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Entanglement in a time-dependent coupled XY spin chain in an external magnetic field
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We consider an infinite one-dimensional anisotropic XY spin chain with a nearest-neighbor time-dependent
Heisenberg coupling J (t) between the spins in presence of a time-dependent magnetic field h(t). We discuss a
general solution for the system and present an exact solution for particular choice of J and h of practical interest.
We investigate the dynamics of entanglement for different degrees of anisotropy of the system and at both zero
and finite temperatures. We find that the time evolution of entanglement in the system shows nonergodic and
critical behavior at zero and finite temperatures and different degrees of anisotropy. The asymptotic behavior
of entanglement at the infinite time limit at zero temperature and constant J and h depends only the parameter
λ = J/h rather than the individual values of J and h for all degrees of anisotropy but changes for nonzero
temperature. Furthermore, the asymptotic behavior is very sensitive to the initial values of J and h and for
particular choices we may create finite asymptotic entanglement regardless of the final values of J and h. The
persistence of quantum effects in the system as it evolves and as the temperature is raised is studied by monitoring
the entanglement. We find that the quantum effects dominate within certain regions of the kT -λ space that vary
significantly depending on the degree of the anisotropy of the system. Particularly, the quantum effects in the
Ising model case persist in the vicinity of both its critical phase transition point and zero temperature as it evolves
in time. Moreover, the interplay between the different system parameters to tune and control the entanglement
evolution is explored.
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I. INTRODUCTION

Quantum entanglement represents one of the corner stones
of the quantum mechanics theory and is of fundamental interest
in modern physics [1]. In the early days of the theory, the
notion of entanglement was first noted and introduced by
Einstein, Podolsky, and Rosen as a paradox in the formalism
of the quantum theory [2]. Nowadays entanglement is treated
as a well-established concept and experimentally verified
phenomenon in modern physics. Quantum entanglement is a
nonlocal correlation between two (or more) quantum systems
such that the description of their states has to be done
with reference to each other even if they are spatially well
separated. Understanding and quantifying entanglement may
provide an answer for many questions regarding the behavior
of complex quantum systems. Particularly, entanglement is
considered as the physical property responsible for the long-
range quantum correlations accompanying a quantum phase
transition in many-body systems at zero temperature [3–5].
Particular fields where entanglement plays a crucial role are
quantum teleportation, quantum cryptography, and quantum
computing, where it is considered as the physical basis for
manipulating linear superpositions of quantum states to im-
plement the different proposed quantum computing algorithms
[6,7].

Different physical systems have been proposed as reli-
able candidates for the underlying technology of quantum
computing and quantum information processing [8–16]. The
basic idea in each one of these systems is to define certain
quantum degree of freedom to serve as a qubit, such as the
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charge, orbital, or spin angular momentum. This is usually
followed by finding a controllable mechanism to form an
entanglement between a two-qubit system in such a way
to produce a fundamental quantum computing gate such
as an exclusive Boolean XOR. In addition, we have to be
able to coherently manipulate such an entangled state to
provide an efficient computational process. Such coherent
manipulation of entangled states has been observed in different
systems such as isolated trapped ions [17] and superconducting
junctions [18]. The coherent control of a two-electron spin
state in a coupled quantum dot was achieved experimentally,
in which the coupling mechanism is the Heisenberg exchange
interaction between the electron spins [19–21].

The obvious demand for a controllable mechanism led to
one of the most interesting proposals in that regard which is
to introduce a time-dependent exchange interaction between
the two valence spins on a doubled quantum dot system as the
coupling mechanism [22,23]. The coupling can be pulsed over
definite intervals resulting a swap gate which can be achieved
by raising and lowering the potential barrier between the two
dots through controllable gate voltage. The ground state of
the two-coupled electrons is a spin singlet, which is a highly
entangled spin state.

The interacting Heisenberg spin chain model represents
a very reliable model for constructing quantum computing
schemes in different solid-state systems and a very rich
model for studying the novel physics of localized spin
systems. This spin chain can be experimentally realized, for
instance, as a one-dimensional chain of coupled nano quantum
dots.

There have been many studies focusing on the entanglement
at zero and finite temperature for isotropic and anisotropic
Heisenberg spin chains in presence and absence of an
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external magnetic field [24–33]. Particularly, the dynamics
of thermal entanglement has been studied in an XY spin chain
considering a constant nearest-neighbor exchange interaction,
in the presence of a time-varying magnetic field repre-
sented by step, exponential, and sinusoidal functions of time
[34,35].

Recently, the dynamics of entanglement in a one-
dimensional Ising spin chain at zero temperature was in-
vestigated numerically where the number of spins was
seven at most [36]. The generation and transportation of
the entanglement through the chain under the effect of an
external magnetic field and irradiated by a weak resonant
field were studied. It was shown that the remote entanglement
between the spins is generated and transported although
only nearest-neighbor coupling was considered. Later, the
anisotropic XY model for a small number of spins, with a
time-dependent nearest-neighbor coupling at zero temperature
was studied, too [37]. The time-dependent spin-spin coupling
was represented by a dc part and a sinusoidal ac part. It was
found that there is an entanglement resonance through the
chain whenever the ac coupling frequency matches the Zeeman
splitting.

In this work, we investigate the evolution of quantum
entanglement in an infinite one-dimensional XY spin chain
system coupled through nearest-neighbor interaction under the
effect of a time-varying magnetic field h(t) at zero and finite
temperature. We consider a time-dependent nearest-neighbor
Heisenberg coupling J (t) between the spins on the chain.
We discuss a general solution for the problem for any time
dependence form of the coupling and magnetic field and
present an exact solution for a particular case of practical
interest, namely a step function form for both the coupling and
the magnetic field. We focus on the dynamics of entanglement
between any two spins in the chain and its asymptotic
behavior under the interplay of the time-dependent coupling
and magnetic field. Moreover, we investigate the persistence
of quantum effects in the system as it evolves in time and as
its temperature increases. We show that the time evolution and
asymptotic behavior of entanglement for static coupling and
magnetic field at zero temperature depends only the ratio of
the coupling to the magnetic field rather than their individual
values but not at finite temperatures. The entanglement was
found to be very sensitive to the initial values of the coupling
and the magnetic field and in particular cases they may
dictate the asymptotic entanglement regardless of the final
values of the parameters. The quantum effects were shown to
dominate within certain regions of the temperature, coupling,
and magnetic field space which depend significantly on the
degree of anisotropy of the coupling which are manifested by
the asymptotic behavior of entanglement.

