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We propose a practical algorithm for the calculation of the relative entropy of entanglement (REE), defined as
the minimum relative entropy between a state and the set of states with positive partial transpose. Our algorithm is
based on a practical semidefinite cutting plane approach. In low dimensions the implementation of the algorithm
in MATLAB provides an estimation for the REE with an absolute error smaller than 10−3.
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I. INTRODUCTION

With the emergence of quantum information science,
entanglement was recognized as a valuable resource for a
variety of quantum information tasks, such as teleportation and
superdense coding (for review, see, e.g., Refs. [1,2]). With this
recognition, much of the research in the field focused on how to
quantify this quantum resource. Among the different proposed
measures quantifying entanglement, the relative entropy of
entanglement (REE) is one of the most important ones. Its
importance comes from the fact that its asymptotic version
provides the unique rate for reversible transformations [3];
recently it was discovered that the regularized REE is the
unique function that quantifies the rate of interconversion
between states in a reversible theory of entanglement, where
all types of nonentangling operations are allowed [4].

The REE is defined by [5]

ER(ρ) = min
σ ′∈D

S(ρ‖σ ′) ≡ S(ρ‖σ ), (1)

where D is the set of separable states or, as will be considered
in this paper, the set of positive partial transpose (PPT) states,
and σ is the corresponding (possibly nonunique) minimizer.
Recall that the relative entropy is defined by

S(ρ‖σ ′) ≡ Tr(ρ ln ρ − ρ ln σ ′).

The REE quantifies to what extent a given state can be
operationally distinguished from the closest PPT state. Besides
being an entanglement monotone it also has useful properties
such as asymptotic continuity.

The state σ = σ (ρ) in Eq. (1) is called the closest PPT state
(or closest separable state). Recently, the inverse problem to the
long-standing problem [6] of finding the formula for the closest
PPT state σ (ρ) was solved in Ref. [7] for the case of two qubits
and in Ref. [8] for all dimensions and for any number of parties.
In Refs. [7,8] the authors found a closed formula for the inverse
problem; that is, for a given state σ on the boundary of PPT
states (or separable states) ∂D, an explicit formula was found
describing all entangled states for which σ is the closest PPT
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state. However, despite the complete solution in Ref. [8] for
the inverse problem, the original problem remained unsolved.
Moreover, the results for the inverse problem in Refs. [7,8],
suggest that the solution to the original problem may not be
analytical—hence the need for numerical estimation of the
REE.

In this paper, we provide an algorithm for the calculation
of the REE, although other authors have also used semidef-
inite programming for the separability problem (see, e.g.,
Refs. [9–11]). At the core of our approach lies a classical
geometric idea that a convex set may be, in principle,
approximated by its supporting hyperplanes. Our algorithm is
based on the so-called cutting planes combined with positive
semidefinite optimization. Namely, we attempt to successively
refine the epigraph of the relative entropy function S(ρ‖σ ′) us-
ing supporting hyperplanes, building a piecewise linear lower
approximation to S(ρ‖σ ′), while using positive semidefinite
optimization techniques to characterize our feasible set D.
In low dimensions where D corresponds to qubit-qubit and
qubit-qutrit pairs, our numerical approach appears to recover
the REE value up to a small absolute error in a relatively
short time without much difficulty. For example, on a modest
desktop computer we could compute the REE for 50 randomly
generated qubit-qutrit problems with an average run time of
under 1 s per problem with preset precision of 10−2 for the
REE; see Sec. IV for more details. In addition, in higher
dimensions, our approach readily generalizes to computing
an approximate REE over PPT states rather than the more
elusive separable states set.

The paper is organized as follows. In Sec. II we introduce
notations and preliminary results concerning the REE. We
then discuss our algorithm in Sec. III. In Sec. IV we discuss
our computational results. Finally, in Sec. V we summarize
our findings with a few conclusions. In addition, in Ref. [12]
readers will find a link to the MATLAB driver code.

II. PRELIMINARIES

Here we will use the following notation. Let Cm×n denote
the space of m × n complex-valued matrices. A ∈ Cm×n has
entries Ai,j , i = 1, . . . ,m,j = 1, . . . ,n. A† is the conjugate
transpose of A. Hk ⊂ Ck×k is the space of Hermitian k × k

matrices, Hk,+ ⊂ Hk is the closed convex cone of Hermitian
positive semidefinite k × k matrices, Hk,++ ⊂ Hk,+ is the open
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convex cone of Hermitian positive definite k × k matrices, and
Hk,+,1 ⊂ Hk,+ is the set of Hermitian positive semidefinite
matrices of trace 1 (i.e., density matrices).

