
PHYSICAL REVIEW A 82, 052335 (2010)

Entanglement dynamics via coherent-state propagators
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The dynamical generation of entanglement in closed bipartite systems is investigated in the semiclassical
regime. We consider a model of two particles, initially prepared in a product of coherent states, evolving in time
according to a generic Hamiltonian, and derive a formula for the linear entropy of the reduced density matrix
using the semiclassical propagator in the coherent-state representation. The formula is explicitly written in terms
of quantities that define the stability of classical trajectories of the underlying classical system. The formalism
is then applied to the problem of two nonlinearly coupled harmonic oscillators, and the result is shown to be in
remarkable agreement with the exact quantum measure of entanglement in the short-time regime. An important
by-product of our approach is a unified semiclassical formula, which contemplates both the coherent-state
propagator and its complex conjugate.
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I. INTRODUCTION

Entanglement is one of the most formidable effects of the
quantum world. Its puzzling nature, which intrigued the scien-
tific community for a long time, is now being used to accom-
plish tasks such as quantum-information processing, quantum
computation, teleportation, and quantum cryptography [1,2].
Also, its importance has been recognized in the context of
several foundational issues underlying the quantum theory,
from the explanation of the quantum-classical transition—
and its implications to the measurement problem—to the
understanding of the nonlocal aspects permeating the Einstein-
Podolsky-Rosen debate [2–4].

Entanglement is widely believed to be a purely quantum
effect with no classical analog. Despite this common belief,
several results have been reported associating the entanglement
dynamics with classical quantities. For instance, in Refs. [5–8],
it is shown that the entanglement dynamics can be approxi-
mately simulated in the short-time regime by the Liouvillian
formalism. In particular, for some specific couplings, the
Liouvillian entropy has been shown to reproduce exactly the
entropic measure of entanglement for all values of time [9].
In addition, in Ref. [8], the authors have analytically shown
that the short-time dynamics of entanglement does not depend
on h̄ for a large class of Hamiltonian systems. Finally, some
authors investigated entanglement in the semiclassical regime
by means of time-dependent perturbation theory [10,11].

The scenario delineated by these works points to a situation
in which a statistical theory based on classical trajectories
is able to predict the dynamics of a quantity meant to
be exclusively quantum [12]. This observation leads us to
suspect that the entanglement dynamics is initially promoted
by mechanisms with well-defined classical analogs. Finding
out these mechanisms is the main motivation of this paper.
We follow, however, a program that is substantially different
from the works quoted earlier, as it is based on semiclassical
methods instead of classical statistical theories. Specifically,
we propose to derive a semiclassical measure of entanglement
in terms of the semiclassical propagator in the coherent-state
representation [14–17].

Recently, a similar calculation has been carried out [18,19],
which differs from ours in some important aspects. First,

the approach adopted there was based on the Van Vleck
semiclassical propagator [20],

Kvv(q2,q1,T ) =
∑
traj.

∣∣∣∣ 1

2πh̄

∂2S(q2,q1,T )

∂q2∂q1

∣∣∣∣
1/2

e(i/h̄)S(q2,q1,T ).

This is a semiclassical formula for the one-dimensional
quantum propagator 〈q2|e−iĤT /h̄|q1〉 in the position represen-
tation. This formula depends only on the classical trajectories
of an underlying classical dynamics connecting the initial
position q1 to the final position q2, during the time interval
T . The function S(q2,q1,T ) is the classical action of the
trajectory, and the sum runs over all trajectories satisfying
the boundary conditions. Our approach, on the other hand,
is based on a semiclassical propagator formulated in the
coherent-state representation, which has the advantage of
offering a straightforward extension to systems with spin
degrees of freedom [21–25].

A second important difference relies on the fact that our
approach does not employ any averaging over the initial
conditions in phase space. Even though, in Refs. [18,19], this
statistical procedure is claimed to be nonrestrictive, we believe
it is not mandatory from a physical point of view. The only
approximations used here are those usually associated with the
method of the stationary phase.

Finally, we observe that, contrary to the Van Vleck propa-
gator, the coherent-state propagator is generally determined by
complex trajectories and actions. This introduces an additional
technical difficulty, namely, that the complex conjugate of
the semiclassical propagator does not have a straightforward
interpretation. Actually, this turns out to be an interesting
mathematical issue to be understood in the context of general
applications of the coherent-state propagator. In this paper,
we formulate and address this problem as a preliminary
step toward the derivation of a semiclassical formula for the
entanglement.

This paper is organized as follows. In Sec. II, we present
the main ingredients of the original formula of the semi-
classical propagator in coherent states and then extend it to
also contemplate the complex conjugate of the propagator
in a unified formalism. We then proceed to calculate the
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semiclassical purity in Sec. III, where a further extension
of the semiclassical formula of the propagator is required
to accommodate bipartite systems. In Sec. IV, we present
a case study; the formalism is applied to the problem of
two nonlinearly interacting oscillators. Finally, in Sec. V, we
summarize and conclude the paper.