This article is organized as follows. In Sec. II we present
our model and discuss a general solution for the the XY spin
chain for a general form of the coupling and magnetic field
and focus on a particular case where the system is exactly
solvable. In Sec. III we evaluate the magnetization and the
spin-spin correlation functions of the system and use them to
evaluate the entanglement. In Secs. IV, V, and VI we study the
entanglement dynamics in the completely anisotropic, partially
anisotropic, and isotropic cases of the system respectively. We
conclude in Sec. VII and discuss future directions.

II. THE TIME DEPENDENT XY MODEL

In this section, we present an exact solution for the XY

model of a one-dimensional lattice with N sites in a time-
dependent external magnetic field h(t). We consider a time-
dependent coupling J (t) between the nearest-neighbor spins
on the chain. The Hamiltonian for such a system is given by

H = −J (t)

2
(1 + γ )

N∑
i=1

σx
i σ x

i+1 − J (t)

2
(1 − γ )

N∑
i=1

σ
y

i σ
y

i+1

−
N∑

i=1

h(t)σ z
i , (1)

where σis are the Pauli matrices and γ is the anisotropy
parameter. For simplicity, we will consider h̄ = 1 throughout
this article. Introducing the raising and lowering operators
a
†
i , ai

a
†
i = 1

2

(
σx

i + iσ
y

i

)
, ai = 1

2

(
σx

i − iσ
y

i

)
. (2)

Hence, Pauli matrices can be written as follows:

σx
i = a

†
i + ai, σ

y

i = a
†
i − ai

i
, σ z

i = 2a
†
i ai − I. (3)

Following the standard procedure to treat the Hamiltonian (1),
we transform the Pauli spin operators into fermionic creation
and annihilation operators b

†
i , bi [38]

a
†
i = b

†
i exp

(
iπ

i−1∑
j=1

b
†
j bj

)
, ai = exp

(
− iπ

i−1∑
j=1

b
†
j bj

)
bi,

(4)

then, applying a Fourier transformation, we obtain

b
†
i = 1√

N

N/2∑
p=−N/2

eijφpc†p, bi = 1√
N

N/2∑
p=−N/2

e−ijφp cp, (5)

where φp = 2πp

N
. As a result, the Hamiltonian can be written

as

H =
N/2∑
p=1

H̃p, (6)

with H̃p given by

H̃p = αp(t)[c†pcp + c
†
−pc−p]

+ iJ (t)δp[c†pc
†
−p + cpc−p] + 2h(t), (7)

where αp(t) = −2J (t) cos φp − 2h(t) and δp = 2γ sin φp.
The decomposition of the Hamiltonian was only possible

because [H̃l,H̃m] = 0, for l,m = 0,1,2, . . . ,N/2. Thus the
Hamiltonian in the 2N -dimensional Hilbert space has been
split into N/2 noncommuting sub-Hamiltonians, each in a
four-dimensional independent subspace. Writing the matrix
representation of H̃p in the basis {|0〉,c†pc

†
−p|0〉,c†p|0〉,c†−p|0〉}
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we obtain

H̃p =

⎛
⎜⎜⎜⎝

2h(t) −iJ (t)δp 0 0

iJ (t)δp −4J (t) cos φp − 2h(t) 0 0

0 0 −2J (t) cos φp 0

0 0 0 −2J (t) cos φp

⎞
⎟⎟⎟⎠ . (8)

Initially the system is assumed to be in a thermal equi-
librium state and therefore its initial density matrix is given
by

ρp(0) = e−βH̃p(0), (9)

where β = 1/kT , kB is Boltzmann constant, and T is the
temperature. Using Eq. (7) the matrix representation of ρp(0)
reads

ρp(0) = e2β{cos φp+
[h(0),J (0)]}

⎛
⎜⎜⎜⎝

ζ
p

11 ζ
p

12 0 0

ζ
p

21 ζ
p

22 0 0

0 0 ζ
p

33 0

0 0 0 ζ
p

44

⎞
⎟⎟⎟⎠ , (10)

where

ζ
p

11 = 1

2
(h(0),J (0))
[{
(h(0),J (0)) + J (0) cos φp

+h(0)}e−4β
(h(0),J (0)) + {
(h(0),J (0))

− J (0) cos φp − h(0)}], (11)

ζ
p

12 = iδpJ0{1 − e−4β
(h(0),J (0))}
4
(h(0),J (0))

, (12)

ζ
p

21 = −iδpJ0{1 − e−4β
(h(0),J (0))}
4
(h(0),J (0))

, (13)

ζ
p

22 = 1

2
(h(0),J (0))
[{
(h(0),J (0)) − J (0) cos φp

−h(0)}e−4β
(h(0),J (0)) + {
(h(0),J (0))

+ J (0) cos φp + h(0)}], (14)

ζ
p

33 = ζ
p

44 = e−2β
(h(0),J (0)), (15)

and


(h(t),J (t)) = {[J (t) cos φp + h(t)]2 + γ 2J 2(t) sin2 φp} 1
2 .

(16)

Since the Hamiltonian is decomposable we can find the density
matrix at any time t , ρp(t), for the pth subspace by solving the
Liouville equation given by

iρ̇p(t) = [Hp(t),ρp(t)], (17)

which gives

ρp(t) = Up(t)ρp(0)U †
p(t), (18)

where Up(t) is the time evolution matrix which can be obtained
by solving the equation

iU̇p(t) = Up(t)H̃p(t). (19)

Since H̃p is block diagonal Up should take the form

Up(t) =

⎛
⎜⎜⎜⎝

U
p

11 U
p

12 0 0

U
p

21 U
p

22 0 0

0 0 U
p

33 0

0 0 0 U
p

44

⎞
⎟⎟⎟⎠ . (20)

Fortunately, Eq. (19) may have an exact solution for a time-
dependent step function form for both exchange coupling
and the magnetic field which we adopt in this work. Other
time-dependent function forms will be considered in a future
work where other techniques can be applied. The coupling and
magnetic field are represented respectively by

J (t) = J0 + (J1 − J0)θ (t), (21)

h(t) = h0 + (h1 − h0)θ (t), (22)

where θ (t) is the usual mathematical step function. With this
setup, the matrix elements of Up were evaluated to be

U
p

11 = e2itJ1 cos φp

{−i[J1 cos φp + h1] sin[2t
(h1,J1)]


(h1,J1)

+ cos[2t
(h1,J1)]

}
, (23)

U
p

12 = e2itJ1 cos φp

{−J1δp sin[2t
(h1,J1)]

2
(h1,J1)

}
, (24)