We write A � 0,A � 0,A > 0 if A is positive semidefinite,
nonzero positive semidefinite, and positive definite, respec-
tively. More generally for A,B ∈ Hk , we let

A � B ⇐⇒ A − B � 0,

A � B ⇐⇒ A − B � 0,

A > B ⇐⇒ A − B > 0.

We denote by Ik the identity matrix of order k, which is also
denoted by I when no ambiguity arises. A standard inner
product on Hk × Hk is the trace inner product defined as
〈A,B〉 = A ◦ B = trace (A†B); for concreteness, we may fix
our norm choice ‖A‖ = √〈A,A〉.

Remark: Unlike our discussion in Sec. I, for the remainder
of the paper we adapt more math-and-optimization-friendly
notations, because in detailing our approach we generously
borrow on optimization techniques. For an excellent introduc-
tion to the area of so-called convex optimization, see Ref. [13].

Here eig(X) = {ξi,x(i)}i=1,k denotes the set of eigenvalue-
eigenvector pairs of X ∈ Hk . We assume that x(1), . . . ,x(k) is an
orthonormal basis inCk , called an eigenbasis of X. Then X is a
diagonal matrix diag(ξ1, . . . ,ξk) in its eigenbasis, which is also
denoted as diag(ξ ), where ξ = (ξ1, . . . ,ξk) is the eigenvalue
multiset.

For X ∈ Hk,++ denote by ln X the logarithm function
of X. In the eigenbasis of X, ln X is the diagonal ma-
trix diag(ln ξ ) = diag(ln ξ1, . . . , ln ξk). It is well known that
ln X is order preserving, i.e., ln X � ln Y for X � Y >

0, and matrix-concave, i.e., ln[tX + (1 − t)Y ] � t ln X +
(1 − t) ln Y for X,Y > 0,t ∈ [0,1] on Hk,++; see, e.g.,
Ref. [14]. Moreover, ln X is also strongly order preserving
[8]: if X � Y > 0, then ln X � ln Y (more results about strict
concavity of ln X can be found in Ref. [8]).

Assume we are given fixed integers m,n > 1, and a fixed
nonzero A ∈ Hmn,+,1. We are interested in finding the REE of
A, that is, in finding

ER(A) = inf
X∈Dm,n

S(A‖X)

= inf
X

{
A ◦ ln A − A ◦ ln X : X ∈ Dm,n

}
,

where the set of separable states Dm,n is defined as

Dm,n = conv(Hm,+,1 ⊗ Hn,+,1) ⊂ Hmn,+,1

with conv(·) denoting a convex hull and ⊗ denoting the
standard Kronecker product. Recall that the Kronecker product
A ⊗ B of two matrices A,B may be defined using a block-
matrix notation as a matrix with (i,j ) blocks (A ⊗ B)i,j =
ai,jB, ∀i,j . The following basic fact justifies the inclusion
Dm,n ⊂ Hmn,+,1 and is readily established from the definition:

If eig(A) = {αi,a(i)}i=1,m denotes the set of
eigenvalue-eigenvector pairs of A ∈ Hm, and, likewise,
eig(B) = {βj ,b(j )}j=1,n,B ∈ Hn, then eig(A ⊗ B) =
{αiβj ,a(i) ⊗ b(j )}i=1,m, j=1,n.

Clearly, finding ER(A) in this definition is equivalent to
solving

inf
X

{−A ◦ ln X : X ∈ Dm,n}. (2)

Since Dm,n is compact and the objective −A ◦ ln X is contin-
uous, the infimum is achieved and may as well be replaced by
the minimum.

We turn our attention to the objective function in (2). If we
assume that X is a diagonal matrix diag(ξ ) � 0 and A � 0, then
−A ◦ ln X = ∑k

i=1 Ai,i ln ξi . Therefore, in the limiting sense,
−A ◦ ln X = ∞ if and only if Ai,i > 0 and ξi = 0 for some
i. Likewise, if A > 0 and X � 0 is singular, then A ◦ ln X =
−∞. In the same limiting sense we may write 0 ln ξ = 0 for
any ξ � 0. So our objective function −A ◦ ln X may approach
infinity or stay bounded as X approaches the boundary ofDm,n.
We may state our first elementary proposition.

Proposition II.1.The objective function of (2), −A ◦ ln X, is
convex with respect to X on Hmn,++. Moreover, the minimum
of −A ◦ ln X over Hmn,++ is −A ◦ ln A and is achieved at
X = A. Consequently, if A /∈ int Dm,n, the interior of Dm,n,
then the solution to (2) lies on the boundary of Dm,n.