II. SEMICLASSICAL PROPAGATOR IN THE
COHERENT-STATE REPRESENTATION

The aim of this section is twofold. First, we briefly review
some of the main aspects of the semiclassical formula of
the coherent-state propagator. For subsidiary literature on this
representation, we refer to Refs. [26–28]. Second, we show
how to extend the formalism so as to semiclassically approach
both the propagator and its complex conjugate in a unified
mathematical structure. In this sense, our approach intends to
offer a generalization of the formula derived in Ref. [17].

We start, as a motivating question, with the general problem
of calculating the expectation value of an arbitrary operator Â

via semiclassical propagators. If the initial state of the system
is the coherent state |z0〉, then, at the instant T , the mean value
〈Â〉T = 〈z0|eiĤT /h̄Âe−iĤT /h̄|z0〉 can be written in terms of the
propagator as

〈Â〉T =
∫

d2z2

π

d2z1

π
K(z0,z1, − T )A(z1,z2)K(z2,z0,T ),

where A(z1,z2) = 〈z1|Â|z2〉 and

K(z0,z1, − T ) = 〈z0|eiĤT /h̄|z1〉 = K∗(z1,z0,T ).

The complex conjugate of the propagator K∗ is going to
be present whenever measurable quantities are regarded.
However, to the best of our knowledge, there is no prescription
on how to obtain the semiclassical version of this object in
the coherent-state representation. But should not we simply
take the complex conjugate of the semiclassical propagator?
We opt here for a more careful strategy that preserves both
the interpretation of the critical trajectories and the rigor of
the original derivation in Ref. [17].

A. The coherent-state propagator

In Ref. [17], it is shown that the semiclassical formula of
the coherent-state propagator,

K(z2,z1,T ) = 〈z2|e−iĤT /h̄|z1〉 (1)

depends only on complex trajectories of an auxiliary classical
system governed by the Hamiltonian function H (v,u), which
is to be built according to the prescription,

H (v,u) = [〈z|Ĥ |z〉] z→u

z∗→v

. (2)

That is, to find H (v,u), one evaluates 〈z|Ĥ |z〉 and replaces z

and z∗ by u and v, respectively. The usual classical variables
q and p are related to the variables u and v through

u = 1√
2

(
q

b
+ ip

c

)
and v = 1√

2

(
q

b
− ip

c

)
, (3)

where b and c, satisfying bc = h̄, are related to the variances
of the coherent state along the position and momentum axes.
Hamilton’s equations written in terms of u and v become

u̇ = − i

h̄

∂H

∂v
and v̇ = i

h̄

∂H

∂u
. (4)

Trajectories contributing to the semiclassical propagator must
satisfy the boundary conditions

u(0) = z1 and v(T ) = z∗
2. (5)

A careful inspection of the dynamical structure defined by
Eqs. (3)–(5) reveals why the classical variables q and p must
be complex. Since the boundary conditions given by Eq. (5)
and the evolution time T are both fixed from the outset, it is not
possible to find, in general, a classical trajectory satisfying that
many conditions simultaneously, unless q and p are allowed
to be complex numbers. This is the motivation for the change
of variables (z∗,z) → (v,u).

Having found the proper trajectory, we can evaluate its
complex action,

S(z∗
2,z1,T ) =

∫ T

0

[
ih̄

2
(u̇v − uv̇) − H (v,u)

]
dt − �, (6)

where � = ih̄
2 [u(0)v(0) + u(T )v(T )], and the function

G(z∗
2,z1,T ) = 1

2

∫ T

0

(
∂2H (v,u)

∂u∂v

)
dt. (7)

The semiclassical propagator is then given by

K(z∗
2,z1,T ) = N

∑
traj.

(
i

h̄

∂2S
∂z∗

2∂z1

)1/2

ei/h̄(S+G), (8)

where N = exp(− 1
2 |z2|2 − 1

2 |z1|2). Some comments about
Eq. (8) are in order. First, it is worth mentioning that K is
obtained through a quadratic approximation around critical
paths—the complex classical trajectories—of K , expressed in
the path-integral formalism. Second, it is explicitly indicated
that, in principle, one should sum contributions of all trajecto-
ries satisfying the boundary conditions. Third, the label z2 of
K is written as z∗

2 in K as the trajectories depend only on the
value of z∗

2 instead of z2. On the right-hand side of Eq. (8), the
only dependence on z2 lies in N .

The difficulties to get a semiclassical expression for K∗
directly from Eq. (8) can be better appreciated at this point.
Contrary to the Van Vleck propagator, the functions S and
G and the classical variables u and v are all complex. Then,
taking the complex conjugate of Eq. (8) implies working with
the complex conjugate of these functions, which, although
well defined mathematically, may not offer a straightforward
interpretation from the point of view of the quantum-classical
connection.

Next, we address this issue preserving the mathematical
structure that was carefully derived and extensively discussed
in Ref. [17].

B. Unified semiclassical formula

Now, let us consider the generic propagator,

Kξ (z2,z1,T ) = 〈z2|e−iξĤT /h̄|z1〉, (9)
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where Ĥ is a time-independent Hamiltonian ξ = ±1, and the
kets |z1〉 and |z2〉 are coherent states. Clearly, K−(z2,z1,T ) =
K∗

+(z1,z2,T ). In this sense, Eq. (9) contemplates propagators
and their complex conjugates in a unified formula. In addition,
we see that Kξ (z2,z1,T ) can be obtained from K(z2,z1,T ) by
means of the change Ĥ → ξĤ [29]. Furthermore, since ξ is
nothing but a real constant, the mathematical structure previ-
ously delineated readily applies, provided that we consistently
employ the mentioned change.