U
p

21 = e2itJ1 cos φp

{
J1δp sin[2t
(h1,J1)]

2
(h1,J1)

}
, (25)

U
p

22 = e2itJ1 cos φp

{
i[J1 cos φp + h1] sin[2t
(h1,J1)]


(h1,J1)

+ cos[2t
(h1,J1)]

}
, (26)

U
p

33 = U
p

44 = e2itJ1 cos φp . (27)

Consequently, the density matrix takes the form

ρp(t) = e2βJ0 cos φp+2β
(h0,J0)

⎛
⎜⎜⎜⎝

ρ
p

11 ρ
p

12 0 0

ρ
p

21 ρ
p

22 0 0

0 0 ρ
p

33 0

0 0 0 ρ
p

44

⎞
⎟⎟⎟⎠ , (28)
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where

ρ
p

11 = 1

4
(h0,J0)
2(h1,J1)

× {[
J1(J0h1 − J1h0)δ2

p sin2[2t
(h1,J1)]

+ 2
2(h1,J1)(
(h0,J0) + J0 cos φp + h0)]e−4β
(h0,J0)

+ J1[J1h0 − J0h1]δ2
p sin2[2t
(h1,J1)]

+ 2
2(h1,J1)[
(h0,J0) − J0 cos φp − h0
]}

, (29)

ρ
p

12 = δp(1 − e−4β
(h0,J0))

4
(h0,J0)
2(h1,J1)
×{
(h1,J1)(J0h1 − J1h0) sin[4t
(h1,J1)]

+ i[J0

2(h1,J1) + 2(J1h0 − J0h1)

× (J1 cos φp + h1) sin2[2t
(h1,J1)]]}, (30)

ρ
p

21 = (
ρ

p

12

)∗
, (31)

ρ
p

22 = 1

4
(h0,J0)
2(h1,J1)

× {[
J1(J1h0 − J0h1)δ2

p sin2[2t
(h1,J1)]

+ 2
2(h1,J1)[
(h0,J0) − J0 cos φp − h0]
]
e−4β
(h0,J0)

+ J1[J0h1 − J1h0]δ2
p sin2[2t
(h1,J1)]

+ 2
2(h1,J1)[
(h0,J0) + J0 cos φp + h0]
}
,

ρ
p

33 = ρ
p

44 = e−2β
(h0,J0). (32)

III. SPIN CORRELATION FUNCTIONS AND
ENTANGLEMENT EVALUATION

In this section we evaluate different magnetic functions
of the XY model which we utilize afterward to evaluate the

spin-spin entanglement in the chain. The first function is the
magnetization in the z direction which is defined as

M = 1

N

N∑
j=1

(
Sz

j

) = 1

N

1/N∑
p=1

Mp, (33)

where Mp = c
†
pcp + c

†
−pc−p − 1. In terms of the density

matrix, it is given by

〈Mz〉 = Tr[Mρ(t)]

Tr[ρ(t)]
= 1

N

1/N∑
p=1

Tr[Mpρp(t)]

Tr[ρp(t)]
, (34)

which yields

Mz = 1

4N

N/2∑
p=1

tanh[β
(h0,J0)]


2(h1,J1)
(h0,J0)

× {
2J1(J0h1 − J1h0)δ2

p sin2[2t
(h1,J1)]

+ 4
2(h1,J1)(J0 cos φp + h0)
}
.

The other functions needed are the spin correlation functions
defined by

Sx
l,m = 〈

Sx
l Sx

m

〉
, S

y

l,m = 〈
S

y

l Sy
m

〉
, Sz

l,m = 〈
Sz

l S
z
m

〉
, (35)

which can be written in terms of the fermionic operators as
follows [38]:

Sx
l,m = 1

4
〈BlAl+1Bl+1 · · ·Am−1Bm−1Am〉, (36)

S
y

l,m = (−1)l−m

4
〈AlBl+1Al+1 · · ·Bm−1Am−1Bm〉, (37)

Sz
l,m = 1

4
〈AlBlAmBm〉, (38)

where

Ai = b
†
i + bi, Bi = b

†
i − bi. (39)

Using Wick theorem [39], the expressions (36)–(38) can be
evaluated as Pfaffians of the form

Sx
l,m = 1

4
pf

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 Fl,l+1 Gl,l+1 · · · Gl,m−1 Fl,m

0 Pl+1,l+1 · · · Pl+1,m−1 Ql+1,m

· · · . .

Pm−1,m−1 Qm−1,m

0 Fm−1,m

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (40)

S
y

l,m = (−1)l−m

4
pf

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 Pl,l+1 Ql,l+1 · · · Ql,m−1 Pl,m

0 Fl+1,l+1 · · · Fl+1,m−1 Gl+1,m

· · · . .

Fm−1,m−1 Gm−1,m

0 Pm−1,m

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (41)

Sz
l,m = 1

4
pf

⎛
⎜⎜⎜⎝

0 Pl,l Ql,m Pl,m

0 Fl,m Gl,m

0 Pm,m

0

⎞
⎟⎟⎟⎠ , (42)
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where

Fl,m = 〈BlAm〉, Pl,m = 〈AlBm〉, Ql,m = 〈AlAm〉, Gl,m = 〈BlBm〉, (43)

and

Ql,m = 1

N

N/2∑
p=1

{
2 cos[(m − l)φp] + i(J1h0 − J0h1)δp sin[(m − l)φp] sin[4t
(h1,J1)] tanh[β
(h0,J0)]


(h1,J1)
(h0,J0)

}
, (44)

Gl,m = 1

N

N/2∑
p=1

{
−2 cos[(m − l)φp] + i(J1h0 − J0h1)δp sin[(m − l)φp] sin[4t
(h1,J1)] tanh[β
(h0,J0)]


(h1,J1)
(h0,J0)

}
, (45)

Fl,m = 1

N

N/2∑
p=1

tanh[β
(h0,J0)]


2(h1,J1)
(h0,J0)

{
cos[(m − l)φp][J1(J0h1 − J1h0)δ2

p sin2[2t
(h1,J1)] + 2
2(h1,J1)(J0 cos φp + h0)]

+ δp sin[(m − l)φp][J0

2(h1,J1) + 2(J1h0 − J0h1)(J1 cos φp + h1) sin2[2t
(h1,J1)]]

}
, Pl,m = −Fl,m. (46)

The amount of entanglement between two quantum sys-
tems, bipartite entanglement, is a monotonic function of what
is called the concurrence [40]. The concurrence varies from a
minimum value of zero to a maximum of one coinciding with
the entanglement function range and behavior. Therefore, the
concurrence itself is considered as a measure of entanglement.
The concurrence C(t) is defined as