For brevity we sketch only the proof; using a limiting
argument one has to carefully work out the boundary case
where −A ◦ ln X approaches infinity. Convexity follows from
ln X being matrix-concave on Hmn,++. The first differential
of −A ◦ ln X vanishes at affine-feasible X = A + �, which
is a sufficient condition for the minimum of a smooth convex
function. Namely, borrowing from expressions (4) and (3) in
Sec. III A, we know that for small � ∈ Hmn with trace � =
0, up to first order −A ◦ ln(A + �) ≈ −A ◦ ln A + � ◦ I =
−A ◦ ln A. Finally, if A /∈ int Dm,n, the last part follows from
both the t-level sets of the objective function {X ∈ Hmn,+,1 :
−A ◦ ln X � t} as well as Dm,n, being convex.

In fact, one may state an even stronger statement about ln X

and the objective as in Ref. [8, App. A].
Theorem II.2.The function ln X is strongly matrix-concave

on Hk,++. Consequently, the function −A ◦ ln X is strictly
convex on Hk,++ for each fixed A ∈ Hk,++.

Therefore, if A > 0, then the solution to (2) is given by a
unique boundary point [8]. If A is singular, then X(A) does
not have to be unique [7]. In general, the set of minimizing
separable states form a compact convex subset of Dm,n that
intersects the boundary of Dm,n.

The problem (2) may look deceptively simple. In general,
even deciding if a certain X is separable is NP-hard [15];
see Ref. [16] for a similar problem pertaining to the graph
isomorphism. Thus, despite the fact that (2) is a convex
optimization problem—the objective function is convex—we
do not attempt to solve (2) simply relying on, for example,
the so-called (polynomial) ellipsoid method, as finding a
separating oracle for Dm,n might already be quite difficult.
To emphasize the distinction between Dm,n and its containing
superset Hmn,+,1 we state our next simple proposition.

Proposition II.3. Dm,n is a proper subset of Hmn,+,1 and, in
particular, has flat faces besides those that coincide with faces
of Hmn,+,1.

Proof. Consider the rank-1, a.k.a. a pure state, matrix
X = xx�, where x = 1√

2
(1,0, . . . ,0,1). Clearly X ∈ Hmn,+,1

but not in Dm,n, so indeed Dm,n �= Hmn,+,1. (Here and in
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the subsequent discussion, to see that X /∈ Dm,n we rely on
Fact II.4.)

Likewise, let Y = ((1,0) · (1,0)�) ⊗ ((1,0) · (1,0)�) ∈ D2,2

and Z = ((0,1) · (0,1)�) ⊗ ((0,1) · (0,1)�) ∈ D2,2, and con-
sider Y+Z

2 ∈ D2,2: clearly Y+Z
2 cannot be written as A ⊗ B

for any A,B ∈ H2,+,1. The last construction may be easily
generalized to arbitrary m,n > 1. �

Surprisingly, in small dimensions m = 2, n = 2,3, the set
Dm,n admits very easy alternative characterization using the
so-called partial transpose [17]. The partial transpose (with
respect to the second factor) is the linear map PT2 : Hmn →
Hmn, which is given by partial exchange of matrix entry indices
and may be conveniently stated as PT2(A ⊗ B) = A ⊗ B�.

Fact II.4. For m = 2, n = 2,3, X ∈ Dm,n if and only if
X ∈ Hmn,+,1 and the corresponding partial transpose PT2(X) ∈
Hmn,+. Moreover, for higher dimensions m,n the partial
transpose condition is necessary.

(The necessity easily follows from the mentioned property
of the eigenvalues for the Kronecker product.)

The characterization ofDm,n, m = 2,n = 2,3, is equivalent
to viewing the set as an affine slice of Hk,+,1 for some
k > 0, which in turn allows us to capture Dm,n via positive
semidefinite optimization [18,19] techniques. Thus, in the latter
case of m = 2, n = 2,3 where the feasible set is relatively
simple and the derivative of the objective function −A ◦ ln X

is relatively easy to compute (see Sec. III), we do expect to
find an efficient approach to solving (2), as in, for example,
Ref. [13].

III. THE APPROACH

Our main goal is solving (2), and the proposed technique
is fairly simple. Since the objective function is convex,
we rely on constructing a successively refined sequence of
approximations to the epigraph of the objective restricted to
int Dm,n ⊂ Hmn,+,1, defined as

epi(−A ◦ ln X)|int Dm,n

= {(X,t) ∈ int Dm,n × R : −A ◦ ln X � t},

which in turn may be viewed as a convex set. The resulting
relaxations to (2) corresponding to the positive semidefinite
optimization may be efficiently solved with off-the-shelf (and
even free) numerical software.