We start our program of implementing the change Ĥ → ξĤ

with Hamilton’s equations (4). We get

u̇ = − iξ

h̄

∂H

∂v
and v̇ = iξ

h̄

∂H

∂u
. (10)

This changes the interpretation of u and v, making their roles
swap in the dynamics depending on the value of ξ . In order to
avoid this issue, we define the generalized time,

tξ ≡ ξ t + (1 − ξ )T/2. (11)

Explicitly, we see that t+ = t , but, for ξ = −1, we get t− =
T − t . This strategy allows us to preserve the equations of
motion in the same form as Eqs. (4),

duξ

dtξ
= − i

h̄

∂H

∂vξ

and
dvξ

dtξ
= i

h̄

∂H

∂uξ

, (12)

where uξ and vξ are defined by

uξ (tξ ) ≡ u[t(tξ )] and vξ (tξ ) ≡ v[t(tξ )], (13)

with t(tξ ) given by the inverse of Eq. (11), and

H (vξ ,uξ ) = [〈z|Ĥ |z〉] z→uξ

z∗→vξ

. (14)

In terms of the new functions, the boundary conditions given
by Eq. (5) read

uξ

(
(1 − ξ )

T

2

)
= z1 and vξ

(
(1 + ξ )

T

2

)
= z∗

2, (15)

or, equivalently,

u+(0) = z1, v+(T ) = z∗
2,

(16)
u−(T ) = z1, v−(0) = z∗

2.

We focus now on the functions Sξ (z∗
2,z1,T ) and

Gξ (z∗
2,z1,T ), the extended forms of Eqs. (6) and (7). Relations

(13) give us the rule to rewrite Sξ and Gξ in terms of uξ (tξ ) and
vξ (tξ ). We then change the variable of integration from t to
tξ and the limits of integration to (1 − ξ )T/2 and (1 + ξ )T/2.
Finally, we replace the dummy variable tξ by t and use the
identity, ∫ (1+ξ )T/2

(1−ξ )T/2
F (t)dt = ξ

∫ T

0
F (t)dt,

which holds for any F (t) as far as ξ = ±1. This procedure
allows us to write

Gξ = ξ

2

∫ T

0

(
∂2H (vξ ,uξ )

∂uξ∂vξ

)
dt, (17)

and

Sξ = ξ

∫ T

0

[
ih̄

2
(u̇ξ vξ − uξ v̇ξ ) − H (vξ ,uξ )

]
dt − �ξ, (18)

where �ξ = ih̄
2 [u′′

ξ v
′′
ξ + u′

ξ v
′
ξ ]. For the sake of compactness

of the notation, we have introduced the following (double)
primed variables:

u′
ξ ≡ uξ (0), u′′

ξ ≡ uξ (T ),
(19)

v′
ξ ≡ vξ (0), v′′

ξ ≡ vξ (T ).

The notation is such that prime (double prime) always refers
to the initial (final) instant. Notice by Eqs. (15) and (19) that,
while u′

+ = u′′
− = z1 and v′′

+ = v′
− = z∗

2, the variables u′′
+, u′

−,
v′

+, and v′′
− are not fixed by the boundary conditions (15).

They are obtained once the solution for the trajectory has been
found.

The semiclassical propagator in the coherent-state repre-
sentation is then finally written as

Kξ (z∗
2,z1,T ) = N

∑
traj.

(
i

h̄

∂2Sξ

∂z∗
2∂z1

)1/2

ei/h̄(Sξ +Gξ ), (20)

where N = exp(− 1
2 |z2|2 − 1

2 |z1|2) remains unchanged. It is
worth noticing that, for ξ = +1, the original formalism is
fully reproduced.

Finally, concerning the complex action Sξ (z∗
2,z1,T ), it

satisfies the following useful relations:

u′′
+ = i

h̄

∂S+
∂z∗

2

= i

h̄

∂S+
∂v′′+

, v′
+ = i

h̄

∂S+
∂z1

= i

h̄

∂S+
∂u′+

,

(21)

u′
− = i

h̄

∂S−
∂z∗

2

= i

h̄

∂S−
∂v′−

, v′′
− = i

h̄

∂S−
∂z1

= i

h̄

∂S+
∂u′′−

,

and
∂Sξ

∂T
= −ξH (v′

ξ ,u
′
ξ ) = −ξH (v′′

ξ ,u
′′
ξ ). (22)

In addition, using Eqs. (21), the prefactor of Kξ (z∗
2,z1,T ) can

be written as a function of the elements of the tangent matrix
Mξ defined by(

δu′′
ξ

δvξ

)
= Mξ

(
δu′

ξ

δv′
ξ

)
=

(
M

ξ
uu M

ξ
vu

M
ξ
vu Mξ

vv

)(
δu′

ξ

δv′
ξ

)
. (23)

One can show that

i

h̄

∂2S+
∂z∗

2∂z1
= 1

M+
vv

and
i

h̄

∂2S−
∂z∗

2∂z1
= 1

M−
uu

, (24)

and

M+
uu = i

h̄

[
∂2S+

∂u′+∂v′′+
− ∂2S+

∂v′′+
2

(
∂2S+

∂v′′+∂u′+

)−1
∂2S+
∂u′+

2

]
,

M+
uv = ∂2S+

∂v′′+
2

(
∂2S+

∂v′′+∂u′+

)−1

, (25)

M+
vu = −

(
∂2S+

∂v′′+∂u′+

)−1
∂2S+
∂u′+

2 .