C(ρ) = max(0,λa − λb − λc − λd ), (47)

where the λi’s are the positive square root of the eigenvalues,
in a descending order, of the matrix R defined by

R =
√√

ρρ̃
√

ρ, (48)

and ρ̃ is the spin-flipped density matrix given by

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy). (49)

Knowing that ρ is symmetrical and real due to the symmetries
of the Hamiltonian and particularly the global phase flip
symmetry, there will be only six nonzero distinguished matrix
elements of ρ which takes the form [41]

ρ =

⎛
⎜⎜⎜⎝

ρ1,1 0 0 ρ1,4

0 ρ2,2 ρ2,3 0

0 ρ2,3 ρ3,3 0

ρ1,4 0 0 ρ4,4

⎞
⎟⎟⎟⎠ . (50)

As a result, the roots of the matrix R come out to
be λa = √

ρ1,1ρ4,4 + |ρ1,4|, λb = √
ρ2,2ρ3,3 + |ρ2,3|, λc =

|√ρ1,1ρ4,4 − |ρ1,4||, and λd = |√ρ2,2ρ3,3 − |ρ2,3||.
To find the nonzero matrix elements of ρ, one can utilize

the formula of the expectation value of an operator in
terms of density matrix 〈Ĝ〉 = Tr(ρ Ĝ)/ T r(ρ) along with
the magnetization Eq. (34) and the spin correlation functions
Eq. (36)–(38) which give

ρ1,1 = 1
2Mz

l + 1
2Mz

m + Sz
l,m + 1

4 , (51)

ρ2,2 = 1
2Mz

l − 1
2Mz

m − Sz
l,m + 1

4 , (52)

ρ3,3 = 1
2Mz

m − 1
2Mz

m − Sz
l,m + 1

4 , (53)

ρ4,4 = − 1
2Mz

l − 1
2Mz

m + Sz
l,m + 1

4 , (54)

ρ2,3 = Sx
l,m + S

y

l,m, (55)

ρ1,4 = Sx
l,m − S

y

l,m. (56)

IV. TRANSVERSE ISING MODEL

Considering a completely anisotropic XY model by setting
γ = 1 in the Hamiltonian (1), we obtain the transverse Ising
model Hamiltonian

H = −J (t)
N∑

i=1

σx
i σ x

i+1 −
N∑

i=1

h(t)σ z
i . (57)

Defining a dimensionless coupling parameter λ = J/h, the
ground state of the Ising model is characterized by a quantum
phase transition that takes place at λ close to the critical
value λc = 1 [4]. The order parameter is the magnetization
〈σx〉 which differs from zero for λ � λc and zero otherwise.
The ground state of the system is paramagnetic when λ → 0
where the spins get aligned in the magnetic field direction,
the z direction. For the other extreme case when λ → ∞ the
ground state is ferromagnetic and the spins are all aligned
in the x direction. The ground state of the Ising model as
λ → 0 is a product of individual spin states pointing in the
z direction, while for λ → ∞ is product of spin states pointing
in the x direction. This means that in both cases the state is
minimally entangled. Quantum phase transition takes place
at zero temperature as the thermal fluctuations destroy the
quantum correlations in the ground state of the system. The
effect of the temperature on entanglement near the critical
point in the Ising model has been studied in Ref. [4], where it
has been shown how the entanglement decays abruptly as the
temperature raises; nevertheless, it is sustained in the vicinity
of the critical point close to kT = 0. In this section we study
the dynamics of entanglement in the Ising model under the
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FIG. 1. Dynamics of the nearest-neighbor concurrence C(i,i + 1), where t is in units of J−1
1 , with γ = 1 and (a) h0 = h1 = 1 for various

values of J0 and J1 at kT = 0; (b) J0 = J1 = 1 for various values of h0 and h1 at kT = 0. (c) Dynamics of the magnetization per spin;
(d) dynamics of the spin-spin correlation function in the z direction for fixed h = h0 = h1 = 1 for various values of J0 and J1 at kT = 0 with
γ = 1.

effect of nearest-neighbor coupling and external magnetic field
where both are considered time dependent. The number of
spins N in the system is set to 1000 throughout this study,
where testing larger values of N showed no effect on the
results.

In Fig. 1, we explore the dynamics of the nearest-neighbor
concurrence C(i,i + 1) at zero temperature. In Fig. 1(a) we
choose the magnetic field to have a constant value of 1 while the
coupling parameter takes the value 1 or 0.5 or a step function
changing between 0.5 and 1 (or 1 and 0.5). In Fig. 1(b) we set
the coupling parameter to be constant this time with a value 1
while the magnetic field can take the values 1 or 0.5 or a step
function changing between 0.5 and 1 (or 1 and 0.5). As one
can see, when the coupling parameter (the magnetic field) is a
step function, the concurrence reaches a value that is neither its

value when J = J0 (h = h0) nor J1 (h = h1), i.e., concurrence
C(i,i + 1) shows a nonergodic behavior. This behavior follows
from the nonergodic properties of the magnetization and the
spin-spin correlation functions as reported by previous studies
[34,42,43]. The nonergodic behavior of the magnetization and
the spin-spin correlation function in the z direction are shown
in Figs. 1(c) and 1(d). The spin-spin correlation functions
in the x and y directions show similar behavior. At higher
temperatures the nonergodic behavior of the system sustains
but with reduced magnitude of the asymptotic concurrence
(as t → ∞).

In Fig. 2 we study the behavior of the nearest-neighbor
concurrence C(i,i + 1) as a function of λ for different values
of J and h at different temperatures. In this figure we set
J = J0 = J1 and h = h0 = h1. In Fig. 2(a), we study the zero
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FIG. 2. C(i,i + 1) as a function of λ for h = h0 = h1 and J = J0 = J1 at (a) kT = 0 with any combination of J and h; (b) kT = 1 with
h0 = h1 = 0.25,1,4; (c) kT = 1 with J0 = J1 = 0.25,1,4; (d) kT = 3 with h0 = h1 = 0.25,1,4.

temperature case, where we fix h (or J ) and vary J (or h).
As one can see, the behavior of C(i,i + 1) depends only on
the ratio J/h (i.e., λ) rather than on their individual values.
As expected C(i,i + 1) starts at zero, reaches a maximum
value at λ ≈ λc = 1, and then vanishes for larger values of
λ. Studying entanglement at nonzero temperatures shows that
the maximum value of C(i,i + 1) decreases as the temperature
increases. Furthermore, C(i,i + 1) shows a dependence on the
individual values of J and h, not only their ratio. In Fig. 2(b)
one can see that increasing h at kT = 1 causes the maximum
concurrence to increase and to shift toward smaller values of
λ. In Fig. 2(c), increasing J at kT = 1 causes the maximum
concurrence to decrease and to move toward larger values of λ.
Figure 2(d) shows the significant reduction in the entanglement
as the temperature increases further (kT = 3).