We do not attempt to prove the convergence of the
proposed approach. Instead, we provide numerical evidence
of its efficiency. We want to remark that our approach
is consistent with the classical cutting-planes approach in
nonlinear optimization, with the latter being already well
established in many practical settings.

A. First differential of ln X and approximate
epi(−A ◦ ln X)|int Dm,n

Recall that for diagonal matrix diag(λ) ∈ Hk,++,λ =
(λ1, . . . ,λk), the first-order expansion of ln[diag(λ) + �X] for
small � ∈ Hk may be written as [20], (6.6.31)]

ln[diag(λ) + �X] = ln diag(λ) + D(λ) · � + O(‖�‖2),

where D(λ) is the k × k Hermitian matrix

D(λ)i,j =
{

ln λi−ln λj

λi−λi
, λi �= λj ,

1
λi

, i.e., the limiting value, λi = λj ,

A · B denotes the entrywise (Hadamard) product of two
matrices, and O(‖�‖2) is a k × k matrix with O(‖�‖2)
entries; the regular matrix product takes precedence over the
entry-wise product.

Recall that ln(UXU †) = U ln(X)U † for unitary U and any
X. Thus, for arbitrary X ∈ Hk,++, the first-order expansion of
ln(X + �) may be written by applying spectral decomposition
of X = UXdiag(λX)U †

X with the unitary matrix of eigenvectors
UX and the matrix diag(λX) of the corresponding eigenvalues
λX of X, resulting in:

ln(X + �)

= ln[UXdiag(λX)U †
X + UXU

†
X�UXU

†
X]

= UX[ln diag(λX) + D(λX) · U
†
X�UX + O(‖�‖2)]U †

X

= ln X + UX[D(λX) · U
†
X�UX]U †

X + O(‖�‖2).

Using this and a sequence of fixed points X(i) ∈
int Dm,n, i = 0, . . . ,N , we may proceed with constructing an
approximation to epi(−A ◦ ln X)|int Dm,n

. Namely, since −A ◦
ln X is convex on int Dm,n, its epigraph is supported by tangent
hyperplanes at every X(i), and so epi(−A ◦ ln X)|int Dm,n

is a
subset of all (X,t) ∈ int Dm,n × R satisfying

max
i

−A ◦ { ln X(i)

+U(i)[D(λ(i)) · U
†
(i)(X − X(i))U(i)]U

†
(i)} � t,

where for brevity of notation we write U(i),λ(i) for UX(i) ,λX(i) ,
or equivalently, for all i,

A ◦ [U(i)(D(λ(i)) · U
†
(i)XU(i))U

†
(i)] + t − si

= −A ◦ ln X(i) + A ◦ [U(i)(D(λ(i)) · U
†
(i)X

(i)U(i))U
†
(i)]

with si � 0, which is the same as

E(i) ◦ X + t − si = −A ◦ ln X(i) + E(i) ◦ X(i), ∀i

with si � 0 and

E(i) = [U(i)(D(λ(i)) · U
†
(i)AU(i))U

†
(i)], (3)

since A · B = B · A. Note that trace [(A · B)C] =
trace[A(B� · C)] and D(λ(i)) = D(λ(i))�. Finally, if we
recall that from Proposition II.1 we have t � −A ◦ ln A, the
approximation to epi(−A ◦ ln X)|int Dm,n

may be refined to

E(i) ◦ X + t − si = −A ◦ ln X(i) + E(i) ◦ X(i), (4)

t � −A ◦ ln A, si � 0, ∀i = 0, . . . ,N.

Note that (4) contains only linear inequalities. Intuitively,
if N is large and the sequence X(i) forms a nearly dense cover
of Dm,n, then the approximation (4) to the epigraph of the
objective would be fairly accurate. Consequently, in order to
find an approximate solution to our problem (2), we might as
well work with the approximation to epi(−A ◦ ln X)|int Dm,n

,
minimizing t . That is, instead of (2) we want to find the
minimum of t satisfying (4) over all X ∈ Dm,n. It turns out
that the latter problem may be handled efficiently numerically
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as described in Sec. III C, where we also propose a scheme for
generating X(i) incrementally with the end goal of keeping N

small.