Another set of three equations relating derivatives of S− with
elements of M− can be obtained by simultaneously replacing
+, u, and v in Eqs. (25) with −, v, and u, respectively. The
reason to write the prefactor in terms of elements of the tangent
matrix is the ease of handling them in several situations,
especially in numerical treatments.
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The classical structure we have proposed is such that a
trajectory (uξ (tξ ),vξ (tξ )) is the solution of the equations of
motion in terms of a proper time scale tξ . The interpretation
of a forward time evolution from 0 to T is preserved, but
while K+(z∗

2,z1,T ) depends on a trajectory that propagates
from z1 to z∗

2, K−(z∗
2,z1,T ) depends on one propagating from

z∗
2 to z1. In this sense, comparing with the case in which

ξ = +1, trajectories for ξ = −1 can also be interpreted in
terms of a backward time evolution, which is compatible
with the intuition one may construct from the exact relation
K−(z2,z1,T ) = K+(z2,z1, − T ).

The set of equations given in this section defines the general
recipe to obtain the semiclassical version Kξ of the exact
propagator Kξ given by Eq. (9). As such, this unified formalism
constitutes the first important contribution of this paper. All the
formal details involved in the derivation of original formulas,
especially those associated with the stationary phase method,
can be found in Ref. [17] for the case in which ξ = +1.

C. A simple example: Harmonic oscillator

In order to clarify the notation and illustrate the adequacy
of the formalism, we calculate the semiclassical version of
Kξ (z2,z1,T ) for the harmonic oscillator Hamiltonian Ĥho.
According to Eq. (14), the classical Hamiltonian results

Hho(vξ ,uξ ) = h̄ω
(
vξuξ + 1

2

)
,

where we have adopted as the coherent-state basis exactly
that one associated with Ĥho. Then, from Eq. (12), one gets
v̇ξ = iωvξ and u̇ξ = −iωuξ , whose solutions read

vξ (tξ ) = Cξ
v eiωtξ and uξ (tξ ) = Cξ

ue−iωtξ .

From Eqs. (11) and (15), we get

Cξ
v = z∗

2e
−iω(1+ξ )T/2 and Cξ

u = z1e
iω(1−ξ )T/2,

so that

vξ (tξ ) = z∗
2e

iω[tξ −(1+ξ )T/2],

uξ (tξ ) = z1e
−iω[tξ −(1−ξ )T/2].

Using these solutions, we directly obtain

Gξ = h̄ωξT

2
, Sξ = −h̄ωξT

2
− ih̄z1z

∗
2e

−iωξT ,

and �ξ = ih̄uξ vξ = ih̄z1z
∗
2e

−iωξT . The prefactor becomes(
i

h̄

∂2Sξ

∂z∗
2∂z1

)1/2

= e−iωξT /2.

The final result is

Kξ (z∗
2,z1,T ) = e−iωξT /2e−1/2|z1|2−1/2|z2|2ez1z

∗
2e

−iωξT

,

which is identical to the exact one,

Kξ (z2,z1,T ) = 〈z2|e−iωξT (â†â+1/2)|z1〉
= e−iωξT /2〈z2|e−iωξT z1〉.

III. SEMICLASSICAL MEASURE OF ENTANGLEMENT
FOR PURE BIPARTITE SYSTEMS

We now focus on the main task of this paper, namely, the
derivation of a semiclassical measure of entanglement for pure

bipartite systems via coherent-state propagators. In order to do
so, we need to extend the results of Sec. II to bipartite systems.
The procedure is well known [30,31], and its generalization
for the complex conjugate of the propagator is straightforward.

We consider the coherent-state basis given by |z〉 =
|zx,zy〉 = |zx〉 ⊗ |zy〉, and the classical variables uξ = (uξ

x,u
ξ
y)

and vξ = (vξ
x ,v

ξ
y ). While Sξ has a straightforward extension,

the function Gξ requires the change,

∂2H (vξ ,uξ )

∂vξ∂uξ

→
(

∂2H (vξ ,uξ )

∂v
ξ
x∂u

ξ
x

+ ∂2H (vξ ,uξ )

∂v
ξ
y∂u

ξ
y

)
.

As far as the prefactor is concerned, we need to replace the
function (i/h̄)(∂2Sξ /∂z∗

2∂z1) by

det

⎡
⎢⎣ i

h̄

⎛
⎜⎝

∂2Sξ

∂z∗
2x∂z1x

∂2Sξ

∂z∗
2x∂z1y

∂2Sξ

∂z∗
2y∂z1x

∂2Sξ

∂z∗
2y∂z1y

⎞
⎟⎠

⎤
⎥⎦ ≡ det

(
i

h̄
Sξ

z∗
2z1

)
, (26)

which can be equivalently written as [see Eq. (24)],

det

(
i

h̄
Sξ

z∗
2z1

)
=

{
(det M+

vv)−1, for ξ = +1,

(det M−
uu)−1, for ξ = −1.