In Fig. 3 we investigate the dynamics of entanglement as a
function of the coupling parameter J (t). We plot C(i,i + 1) as

a function of time and λ1(≡ J1/h1) where we set h = h0 = h1.
In Fig. 3(a) we set the parameter values as h = 1, J0 = 1,
and kT = 0, i.e., the system is initially prepared in a state
of maximum entanglement (λ0 = λc). As one can see, for
zero λ1, the entanglement shows an oscillatory behavior in
time, where the spins precess about the magnetic field in the
z direction, and its magnitude increases as we increase λ1 until
it reaches its maximum value close to λc. As λ1 exceeds λc the
entanglement decreases and eventually vanishes for λ1 > 2.5
where in this case J is dominating over h and the spins are
completely aligned in the x direction. On the other hand, when
the system is prepared in an initial state with λ0 different from
λc, the maximum entanglement it can reach is much lower
than the previous case and appears at lower value of λ1 ≈ 0.5
as shown in Fig. 3(b) where h = 1 and J0 = 5. In Fig. 3(c)
we exploit the asymptotic concurrence (as t → ∞) versus λ1

for different values of J0 while the magnetic field is set as
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FIG. 3. (Color online) C(i,i + 1) as a function of λ1 and t , in units of J −1
1 , at kT = 0 with γ = 1, h0 = h1 = 1, and (a) J0 = 1; (b) J0 = 5.

(c) The asymptotic behavior of C(i,i + 1) as a function of λ1 with γ = 1, h0 = h1 = 1, and J0 = 0.5,1,2 at kT = 0; (d) dynamics of C(i,i + 1)
with γ = 1, h0 = h1 = 1, J0 = 1,2, and J1 = 0 at kT = 0.

h0 = h1 = 1. Clearly, the asymptotic value of the concurrence
varies significantly depending on the initial values of the
parameters. For λ0 < λc the asymptotic concurrence peaks
at λ1 ≈ 0.5, and for λ0 = λc the peak takes place at λ1 ≈ 1.
For higher values of the parameter λ0 > λc two peaks show
up with a smaller second peak that decreases and shifts toward
larger values of λ1 as λ0 increases. For instance, for λ0 = 2 the
λ1 values at the peaks are 0.2 and 1 with much lower maximum
values of concurrence than the previous cases. In Fig. 3(d)
we examine the dynamical behavior of the concurrence as
the coupling parameter is switched off, i.e., J0 has a finite
value while J1 = 0. As one can see, the oscillation sustains
as time elapses. Testing different values of h and J0 we find
that the oscillation amplitude is largest when 0.5 � λ0 � 1
while it almost vanishes and loses uniformity when λ0 > 2.
The period of the oscillation decreases as h increases and
is independent of J0. We observe a similar behavior for the
concurrence when the magnetic field is switched off while
setting J0 = J1.

In Fig. 4 we manifest the dependence of the asymptotic
behavior (as t → ∞) of the nearest-neighbor concurrence on
the magnetic field and coupling parameters h0, h1, J0, and J1 at
zero temperature. In Fig. 4(a) we present a three-dimensional

plot for the concurrence versus J0 and J1 where we set the
magnetic field at h0 = h1 = 1. The concurrence starts with a
zero value for J0 = J1 = 0 and increases abruptly, reaching a
maximum value of approximately 0.26 at J0 = J1 ≈ 0.88. For
J1 > 4, C(i,i + 1) vanishes for all J0 values. It is interesting
to see that for all initial values J0 > 1 and J1 < 1, the
asymptotic concurrence has a finite value which decays for
higher values of J1. This emphasis that starting with a finite
coupling J0 and reducing it to a very small value, J1, leads to
persisting entanglement in the system. Figure 4(b) shows the
asymptotic behavior of the nearest-neighbor concurrence as
a function of h0 and h1, while fixing the coupling parameter
at J0 = J1 = 2. The concurrence is zero at h1 = h0 = 0 and
increases as both increase until it reaches its maximum value
at h0 = h1 ≈ 1.8, i.e., close to the λc. If we start with a
relatively large magnetic field (say h0 > 3), C(i,i + 1) will
vanish for h1 < 1, reach a maximum value at h1 ≈ 2, and then
decrease gradually with further increase of h1. However, if we
start with a smaller magnetic field (1 < h0 < 2), C(i,i + 1)
will have a maximum value if h1 is kept within the same
range and will vanish when h1 is increased. Finally, if we
start with a much smaller magnetic field (h0 
 1), C(i,i + 1)
vanishes for h1 < 1.5 but increases as h1 increases and reaches
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FIG. 4. (Color online) The asymptotic behavior of C(i,i + 1) as a function of (a) J0 and J1 with γ = 1 and h0 = h1 = 1; (b) h0 and h1

at kT = 0 with γ = 1 and J0 = J1 = 2; (c) h0 and J0 at kT = 0 with γ = 1 and h1 = J1 = 1; (d) h1 and J1 at kT = 0 with γ = 1 and
h0 = J0 = 1, where h0, h1, and J0 are in units of J1.

a plateau, i.e., there will be a finite asymptotic concurrence
left in the system for a very small initial magnetic field and
large final one. The asymptotic behavior of C(i,i + 1) as a
function of J0 and h0 at kT = 0 is illustrated in Fig. 4(c).
We studied this behavior for J1 = h1 = 0.5, J1 = h1 = 1,
and J1 = h1 = 2 and in all cases we got the same behavior.
The largest entanglement is reached when J0 = h0 but as
J0 differs from h0, C(i,i + 1) decays in agreement with the
physical interpretation discussed previously. We also study the
asymptotic behavior of C(i,i + 1) as a function of J1 and h1 at
kT = 0 while setting J0 = h0 = 0.5,1, and 2. Again, we get
the same behavior in all three cases as shown in Fig. 4(d). The
largest entanglement is reached at J1 = h1 but as J1 diverges
from h1, C(i,i + 1) decreases. The oscillation appearing at
J1 = 0 indicates that the value of h1 changes the phase of the
oscillation.