B. Equivalent reparametrization of Dm,n,m = 2,n = 2,3

Hereafter Dm,n represents the set of separable states only
for the cases of m = 2 and n = 2 or 3. In higher dimensions,
our approach will work if we take Dm,n to be the set of
PPT states. We adopt a somewhat unusual reparametrization
of Dm,n relying on Fact II.4, which will prove to be useful in
Sec. III C.

Recall that X ∈ Dm,n if and only if X ∈ Hmn,+,1 and
PT2(X) ∈ Hmn,+. That is, X ∈ Hmn,+, trace X = 1, and
PT2(X) ∈ Hmn+ . These conditions may be rewritten in the
following way. Denote

F (i,j,o,p) = (
e(i)e(j )�) ⊗ (

e(o)e(p)�)
,

G(i,j,o,p) = (
e(i)e(j )�) ⊗ (

e(p)e(o)�)
.

(5)

Here e(i),e(j ) and e(o),e(p) are the standard unit vectors in Rm

and Rn, respectively; i.e., e(i)
i = 1 and e(i)

j = 0,j �= i. Then the
conditions that X ∈ Dm,n can be written as follows:

(a) Unit trace of X:

I ◦ X = 1. (6)

(b) Diagonal blocks of PT2(X):

F (i,i,o,p) ◦ X − G(i,i,o,p) ◦ Y = 0,

∀i = 1, . . . ,m,

∀o = 1, . . . ,n, p = o, . . . ,n.

(7)

(c) Strictly upper-triangular blocks of PT2(X):

F (i,j,o,p) ◦ X − G(i,j,o,p) ◦ Y = 0,

∀i = 1, . . . ,m, j = i + 1, . . . ,m,

∀o = 1, . . . ,n, p = 1, . . . ,.n

(8)

(d) Positive semidefiniteness of

PT2(X) X,Y ∈ Hmn,+. (9)

Here the matrix Y corresponds to PT2(X). Note that due to
X,Y being Hermitian, it suffices to specify the reordering of
the entries of X into Y = PT2(X) only for the upper-triangular
part of X.

C. Sequential positive semidefinite optimization approach

A problem corresponds to positive semidefinite optimiza-
tion [18] if it may be written as

inf
X

{C ◦ X : A(i) ◦ X = bi,i = 1, . . . 	,X ∈ Hk,+},

where k × k matrices C,A(i) are fixed. Note that this includes
block-diagonally structured matrices by choosing appropri-
ate A(i),bi to zero-out off-diagonal blocks, nonnegativity
constraints x � 0 by considering diagonal 1 × 1 positive
semidefinite blocks, and the so-called free variables by taking
x = y − z, where y,z � 0. Without loss of generality we may
assume C,A(i) ∈ Hk; indeed, for any k × k matrix C and

X ∈ Hk we have

C ◦ X = trace

(
CX + CX

2

)

= trace (CX)

2
+ trace(X†C†)

2
=

(
C + C†

2

)
◦ X.

So, even if C,A(i) are non-Hermitian initially, we may easily
symmetrize those by following this procedure.

Efficient numerical algorithms exist for solving this type
of problem. In particular, the so-called interior-point methods
[18] provide both the theoretical polynomial bound on the
number of iterations needed to find an ε-approximate solution
and good practical performance. Numerous freely available
interior-point method solvers, e.g., SeDuMi, SDPT3, CSDP,
and DSDP, are suitable for solving this type of problem. For
our purposes we rely on the MATLAB-based SeDuMi solver.

The approximation of epi(−A ◦ ln X)|int Dm,n
given by ***

combined with the parametrization of Dm,n given by (6),
(7), (8), and (9) forms a basis for our numerical scheme to
compute an approximate solution to (2). Based on refining our
approximation of epi(−A ◦ ln X)|int Dm,n

, we build a sequence
of positive semidefinite optimization problems, with each
problem resulting in a finer and finer approximation to a
solution of (2).

Let r∗ denote the optimal value of (2),

r∗ = inf
X

{−A ◦ ln X : X ∈ Dm,n}.