(27)

Notice that M+
vv and M−

uu are now 2 × 2 blocks of the tangent
matrix. Equations (25) (and also their versions for ξ = −1) can
also be extended to the case of bipartite systems by replacing
each second derivative of Sξ by a 2 × 2 matrix analogous to
that of Eq. (26).

The entanglement of a pure bipartite system composed of
the subsystems x and y, at the time T , can be quantified by the
linear entropy of the reduced density matrix,

Slin(ρ̂x) = 1 − P (ρ̂x), (28)

where ρ̂x = Tryρ̂ and ρ̂ = |ψ(T )〉〈ψ(T )|. The purity P of the
reduced density matrix ρ̂x is defined by

P (ρ̂x) = Trx
{
ρ̂2

x

} = Trx{[Tryρ̂(T )]2}. (29)

The information about the entanglement dynamics, encoded in
the linear entropy Slin, is fully contained in the purity, which,
hence, is the object of interest in this section. As we are mainly
interested in the dynamical behavior of the purity, hereafter,
we will denote P (ρ̂x) simply by PT .

A. Semiclassical reduced density matrix

Assuming an initial state given by |z0〉 = |z0x〉 ⊗ |z0y〉 and a
generic time-independent Hamiltonian Ĥ , the matrix elements
of the density operator in the coherent-state representation read

〈z1|ρ̂(T )|z2〉 = 〈z1|e−iĤT /h̄|z0〉〈z0|eiĤT /h̄|z2〉
= K+(z1,z0,T )K−(z0,z2,T ).

Their semiclassical approximations are then given by

〈z1|ρ̂(T )|z2〉semi ≡ K+(z∗
1,z0,T )K−(z∗

0,z2,T ), (30)

which can then be evaluated by means of complex classical
trajectories (uξ (tξ ),vξ (tξ )) with specific boundary conditions.
While, for K+(z∗

1,z0,T ), the boundary conditions are u′
+ = z0

and v′′
+ = z∗

1, for K−(z∗
0,z2,T ), they are u′′

− = z2 and v′
− = z∗

0.
Matrix elements of ρ̂(T ), therefore, can be semiclassically
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written as functions of pairs of (generally complex) classical
trajectories [(u+,v+) and (u−,v−)], connected by the fact that
u′

+ = z0 and v′
− = z∗

0.
Tracing over the subsystems y, we obtain the matrix

elements of the reduced density matrix

〈z1x |ρ̂x(T )|z2x〉semi =
∫

K+[(z∗
1x,z

∗
y),z0,T ]

×K−[z∗
0,(z2x,zy),T ]

d2zy

π
. (31)

To calculate the integral, we apply the saddle-point method
[17,32]. The critical points (z̄∗

y,z̄y) satisfy the relations

d

dz̄∗
y

[
−|z̄y |2 + i

h̄
S+[(z∗

1x,z̄
∗
y),z0,T ]

]
= 0,

(32)
d

dz̄y

[
−|z̄y |2 + i

h̄
S−[z∗

0,(z2x,z̄y),T ]

]
= 0.

As usual [17], we neglect Gξ for it is a low-order term in h̄.
According to Eqs. (21), the last equations imply that the

critical pair of trajectories [(ū+,v̄+) and (ū−,v̄−)] contributing
to Eq. (31) should obey the additional boundary conditions
ū+

y (T ) = z̄y and v̄−
y (T ) = z̄∗

y . Then, given the primary bound-
ary conditions v̄+

y (T ) = z̄∗
y and ū−

y (T ) = z̄y , it follows that,
among all pairs of trajectories contributing to Eq. (31), the
critical ones (still complex, in general) are those for which
the position and momentum in the y space at the final point
are real, having the same value for both trajectories, namely,
ū±

y (T ) = z̄y and v̄±
y (T ) = z̄∗

y .
Expanding the integrand up to second order around the

critical pair of trajectories, we get

〈z1x |ρ̂x(T )|z2x〉semi =
∑
pairs

N̄ ei/h̄(S̄++Ḡ++S̄−+Ḡ−)√
det M̄+

vv

√
det M̄−

uu

I, (33)

where the bar over the functions indicates that they
should be calculated with the critical pairs and N̄ =
e−|z0|2−(1/2)|z1x |2−(1/2)|z2x |2−|z̄y |2 . In addition,

I =
∫

dz∗
ydzy

2πi
exp

{
1

2
δzT

y Y δzy

}
,

where

δzT
y = ([zy − z̄y] [z∗

y − z̄∗
y])

is the transpose of δzy , and

Y =
⎛
⎝ i

h̄

∂2S̄−
∂z̄2

y
−1

−1 i
h̄

∂2S̄+
∂{z̄∗

y }2

⎞
⎠ .