There has been great interest in investigating the effect
of temperature on the quantum entanglement and the critical
behavior of many body systems and particularly spin systems
[4,44–49]. Osborne and Nielsen have studied the persistence
of quantum effects in the thermal state of the transverse Ising
model as temperature increases [4]. They found that the largest
amount of entanglement in the system takes place in the region

of the parameter space close to the critical point λc = 1. This
means that at low temperatures the quantum effects are still
very relevant to the system as manifested by entanglement.
Here we investigate the persistence of quantum effects under
both temperature and time evolution of the system in presence
of the time-dependent coupling and magnetic field.

In Fig. 5(a) we reproduce, using our model, the behavior
of C(i,i + 1) as a function of λ and kT for the static case
where λ = λ0 = λ1 and h0 = h1 = 1. As one can see, the
entanglement is maximum in the vicinity of the critical point
λc = 1 and the temperature kT = 0. As the temperature in-
creases or λ diverges from the critical value, the entanglement
decays rapidly as the thermal fluctuations destroy the quantum
aspects of the system. The asymptotic behavior, as t → ∞, of
the nearest-neighbor concurrence C(i,i + 1) as a function of λ1

and kT , while fixing the parameters J0 = 1 and h0 = h1 = 1,
is depicted in Fig. 5(b). Interestingly, the entanglement shows
a very similar profile to that it manifested in the static case, i.e.,
the system evolves in time, preserving its quantum character
in the vicinity of the critical point and kT = 0 under the time-
varying coupling. Studying this behavior at different values of
J0 shows that the threshold temperature, at which C(i,i + 1)
vanishes, increases as λ0 increases. Finally, we explore the
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FIG. 5. (Color online) The asymptotic behavior of C(i,i + 1) as a function of (a) λ and kT , in units of J1, with γ = 1, h0 = h1 = 1, and
J0 = J1; (b) λ1 and kT with γ = 1, h0 = h1 = 1, and J0 = 1.

evolution of next-to-nearest-neighbor concurrence C(i,i + 2),
as shown in Fig. 6. As can be noted, C(i,i + 2) 
 C(i,i + 1) at
the same circumstances and vanishes for nonzero temperature.
Longer-range concurrence C(i,i + r) for r � 3 was found to
vanish even at zero temperature.

V. PARTIALLY ANISOTROPIC XY MODEL

We now turn to the partially anisotropic system where γ =
0.5. In this case the x component of the coupling is triple its
y component (i.e., Jx = 3Jy) and the Hamiltonian takes the
form

H = −3J (t)

4

N∑
i=1

σx
i σ x

i+1 − J (t)

4

N∑
i=1

σ
y

i σ
y

i+1 −
N∑

i=1

h(t)σ z
i .

(58)
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FIG. 6. Dynamics of C(i,i + 2), where t is in units of J −1
1 , with

γ = 1 and h0 = h1 = 1 for various values of J0,J1 at kT = 0 and
kT = 0.1.

First, we study the dynamics of nearest-neighbor concur-
rence for this model. In Fig. 7(a), we choose the magnetic field
to have a constant value of 1 while the coupling parameter is
0.5 or 2 or a step function changing from 0.5 to 2 (or 2 to 0.5). In
Fig. 7(b), we choose the coupling parameter to have a constant
value of 1 while the magnetic field is 0.5 or 2 or a step function
changing from 0.5 to 2 (or 2 to 0.5). As one can see, C(i,i + 1)
shows a nonergodic behavior, similar to the isotropic case,
which also follows from the nonergodic behavior of the spin
correlation functions and magnetization shown in Figs. 7(c)
and 7(d). Nevertheless, the equilibrium time in this case is
much longer than the isotropic case as can be seen.

In Fig. 8 we study C(i,i + 1) as a function of λ for different
values of J and h and at different temperatures. We first study
the zero temperature case at different constant values of J

and h. For this particular case C(i,i + 1) depends only on
the ratio of J and h, similar to the isotropic case, rather
than their individual values as shown in Fig. 8(a). As can
be noted, C(i,i + 1) starts from zero, reaches a maximum
value at λ ≈ 0.9, drops to a very small value at λ ≈ 1.1 and
then increases rapidly, reaching a constant value for larger
values of λ. The two extremes cases can be explained easily
as for h � J , i.e., λ 
 1, the effect of the magnetic field is
dominating and the spins are aligned into the z direction and, as
a result, C(i,i + 1) vanishes. On the other hand, when h 
 J ,
i.e., λ � 1, the effect of J dominates. However, for this partial
anisotropic case, increasing J would increase both Jx and Jy ,
which causes the spins not to be aligned in a particular direction
and consequently C(i,i + 1) maintains an equilibrium finite
value. Interestingly, the concurrence shows a complicated
critical behavior in the vicinity of λ = 1, where it reaches
a maximum value first and immediately drops to a minimum
(very small) value before raising again to its equilibrium value.
The raising of the concurrence from zero as J increases, for
λ < 1, is expected as in that case part of the spins which were
originally aligned in the z direction change directions into the
x and y directions. The sudden drop of the concurrence in the
vicinity of λ = 1, where λ is slightly larger than 1, suggests
that significant fluctuations is taken place and the effect of Jx is
dominating over both Jy and h which aligns most of the spins
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FIG. 7. Dynamics of the nearest-neighbor concurrence C(i,i + 1), where t is in units of J−1
1 , with γ = 0.5 and (a) h0 = h1 = 1 for various

values of J0 and J1 at kT = 0; (b) J0 = J1 = 1 for various values of h0 and h1 at kT = 0. (c) Dynamics of the magnetization per spin and
(d) the spin-spin correlation function in the z direction for fixed h = h0 = h1 = 1 for various values of J0 and J1 at kT = 0 with γ = 0.5.

into the x direction, leading to a reduced entanglement value.
Studying the thermal concurrence in Figs. 8(b), 8(c), and 8(d)
we note that the asymptotic value of C(i,i + 1) is not affected
as the temperature increases. However, the critical behavior of
the entanglement in the vicinity of λ = 1 changes considerably
as the temperature is raised and the other parameters are varied.
As illustrated in Fig. 8(b), the maximum entanglement value is
reduced and the minimum value reaches zero at high magnetic
fields at kT = 1, but as the magnetic field is reduced the
critical behavior disappears and the entanglement makes a
direct transition from zero to the equilibrium value where the
transition becomes sharper and takes place at smaller values
of λ as we increase the magnetic field. A similar behavior is

shown in Fig. 8(c) where for small values of the coupling
J the critical behavior disappears as well. The effect of
higher temperature is shown in Fig. 8(d) where the critical
behavior of the entanglement disappears completely at all
values of h and J , which confirms that the thermal excitations
destroy the critical behavior due to suppression of quantum
effects.