As we explained in Sec. II, r∗ is attainable, and we may replace
inf by min. Let r � r∗ � r denote lower and upper bounds on
r∗, respectively. For a given ε > 0, we say that X∗ ∈ Dm,n is
an ε-approximate solution to (2) if

−A ◦ ln X∗ � r∗ + ε. (10)

Recalling that 1
mn

I ∈ Dm,n, the basic approach to find X∗ and
approximate the true value r∗ may be summarized as follows:

(1) If A ∈ Dm,n then return X∗ = A,r = r = 0 (recall
Fact II.4) and stop, else

(2) Set the desired accuracy ε > 0, initialize N = 0,X∗ =
X(0) = 1

m+n
I , r = −A ◦ ln A,r = −A ◦ ln X∗,

(3) Solve the positive semidefinite optimization problem
corresponding to:

min
t,X

{t : (t,X) satisfy (4),(6),(7),(8),(9) and t � r}, (11)

and store its optimal solution pair (t,X),
(4) Update r = t ,
(5) If r − r � ε then return X∗,r,r and stop, else

set X(N+1) to be the next X-refinement point for
epi(−A ◦ ln X)|int Dm,n

and increment N = N + 1, and if −A ◦
ln X(N) � −A ◦ ln X∗ then update X∗ = X(N),r = −A ◦
ln X∗, go to (2).

To justify our termination criteria in step 4, observe that
since the approximation to (convex) epi(−A ◦ ln X)|int Dm,n

is based on supporting hyperplanes, the solution to (11)
always corresponds to a lower bound on the optimal value
of −A ◦ ln X in (2). Note that r and r are nondecreasing and
nonincreasing, respectively, at each iteration of our scheme.

It is left to explain how we construct X-refinement points.
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D. X-refinement point for epi(−A ◦ ln X)|int Dm,n

Given a sequence of points X(0), . . . ,X(N) in int Dm,n, a
point X solving (11), and some fixed reference point Z ∈
int Dm,n, we generate X(N+1) simply by minimizing −A ◦ ln X

on the linear segment
[
Z,X

]
; that is,

X(N+1) = arg min
X

{−A ◦ ln X :

X = αZ + (1 − α)X,α ∈ [0,1]}. (12)

In fact, we are interested in finding the approximate minimizer
in (12) with a given precision, so this equality should be
interpreted in an approximate sense. Given the tolerance
δ > 0, the one-dimensional minimization may be efficiently
performed using, say, the standard derivative-based bisection
scheme as follows:

(i) Set the end points Xstart = Z,Xend = X of the inter-
val containing the approximate minimizer of (12) Xmin �
[Xstart,Xend], set the initial value of Xmin = Xstart+Xend

2 ,
(ii) While ‖Xend − Xstart‖ � δ repeat

if the directional derivative along Xend − Xstart of −A ◦
ln X at Xmin is negative set Xstart = Xmin else set Xend =
Xmin, and set Xmin = Xstart+Xend

2 .
This scheme quickly terminates with an interval

[Xstart,Xend] � Xmin such that ‖Xend − Xstart‖ < δ; note that
the directional derivative of −A ◦ ln X may be easily evaluated
using (3). We set X(N+1) = Xmin.

Particularly, we experiment with two choices of the refer-
ence point Z:

(A) (Conservative strategy) Z = 1
mn

I ,
(B) (Aggressive strategy) Z = X∗, where X∗ corresponds

to the best upper bound r on r∗ obtained so far.
Recall that generally in the absence of degeneracies the

solution to (11) lies in the boundary of a semidefinite cone.
Therefore, intuitively, choice A may encourage the next
refinement point X(N+1) to be more centered, while choice
B would be a more aggressive choice that in a sense targets
“minimizing the discrepancy” between the lower and upper
bounds r , r , and so we would generally expect choice B
to result in a smaller N being needed, i.e., a fewer number
of cutting planes added. Indeed, our intuition seems to be
confirmed by numerics; see Sec. IV.

Despite its seeming simplicity, our choice of X(N+1) proves
to be very effective numerically in refining the objective
epigraph epi(−A ◦ ln X)|int Dm,n

near the region of interest, i.e.,
close to an ε-approximate solution to (2); see Sec. V for some
illustrations.

Next we comment on a few possible reasons for this
surprising efficiency.

Remark III.1. We solve (11) only approximately since,
in general, at present this is the only option for handling
positive semidefinite optimization problems efficiently, i.e.,
in polynomial time. However, this does not seem to negatively
affect our approach to (2) because practically the optimization
problem (11) is solved to a very high (near-machine) precision.

Remark III.2. It is only for notational convenience that
beginning in Sec. III A we restrict X(i) to belong to the
interior of Dm,n rather than the whole set itself. Observe that in
general −A ◦ ln X may approach infinity when X approaches
the boundary of Dm,n. Since we want to use (4) in forming

(11) and subsequently solve the problem numerically, such
a situation is clearly undesirable. In practice, to overcome
such a tendency for X(i) we implement a simple numerical
safeguard recentering procedure, briefly outlined at the end of
this section.