The result for the Gaussian integral,

I =
[

1 −
(

i

h̄

∂2S̄−
∂z̄2

y

)(
i

h̄

∂2S̄+
∂{z̄∗

y}2

)]−1/2

,

alternatively can be written in terms of the tangent matrix,

i

h̄

∂2S̄−
∂z̄2

y

= hT
y M̄−

vu(M̄−
uu)−1hy,

i

h̄

∂2S̄+
∂{z̄∗

y}2
= hT

y M̄+
uv(M̄+

vv)−1hy,

where we have defined the column matrix hy , whose transpose
reads hT

y = (0,1). Using these expressions, we get

I = [
1 − hT

y M̄−
vu(M̄−

uu)−1hyh
T
y M̄+

uv(M̄+
vv)−1hy

]−1/2
. (34)

B. Semiclassical purity

Now, we proceed with the derivation of the semiclassical
formula for the purity PT . For convenience, we introduce the
notation,

〈z1x |ρ̂x(T )|z2x〉semi ≡ R(v′′
+,u′

+,v′
−,u′′

−,T ), (35)

where we recall that contributing pairs of trajectories
(u±(t±),v±(t±)) have boundary conditions u′

+ = z0, v′
− =

z∗
0, v′′

+ = (z∗
1x,z̄

∗
y), and u′′

− = (z2x,z̄y), also u+
y (T ) = z̄y and

v−
y (T ) = z̄∗

y . The latter conditions state that the y position
and y momentum at time T must be real, with these two
classical quantities defining z̄y . For the sake of clarity, we
have eliminated the bar over the trajectories involved in
Eq. (35).

Noticing that the purity (29) can be written as

PT =
∫

d2wxd
2zx

π2
〈wx |ρ̂x(T )|zx〉〈zx |ρ̂x(T )|wx〉,

we write the semiclassical purity as

PT =
∫

R(v′′
+,u′

+,v′
−,u′′

−,T )

×R(V′′
+,U′

+,V′
−,U′′

−,T )
d2wxd

2zx

π2
, (36)

where the two contributing pairs of trajectories (u±,v±) and
(U±,V±), satisfy, respectively:

(i) u′
+ = z0,v′

− = z∗
0, v′′

+ = (w∗
x,z̄

∗
y), u′′

− = (zx,z̄y),
u+

y (T ) = z̄y , and v−
y (T ) = z̄∗

y ;
(ii) U′

+ = z0, V′
− = z∗

0, V′′
+ = (z∗

x , w̄∗
y),U′′

− = (wx,w̄y),
U+

y (T ) = w̄y , and V −
y (T ) = w̄∗

y .
In order to find the critical trajectories [(ū±,v̄±) and

(Ū±,V̄±)] of Eq. (36), we look for its saddle points (w̄x,w̄
∗
x)

and (z̄x,z̄
∗
x). We find the following additional conditions:

V̄ −
x (T ) = w̄∗

x, ū+
x (T ) = w̄x,

(37)
v̄−

x (T ) = z̄∗
x, Ū+

x (T ) = z̄x .

Therefore, all boundary conditions that must be satisfied by
the critical set of four classical trajectories contributing to PT

can be summarized as follows:

ū′
+ = z0, v̄′′

+ = (w̄∗
x,z̄

∗
y), ū′′

+ = (w̄x,z̄y),

v̄′
− = z∗

0, ū′′
− = (z̄x,z̄y), v̄′′

− = (z̄∗
x,z̄

∗
y),

(38)
Ū′

+ = z0, V̄′′
+ = (z̄∗

x,w̄
∗
y), Ū′′

+ = (z̄x,w̄y),

V̄′
− = z∗

0, Ū′′
− = (w̄x,w̄y), V̄′′

− = (w̄∗
x,w̄

∗
y).

As discussed previously, the final point of the trajectory
(ū+,v̄+) is connected to the final point of (ū−,v̄−), implying
the position and momentum in the y direction to be real and the
same for both trajectories. An equivalent conclusion applies
to (Ū+,V̄+) and (Ū−,V̄−). Analogously, in the x direction,
we see by Eqs. (37) that the trajectory (ū+,v̄+) is connected to
(Ū−,V̄−), while (ū−,v̄−) is connected to (Ū+,V̄+). This means
that the trajectories contributing to PT constitute a set of four
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trajectories whose final and initial conditions are mutually
connected according to Eq. (38).

A close look at these boundary conditions reveals that there
exists at least one trivial set of classical trajectories satisfying
all of them. It corresponds to the trajectory starting from
ũ′

+ = ũ′
− = Ũ′

+ = Ũ′
− = z0 and ṽ′

+ = ṽ′
− = Ṽ′

+ = Ṽ′
− = z∗

0.
Hereafter, we use a tilde to refer to this set of four identical
trajectories, which obviously satisfy, in addition, the condi-
tions z̄x = w̄x and z̄y = w̄y .