In Fig. 9 we investigate the dependence of the time
evolution and asymptotic behavior of concurrence on the
different magnetic field and coupling parameters. We have
studied C(i,i + 1) as a function of λ1 and t for many different
selections of h = h0 = h1 and J0 and found that the concur-
rence behavior depends mainly on whether λ0 > 1 or �1.
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FIG. 8. The asymptotic behavior of C(i,i + 1) with γ = 0.5 as a function of λ when h0 = h1 and J0 = J1 at (a) kT = 0 with any combination
of constant J and h; (b) kT = 1 with h0 = h1 = 0.25,1,4; (c) kT = 1 with J0 = J1 = 0.25,1,4; (d) kT = 3 with h0 = h1 = 0.25,1,4.

To test that behavior, Figs. 9(a) and 9(b) show C(i,i + 1) as
a function of λ1 and t with J0 = 1 and 5 respectively for
fixed h0 = h1 = 1 and kT = 0. As can be seen in Fig. 9(a),
where J0 = 1 (λ0 = 1), the concurrence at any time t > 0
starts with a finite value (or zero) at λ1 = λ0 and then decays
to zero but increases again, reaching a maximum value in
the vicinity of λ1 = 1 and finally vanishes permanently as λ1

increases. Interestingly at λ1 = 0 the concurrence shows an
oscillatory behavior in time, as was the case in the completely
anisotropic model. For values of λ1 around the critical value,
the concurrence approximately maintains its initial value as
time elapses. However, for larger values of λ1, the concurrence
starts initially with a finite value but decays sharply to zero in a
very short period of time. On the other hand, in Fig. 9(b) where
we set J0 = 5 (i.e., λ0 = 5), at any time t > 0 the concurrence
starts with a finite value at λ1 = 0 and increases rapidly as
λ1 increases because increasing J1 reduces the alignment
in the z direction. The concurrence C(i,i + 1) reaches a

maximum value at λ1 ≈ 0.2 and vanishes at λ1 ≈ 1. Finally,
the concurrence increases, reaching a constant value for λ1 ≈ 2
or larger. The variation of the concurrence in this case with time
is very limited, as one can see; it approximately maintains
its initial value, especially for all λ1 � 1 and λ1 � 3. This
critical dependence of the concurrence dynamics on the initial
value of the coupling parameter is emphasized in Fig. 9(c),
where the asymptotic value of the concurrence is depicted
as a function of both J0 and J1. In Fig. 9(d) the asymptotic
behavior of the concurrence is explored as a function of h0 and
h1 while fixing the coupling as J1 = J0 = 1. The behavior of
the concurrence is very close to the completely anisotropic
case except for the region where 0 � h0 � 1 and 0 � h1 � 1
where the concurrence starts with a finite value at h0 = h1 = 0
and decays gradually until it vanishes at h0 = h1 ≈ 1. For
higher values of the coupling J1 = J0 the rate of decay of
the concurrence every where is smaller and the peaks are
broadened.
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FIG. 9. (Color online) C(i,i + 1) as a function of λ1 and t , in units of J −1
1 , at kT = 0 with γ = 0.5, h0 = h1 = 1 and (a) J0 = 1; (b) J0 = 5.

The asymptotic behavior of C(i,i + 1) as a function of (c) J0 and J1 at kT = 0 with γ = 0.5 and h0 = h1 = 1; (d) h0 and h1 at kT = 0 with
γ = 0.5 and J0 = J1 = 1, where h0, h1, and J0 are in units of J1.

The persistence of quantum effects as temperature increases
and time elapses in the partially anisotropic case is examined
and presented in Fig. 10. In Fig. 10(a) the concurrence is

plotted as a function of λ ≡ λ0 = λ1 and kT with h0 =
h1 = 1 and J0 = J1. As one can see, the concurrence shows
the expected behavior as a function of λ and decays as
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FIG. 10. (Color online) The asymptotic behavior of C(i,i + 1) as a function of (a) λ and kT , in units of J1, with γ = 0.5, h0 = h1 = 1,
and J0 = J1; (b) λ1 and kT with γ = 0.5, h0 = h1 = 1, and J0 = 1.
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FIG. 11. Dynamics of C(i,i + 2), where t is in units of J −1
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γ = 0.5 and h0 = h1 = 1 for various values of J0,J1 at kT = 0 and
kT = 0.25.

the temperature increases. As one can see, the threshold
temperature where the concurrence vanishes is determined
by the value of λ, it increases as λ increases. In Fig. 10(b)
the asymptotic behavior of the concurrence as a function λ1

and kT is illustrated. Clearly the nonzero concurrence shows
up at small values of kT and λ1. The concurrence has two
peaks versus λ1 but as the temperature increases, the second
peak disappears. Very interestingly, the first peak raises as
temperature increases then decays again and vanishes for
kT ≈ 0.9 or larger.

The behavior of the next-to-nearest-neighbor concurrence
C(i,i + 2), is shown in Fig. 11. As expected, C(i,i + 2) 


C(i,i + 1) at the same circumstances. Studying longer-
range concurrence C(i,i + r) shows that it vanishes for
r � 3.

VI. ISOTROPIC XY MODEL

In this section we consider the isotropic system with γ = 0
(i.e., Jx = Jy); in this case the Hamiltonian assumes the form

H = −J (t)

2

N∑
i=1

σx
i σ x

i+1 − J (t)

2

N∑
i=1

σ
y

i σ
y

i+1 −
N∑

i=1

h(t)σ z
i .

(59)

We start with the dynamics of the nearest-neighbor concur-
rence; in Fig. 12, we first choose the magnetic field to have a
constant value of 1 while the coupling parameter is 2 or a step
function changing between 0.5 and 2. We also study the case
with a constant coupling parameter of 1 while the magnetic
field is 2 or a step function changing between 0.5 and 2. Testing
the concurrence for several different values of the magnetic
field and coupling parameter, we note that C(i,i + 1) takes
a constant value that does not depend on the final value of
the coupling J1 and magnetic field h1. This follows from
the dependence of the spin correlation functions and the
magnetization on the initial state only as shown in Fig. 12(b).

This is because the initial coupling parameters Jx and Jy ,
which are equal, force the spins to be equally aligned into the
x and y directions, apart from those in the z direction, causing
a finite concurrence. Increasing the coupling parameters
strength would not change that distribution or the associated
concurrence at constant magnetic field.