In principle, one can prove the convergence of a mini-
mization algorithm if it is possible to show that the objective
function gets reduced by some nontrivial amount at each
iteration of the algorithm. If we have a smooth objective
function with no constraints, one natural choice is to follow
the steepest descent direction—the direction of the negative
gradient—at each iteration, until a significant decrease in the
objective is achieved. However, when constraints are present,
such as in the case of (2), following the steepest descent
direction might not work well because the direction might send
us back to the boundary of the feasible region over and over
again, thus hindering the progress of our algorithm. Therefore,
intuitively, we want to make long enough steps that guarantee
a sufficient decrease of the objective at each iteration, and, at
the same time, stay away from the boundary of Dm,n whenever
possible.

The first goal is accomplished by considering (11) instead
of, say, merely minimizing −A ◦ ln X along the steepest
descent direction. Potentially, this allows us to traverse the
whole feasible region Dm,n in search of a better next iterate. In
other words, solving (11) rather than minimizing the objective
function along the gradient hopefully prevents the algorithm
from being stuck near the boundary of Dm,n and allows for
long enough steps. Recall that to guarantee that we actually
decrease the objective at each iteration rather than overshoot
toward a point with an even larger objective value as compared
to the one we started with, we combine solving (11) with a
backtracking line search (12) along [Z,X].

The second goal is in part accomplished by relying on
the maximal-rank property of the path-following interior-point
methods used to solve (11). Here, interestingly, a seemingly
trivial refinement in (4) that replaces unrestricted t with t �
−A ◦ ln A makes a dramatic difference in the numerics. That
is, although t � −A ◦ ln A probably does not have such a
huge impact on refining the epigraph itself, it certainly helps
to produce a well-centered solution X∗ to (11) by finding a
full-rank solution X∗—hopefully far away from the boundary
of Dm,n—if such exists at least during the very first iterations
of our scheme.

Furthermore, if the addition of the next point X(N+1)

to the approximate description of the epi(−A ◦ ln X)|int Dm,n

according to (4) causes numerical problems for solving
(11), we augment X(N+1) (as many times as necessary) by
re-centering it toward 1

mn
I , that is, by setting X(N+1) =

βX(N+1) + (1 − β) 1
mn

I , where β ∈ (0,1) is some preset con-
stant. In our experiments we use the default value of β = 0.5.
The rationale for the latter is that 1

mn
I is a well-centered point in

Dm,n and hence does not cause any numerical problems in (4).

IV. COMPUTATIONAL RESULTS

Our numerical approach was implemented in MATLAB,
using SeDuMi solver version 1.1R3 and tested with MATLAB

version R2007a. We tested our algorithm on an Intel Xeon
2.4 GHz machine with 2 Gb RAM.
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We ran our numerical scheme on a set of 100 randomly
generated matrices A: 50 instances corresponding to m =
2,n = 2 with targeted default solution precision of ε = 10−3,
and 50 instances corresponding to m = 2,n = 3 with targeted
default solution precision of ε = 10−2, setting δ = 10−10. All
the runs were successful.

Comparing strategies A and B, the latter aggressive ap-
proach appears to produce superior numerical results. For
example, on the 50 problems corresponding to m = 2,n =
3, the average solution times per problem instance were
decreased almost 5-fold, with an average of 65.14 outer
iterations per problem in case A resulting in slightly over
5-s run time per instance, compared with only average 13.8
outer iterations and under 1-s run time per problem while using
case B.

For the randomly generated problems, our choice of the
termination precision level ε was stipulated by the following
performance metric that may be used to judge the quality of
the approximation. For a given problem instance, one may
introduce relative gap, defined as

gr = r − r

r∗ .

Note that since A ◦ ln A is negative because of the eigenvalues
of A being nonnegative and adding up to 1, and so r > 0, we
can bound

gr � r − r

r
.

So, for example, despite a seemingly high value of ε = 10−2

in the case of m = 2,n = 3, most of the problems were
terminated with gr < 10%.

For a more detailed illustration, we report on the following
three examples, where, in addition, one may compute the
relative entropy

A ◦ ln A − inf
X

{−A ◦ ln X : X ∈ Dm,n}

analytically:
(i) 4 × 4 simple rank-1 (pure) state, here m = n = 2 and

A =

⎛
⎜⎜⎜⎝

1/2 0 0 1/2

0 0 0 0

0 0 0 0

1/2 0 0 1/2

⎞
⎟⎟⎟⎠ .

