23] is

|χ〉 = 1√
8

(|0000〉 + |1111〉 − |0011〉 + |1100〉 + |1010〉
− |0101〉 + |0110〉 + |1001〉), (25)

which is known to have maximal entanglement of the pair
A1A2 with the pair of qubits A2A4. The state can be rewritten
as an entangled state of A1A4 and A2A3 Bell pairs

|χ〉 = 1√
8

(|00〉A1A4 + |11〉A1A4 )(|00〉A2A3 + |11〉A2A3 )

+ 1√
8

(|10〉A1A4 − |01〉A1A4 )(|10〉A2A3 + |01〉A2A3 ),

however, is not reducible to a pair of Bell states. We
verify that for this state I4 = 0, JA1A2 = JA1A3 = JA2A4 =
JA3A4 = − 1

4 , and JA1A4 = JA2A3 = 1
2 . Therefore the state is

characterized by τ4 = 0, βA1A2 = βA1A3 = βA2A4 = βA3A4 =
1
3 , while βA1A4 = βA2A3 = 2

3 , indicating that the entanglement
of state |χ〉 is distinct from that of the GHZ state of four
qubits having τ4 = 1, βA1A2 = βA1A3 = βA1A4 = 1

3 , as well as
βA2A3 = βA2A4 = βA3A4 = 1

3 .
The degree-four invariants for four qubits, denoted as L, M ,

and N in Ref. [12], are combinations of JA1A2 , JA1A3 , JA1A4 ,
and (I4)2. Additional invariants are easily constructed to detect
all possible types of four-qubit entanglement. One can verify
that different types of four-qubit entanglement, detected by the
antilinear operators of Ref. [19], are quantified by entangle-
ment monotones constructed from four-qubit invariants.

IV. N-ODD N-WAY INVARIANT

Since IN−odd = 0, there is no degree-two invariant of N -
way fonts for a general state of N -odd qubits. But we can
single out a qubit by writing N − 1 qubit invariants and then
use Eq. (14) to obtain the N -qubit invariant. If we single out
the N th qubit and look at negativity fonts of ρTA1 , then two
(N − 1) qubit N -way invariants are

I
A1(AN )0
N−way =

∑
i3,...,,iN−1

(−1)i3+,...,+iN−1D00i3,...,iN−1iN=0, (26)

I
A1(AN )1
N−way =

∑
i3,...,,iN−1

(−1)i3+,...,+iN−1D00i3,...,iN−1iN=1. (27)

Transformation equations for I
A1(AN )0
N−way and I

A1(AN )1
N−way , under

unitary UAN are written by using Eqs. (9) to (12) and yield
an N -qubit invariant

I
A1AN

N−odd = [
I

A1(AN )0
N−way + I

A1(AN )1
N−way

]2 − 4I
A1(AN )0
(N−1)−wayI

A1(AN )1
(N−1)−way,

(28)

with negativity fonts in ρTA1 , where

I
A1(AN )0
(N−1)−way =

∑
i3,...,,iN−1

(−1)i3+,...,+iN−1D
00i3,...,iN−1
(AN )0

, (29)

and

I
A1(AN )1
(N−1)−way =

∑
i3,...,,iN−1

(−1)i3+,...,+iN−1D
00i3,...,iN−1
(AN )1

, (30)

are (N − 1)-way invariants of local unitaries on (N − 1) qubits
(even number of qubits). Similarly, one may construct τ

A1Ap

N−odd
for 2 � p � N and N + 1 → 1 (mod N ). The entanglement
monotone based on I

A1Ap

N−odd is τ
A1Ap

N−odd = 4|IA1Ap

N−odd|.
For N = 3, the three-qubit invariant of degree two de-

termines three tangle [21] through τ3 = 4|(D000 − D001)2 −
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4D00
(A2)0

D00
(A2)1

|. For N = 5, the five-way invariants of local
unitaries on qubits A1, A2, A3, and A4 and corresponding
four-way invariants combine to give

I
A1A5
5 = (D00000 − D00010 + D00110 − D00100 + D00001

−D00011 + D00111 − D00101)2

− 4
[
D0000

(A5)0
− D0001

(A5)0
− D0010

(A5)0
+ D0011

(A5)0

]
× [

D0000
(A5)1

− D0001
(A5)1

− D0010
(A5)1

+ D0011
(A5)1

]
, (31)

which is a five-qubit invariant of degree four with fonts in
five-way and four-way partial transpose with respect to qubit
A1. In general, one can construct I

ApAq

5 obtaining a five tangle

τ
ApAq

5 = 4|IApAq

5 | for each choice of p and q value. Degree-
four invariants to detect entanglement of two entangled qubits
with their compliment in a five-qubit state are combinations
of two-qubit invariants of five-way, four-way, three-way, and
two-way fonts and can be obtained in a way analogous to that
for five tangle.

V. CONCLUSION

To conclude, LU polynomial invariants for the N -qubit
quantum state have been obtained from basic units of entangle-
ment, referred to as negativity fonts. The method exploits the
transformation properties of determinants of K-way negativity
fonts under LU transformations. The entanglement monotone
based on the square of the degree-two invariant for the N -even
[Eq. (21)] and degree-four invariant of Eq. (28) for N odd
is referred to as N tangle in analogy with three tangle [21].
The method aims at obtaining LU invariants that are rele-
vant to classifying multiqubit entangled states. To illustrate
the construction of entanglement monotones that detect the

entanglement of specific parts of the composite system,
degree-four invariants to detect entanglement of entangled
pairs in a four-qubit state are reported. Our method can be
used to generate the relevant invariants obtained by using
different approaches in Refs. [11–15] and also to generate the
additional invariants necessary to detect specific entanglement
modes. Entanglement monotones constructed from invariants
can identify the class to which a given state belongs. LU
transformations redistribute the negativity fonts among K-way
partial transposes and may also reduce the number of negativity
fonts in a given partial transpose. To determine unitary
transformations that relate two-unitary equivalent states is an
important question in quantum information. The necessary and
sufficient conditions for the equivalence of arbitrary N -qubit
pure states under LU operations have been derived [24] and
used to determine the different LU-equivalence classes of up
to five-qubit states [25]. We find that the key to determine the
unitary transformations relating two states belonging to the
same class lies in the numerical value of the invariants, number
and type of negativity fonts and transformation equations that
the determinants of the negativity fonts for each state satisfy.
Using the transformation equations for the determinants of
negativity fonts to directly identify the unitaries that may
equalize the number and type of negativity fonts in two states
having the same values of LU invariants offers an alternate
method to establish unitary equivalence. The method for
obtaining LU invariants can be easily extended to qutrits and
higher-dimensional systems.
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