Now, a rather important point concerning the contributing
trajectories should be identified. Consider the class of time-
independent classical Hamiltonians H (v,u) deriving from
Hermitian Hamiltonian operators Ĥ (q̂,p̂). In these systems,
a trajectory whose phase-space variables are all real at a
given instant in time remains real for all times [33]. Since
the boundary conditions given by Eqs. (38) assure that the
final point is real, the critical set of trajectories contributing to
PT has exclusively real trajectories. Therefore, once the initial
point is completely determined, there is no other solution to
Eqs. (38) but the trivial set discussed earlier. Applying the
saddle-point method to expand Eq. (36) around the set of real
trajectories, we obtain

PT = IR(ṽ′′
+,ũ′

+,ṽ′
−,ũ′′

−,T )R(Ṽ′′
+,Ũ′

+,Ṽ′
−,Ũ′′

−,T ), (39)

where

I =
∫

d2wxd
2zx

(2πi)2
exp

{
1

2
δwT A δw

}
,

with

δwT = ([wx − w̄x][w∗
x − w̄∗

x][zx − z̄x][z∗
x − z̄∗

x]).

The 4 × 4 matrix A can be written as

A =

⎛
⎜⎝

Aa + Ca −1 0 Cc

−1 Ab + Cb Cc 0
0 Cc Aa + Ca −1
Cc 0 −1 Ab + Cb

⎞
⎟⎠ ,

where

Aa = i

h̄

∂2S̃−
∂{ũ′′

x}2
, Ca =

(
i

h̄

∂2S̃−
∂ũ′′

x∂ũ′′
y

)2 (
i

h̄

∂2S̃+
∂{ṽ′′

y }2

)
D−1,

Ab = i

h̄

∂2S̃+
∂{ṽ′′

x }2
, Cb =

(
i

h̄

∂2S̃+
∂ṽ′′

x∂ṽ′′
y

)2 (
i

h̄

∂2S̃−
∂{ũ′′

y}2

)
D−1,

Cc =
(

i

h̄

∂2S̃+
∂ṽ′′

x∂ṽ′′
y

)(
i

h̄

∂2S̃−
∂ũ′′

x∂ũ′′
y

)
D−1, and

D = 1 −
(

i

h̄

∂2S̃−
∂{ũ′′

y}2

)(
i

h̄

∂2S̃+
∂{ṽ′′

y }2

)
.

The Gaussian integral I then results

I = {
[1 − (Aa + Ca)(Ab + Cb)]2

− 2C2
c [1 + (Aa + Ca)(Ab + Cb)] + C4

c

}−1/2
. (40)

Since the four trajectories are identical, we define

M̃uu = M̃±
uu = M̃±

UU , M̃uv = M̃±
uv = M̃±

UV ,

M̃vu = M̃±
vu = M̃±

V U , M̃vv = M̃±
vv = M̃±

V V .

(41)

Then, for r and s assuming x and y, we have

i

h̄

∂2S̃−
∂ũ′′

r ∂ũ′′
s

= hT
r M̃vuM̃−1

uu hs,

i

h̄

∂2S̃+
∂ṽ′′

r ∂ṽ′′
s

= hT
r M̃uvM̃−1

vv hs,

(42)

with hT
x = (1,0). In addition, R(ṽ′′

+, ũ′
+, ṽ′

−, ũ′′
−,T ) = R(Ṽ′′

+,
Ũ′

+, Ṽ′
−, Ũ′′

−,T ) ≡ R̃, with

R̃ = [
det M̃uu

]−1/2 [
det M̃vv

]−1/2

× [
1 − hT

y M̃vuM̃−1
uu hyh

T
y M̃uvM̃−1

vv hy

]−1/2
. (43)

Inserting the last results in Eq. (39), we obtain

PT = Ẽ−1/2 det M̃uu det M̃vv, (44)

where

Ẽ = Ẽ ′ + [(det M̃uu det M̃vv − det Ã det B̃)

× (det M̃uu det M̃vv − det C̃ det D̃) − Ẽ ′′]2,

Ẽ ′ = −4(det M̃uu det M̃vv det Ã′ det B̃′)2,

Ẽ ′′ = (det Ã′)2 det B̃ det D̃ − (det Ã′ det B̃′)2

+ (det B̃′)2 det Ã det C̃,

with

(
Ã D̃

C̃ B̃

)
≡

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎞
⎟⎟⎟⎠ M̃,

(
Ã′ D̃′

C̃′ B̃′

)
≡

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞
⎟⎟⎟⎠ M̃.

(45)

Equation (44) defines the general recipe for the calculation
of the semiclassical purity and constitutes, therefore, the
second important contribution of this paper. Crucial informa-
tion emerges from this result, namely, that the semiclassical
purity strongly depends on the determinant of sub-blocks of
the tangent matrix. This implies the purity to be essentially
determined by the stability of the (real) classical trajectories
underlying the corresponding classical system. In other words,
the semiclassical purity is sensitive to whether the trajectory
is chaotic or regular.

Note that Eq. (44) results the unit for the case of noninter-
acting subsystems, in agreement with the result predicted by
quantum theory. In this case, the elements M̃urus

, M̃urvs
, M̃vrus

,
and M̃vrvs

, where both r and s may assume x and y, with
r 	= s, vanish because the subspaces do not couple. Then, a
straightforward manipulation of Eq. (44) leads to the expected
result.
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Therefore, given the classical Hamiltonian H (v,u) and the
center z0 of the initial state, the calculation of the purity with
Eq. (44) becomes a problem of classical mechanics. One may
wonder whether the semiclassical formula is able to describe
the dependence of the purity on the characteristics of the
initial state other than its centroid. However, by examining
Eq. (14), we realize that H (v,u) itself has information not only
about the physical interaction, but also contains quantities that
characterize |z0〉, namely, its variances bx,y and cx,y .