An ε-approximate solution is found in two iterations with the
reported approximate relative entropy value r = 0.6931 · · ·
and | ln 2 − r| ≈ 2.8227 × 10−11 computed with MATLAB

(where ln 2 is the true analytic value) and

X∗ ≈

⎛
⎜⎜⎜⎝

1/3 0 0 1/6

0 1/6 0 0

0 0 1/6 0

1/6 0 0 1/3

⎞
⎟⎟⎟⎠ ,

with ≈ meaning that the actual computed values in X∗ differ
from the values by no more than 10−7, relying on strategy A;
in case B the results are similar with a solution being found in
two iterations.

(ii) 4 × 4 simple rank-2 state, here m = n = 2 and

A =

⎛
⎜⎜⎜⎝

1/2 0 0 1/4

0 0 0 0

0 0 0 0

1/4 0 0 1/2

⎞
⎟⎟⎟⎠ .

An ε-approximate solution is found in 62 iterations with the re-
ported approximate relative entropy value r = 0.1308 · · · and
| ln 2 − (1/4 ln 4 + 3/4 ln 4/3) − r| ≈ −2.2268 × 10−8 com-
puted with MATLAB [where ln 2 − (1/4 ln 4 + 3/4 ln 4/3) is
the true analytic value) and

X∗ ≈

⎛
⎜⎜⎜⎝

1/2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1/2

⎞
⎟⎟⎟⎠ ,

with ≈ meaning that the actual computed values in X∗ differ
from the values by no more than 10−5, relying on strategy A;
in case B the results are similar with a solution being found in
five iterations.

(iii) 4 × 4 full-rank (entangled) Werner state, here m = n =
2 and

A = 1

4

⎛
⎜⎜⎜⎝

1 − f 0 0 0

0 f + 1 −2f 0

0 −2f f + 1 0

0 0 0 1 − f

⎞
⎟⎟⎟⎠ , f = 2/3.

An ε-approximate solution is found in 93 iterations with the
reported approximate relative entropy value r = 0.1308 · · ·
and |3/4 ln 3/2 + 1/4 ln 1/2 − r| ≈ 2.4489 × 10−8 computed
with MATLAB (where 3/4 ln 3/2 + 1/4 ln 1/2 is the true ana-
lytic value) and

X∗ ≈

⎛
⎜⎜⎜⎝

1/6 0 0 0

0 1/3 −1/6 0

0 −1/6 1/3 0

0 0 0 1/6

⎞
⎟⎟⎟⎠ ,

with ≈ meaning that the actual computed values in X∗ differ
from these values by no more than 6 × 10−5, relying on
strategy A; in case B the results are similar with a solution
being found in 25 iterations.

For these examples, in an attempt to make an even more
convincing case, we set the targeted precision to ε = 10−7

(with the corresponding δ = 10−12).
Reference [12] contains the MATLAB driver routine that

calls SeDuMi solver as its internal subroutine; note that
functions vec and mat are internal to SeDuMi but are trivial to
reimplement as stand-alone routines. For more details on the
implementation of SeDuMi see Ref. [21] and the references
therein. If needed, one may replace SeDuMi by some other
appropriate solver such as SDPT3 or CSDP. The driver routine
is written with the primary goal of having the code transparent
and readable, rather than achieving maximal computational
efficiency. For example, although the use of MATLAB’s cells
allows for greater transparency, it is definitely not the most
efficient and fastest approach from a computational point of
view.
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V. CONCLUSION

We propose a numerical algorithm for computing the REE
ER(σ ) in small dimensions for general σ . Our numerical
experiments support the viability of our approach.

The efficiency of our numerical scheme may potentially be
improved by considering the second-order-based approxima-
tion to epi(−A ◦ ln X)|int Dm,n

and consequently relying on the
so-called convex quadratic positive semidefinite optimization
problems instead of (11), which are still amenable to the
interior-point methods. We do not pursue this route since
we are quite satisfied with the performance of our numerical
approach so far.

Optimistically, we hope that one may actually establish a
(polynomial) complexity bound on finding an ε-approximate
solution to (2) by following a variant of the proposed scheme.

Also, we hypothesize that in turn ε gives rise to a bound on the
proximity to the true solution of (2). Presently, both are under
further investigation.

Note that our approach is also applicable in a straightfor-
ward fashion to computing the lower bound on (2) where
Dm,n is replaced by positive partial transpose states. We
experimented with larger matrix sizes going up to m = 5,
n = 10 and still were able to get the 10−2 approximate
solutions, although the actual computations took much longer.
If desired, in general in low dimensions we could achieve far
greater numerical precision than 10−2 as illustrated in Sec. IV.
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