In Fig. 13 we study C(i,i + 1) as a function of time-
independent λ for different values of J = J0 = J1 and h =
h0 = h1 and at different temperatures. Again C(i,i + 1)
depends only on the ratio of J and h rather than their individual
values at kT = 0 as shown in Fig. 13(a). As can be seen,

0 10 20 30
0

0.1

0.2

0.3

t

C
(i,

i+
1)

(a)

 

 

J
0
=0.5,J

1
=2

J
0
=2,J

1
=2

h
0
=0.5,h

1
=2

h
0
=2,h

1
=2

0 10 20 30
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t

M
z, S

z i,i
+1

(b)

 

 

M
z
,J0

=0.5,J
1
=2

M
z
,J0

=2,J
1
=2

Sz
i,i+1

,J
0
=0.5,J

1
=2

Sz
i,i+1

,J
0
=2,J

1
=2

FIG. 12. Dynamics of the nearest-neighbor concurrence C(i,i + 1), where t is in units of J−1
1 , with γ = 0 for various values of J0,J1,h0,

and h1 at kT = 0. (b) Dynamics of the magnetization per spin and the spin-spin correlation function in the z direction for fixed h = h0 = h1 = 1
for various values of J0 and J1 at kT = 0 with γ = 0.
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C(i,i + 1) starts from zero, increases rapidly at λ = 1, and then
maintains a constant value as λ increases. In this case, when
h � J , i.e., λ 
 1, the effect of magnetic field dominates,
causing the spins to be aligned to the z direction and as a
result C(i,i + 1) vanishes. On the other hand, when h 
 J ,
i.e., λ � 1, the effect of the coupling dominates and the
spins are equally aligned in both x and y directions and the
concurrence maintains a constant finite value. Interestingly,
raising the temperature as shown in Fig. 13(b) does not reduce
the concurrence but causes the values of the coupling and
the magnetic field to affect the concurrence independently at
nonzero temperature. Also in Fig. 13(b), one can notice that
decreasing h at kT = 1 causes the change in C(i,i + 1) to
be less rapid and to reach equilibrium value at larger values
of λ. In Fig. 13(c), we fix the coupling at different values
and study the concurrence as the magnetic field changes. The
concurrence C(i,i + 1) vanishes when J < 1, i.e., when
the magnetic field dominates, while for J � 1 it manifests
the same behavior as before. The effect of higher temperatures
is shown in Fig. 13(d) where it causes smoother change in the
concurrence.

The time evolution of nearest-neighbor concurrence as a
function of the time-dependent coupling is explored in Fig. 14,
where we fix the magnetic field. Figure 14(a) shows C(i,i + 1)
as a function of λ1 and t where h0 = h1 = 1 and J0 = 5 at
kT = 0. Clearly, C(i,i + 1) is independent of λ1. Studying
C(i,i + 1) as a function of λ0 and t with h0 = h1 = 1 at
kT = 0 for various values of J1, we note that the results are
independent of J1. Figure 14(b) represents the case where
J1 = 5. Again, as can be noticed when J0 < h0, the magnetic
field dominates and C(i,i + 1) vanishes. While for J0 � h0,
C(i,i + 1) has a finite value, as discussed above.

The effect of temperature on concurrence is investigated
in Fig. 15. In Fig. 15(a) we plot the asymptotic concurrence
C(i,i + 1) as a function of λ0 and kT . Clearly, as kT increases
the threshold λ0, at which C(i,i + 1) starts to have a finite
value, increases. An interesting behavior of the concurrence is
featured here, studying the asymptotic concurrence C(i,i + 1)
as a function of λ1 and kT , one observes that for λ � 1,
C(i,i + 1) starts from 0 at kT = 0, grows up as kT increases,

reaching a maximum value at kT ≈ 0.3, and then vanishes
again for kT ≈ 0.9 as shown in Fig. 15(b). In Fig. 16, we
depict the time evolution of next-to-nearest-neighbor concur-
rence C(i,i + 2). As expected, C(i,i + 2) 
 C(i,i + 1) at the
same circumstances. The longer range concurrence C(i,i + r)
vanishes for r � 3.

Finally, we explore the asymptotic behavior of the nearest-
neighbor and next-to-nearest-neighbor concurrence in the λ-γ
phase space of the one-dimensional XY spin system under
the effect of a time-dependent coupling J (t). In Figs. 17(a)
and 17(b) we plot C(i,i + 1) and C(i,i + 2) respectively as a
function of the parameter λ1 and the degree of anisotropy
γ for constant magnetic field h0 = h1 = 1 and J0 = 1 at
kT = 0. As one can notice, the nonvanishing concurrences
appear in the vicinity of λ = 1 or lower and vanishes for higher
values. One interesting feature is that the maximum achievable
nearest-neighbor concurrence takes place at γ = 1, i.e., in
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FIG. 16. Dynamics of C(i,i + 2), where t is in units of J −1
1 , with

γ = 0 and h0 = h1 = 1 for various values of J0,J1 at kT = 0 and
kT = 0.1.
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a completely anisotropic system, while the maximum next-
to-nearest-neighbor concurrence is achievable in a partially
anisotropic system, where γ ≈ 0.3.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

We have investigated the entanglement evolution in an infi-
nite one-dimensional XY model in an external time-dependent
magnetic field at zero and finite temperature. The nearest-
neighbor interaction between the spins was considered time
dependent. An exact solution was presented for a step function
form of both the time-dependent coupling and magnetic field.
The system showed nonergodic and critical behavior at all
degrees of anisotropy and for all different choices of coupling
and magnetic field. At zero temperature and constant magnetic
field and coupling, the asymptotic behavior of the system at the
infinite time limit depends only on the ratio of the coupling to
the magnetic field, not their individual values but changes for
nonzero temperature. For many system setups the initial values
of the coupling and magnetic field dictate the asymptotic
behavior of the entanglement regardless of their final values

at different degrees of anisotropy and may lead to asymptotic
residual entanglement in the system. Interestingly, studying
the dynamics of entanglement at zero and finite temperature
showed that the quantum properties of the system are preserved
within certain regions of the coupling, magnetic field, and
temperature space that vary significantly depending on the
degree of anisotropy of the system. Particularly, the quantum
effects in the transverse Ising model persist in the vicinity of
both its critical phase transition point and zero temperature as it
evolves in time. In future work, it would be interesting to study
the XY model under the effect of time-dependent coupling
and magnetic field where the function form for each one could
differ from the other and take other forms of practical interest,
such as the sinusoidal and exponential. This would need in that
case the use of numerical methods along with the analytical
ones to treat the system.
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