IV. CASE STUDY: NONLINEARLY COUPLED
OSCILLATORS

As an example of application of the formalism, we show
now that, using Eq. (44), the short-time behavior of the purity
is suitably reproduced.

Consider the following Hamiltonian,

Ĥ = Ĥx ⊗ 1y + 1x ⊗ Ĥy + λĤx ⊗ Ĥy, (46)

where

Ĥr = p̂2
r

2mr

+ mrω
2
r q̂

2
r

2

for r = x or y. The initial state |ψ0〉 = |z0x〉 ⊗ |z0y〉 is chosen
such that |z0r〉 is the coherent state associated with Ĥr . The
annihilation operator âr and its eigenvalue z0r are

âr = 1√
2

(
q̂r

br

+ ip̂r

cr

)
and z0r = 1√

2

(
q0r

br

+ ip0r

cr

)
,

where br = √
h̄/(mrωr ) and cr = √

mrh̄ωr . (q0r ,p0r ) gives
the location of the center of the wave packet in phase
space. In terms of the annihilation and creation operators, the
Hamiltonian is written

Ĥ = h̄
xâ
†
x âx + h̄
yâ

†
y ây + h̄�â†

x âx â
†
y ây + ε0, (47)

where 
r = ωr + �/2, � = λh̄ωxωy , and ε0 = h̄(ωx + ωy)/2.
According to Eq. (14), the underlying classical Hamiltonian is

H (v,u) = h̄
xvxux + h̄
yvyuy + h̄�vxuxvyuy + ε0.

The classical trajectories can readily be integrated and are
given by ⎛

⎜⎜⎜⎝
ux(t)

uy(t)

vx(t)

vy(t)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

u′
xe

−λx t

u′
ye

−λy t

v′
xe

+λx t

v′
ye

+λy t

⎞
⎟⎟⎟⎠ , (48)

where λx = i(
x + �u′
yv

′
y) and λy = i(
y + �u′

xv
′
x). The

tangent matrix can be written as the product of two matrices
M1 and M2 such that⎛

⎜⎜⎜⎝
δux

δu′′
y

δv′′
x

δv′′
y

⎞
⎟⎟⎟⎠ = M2M1

⎛
⎜⎜⎜⎝

δu′
x

δu′
y

δv′
x

δv′
y

⎞
⎟⎟⎟⎠ , (49)

where

M1 =

⎛
⎜⎜⎜⎝

1 −au′
xv

′
y 0 −au′

xu
′
y

−au′
yv

′
x 1 −au′

yu
′
x 0

0 av′
xv

′
y 1 av′

xu
′
y

av′
yv

′
x 0 av′

yu
′
x 1

⎞
⎟⎟⎟⎠ ,

with a = i�T , and

M2 =

⎛
⎜⎜⎜⎝

e−λxT 0 0 0

0 e−λyT 0 0

0 0 e+λxT 0

0 0 0 e+λyT

⎞
⎟⎟⎟⎠ .

As we are interested just in the trajectory starting from u′ = z0

and v′ = z∗
0, we obtain

det M̃uu = e−(λx+λy )T (1 − a2|z0x |2|z0y |2),

det M̃vv = e+(λx+λy )T (1 − a2|z0x |2|z0y |2),

and, according to Eq. (45),

det Ã = a2|z0x |2(z∗
0y)2e−(λx−λy )T ,

det B̃ = a2|z0x |2(z0y)2e+(λx−λy )T ,

det C̃ = a2(z∗
0x)2|z0y |2e+(λx−λy )T ,

det D̃ = a2(z0x)2|z0y |2e−(λx−λy )T ,

det Ã′ = az∗
0xz

∗
0y,

det B̃′ = −az0xz0y.

Then, Eq. (44) becomes

PT = 1 + x√
1 + 6x + x2(3 + 2x)2

, (50)

where x = |z0x |2|z0y |2�2T 2. It is important to compare the
semiclassical result with the exact one. Using common
techniques of the quantum formalism, we obtain

PT = e−2|z0x |2
∑
n,m

|z0x |2(n+m)

n!m!

× exp

{
−4|z0y |2 sin2

[
�T (n − m)

2

]}
. (51)

This result is clearly different from the semiclassical one.
In particular, we see that, at the instant 2π/�, the quantum
result predicts the total recoherence of the subsystem (i.e.,
P2π/� = 1). The semiclassical formula, however, results in
a monotonically decreasing function of T and, as such, is
not able to reproduce the recoherence. On the other hand, let
us consider the short-time scale (�T 
 1). In this case, the
quantum result simplifies to

PT � 1 − 2|z0x |2|z0y |2�2T 2, (52)

which accurately agrees with the semiclassical purity PT in
this limit.

This example revealed the limitations of our semiclassical
formula. We see that the approach is not able to capture the
physics of recoherences, which is associated with important
quantum phenomena such as interferences and revivals. Ac-
tually, we have seen that the semiclassical purity accurately
reproduces the exact result only within a very short time
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scale (�T 
 1) that is much shorter than the one in which
recoherence occurs (�T = 2π ). It has been shown in the
literature that interference phenomena can be reproduced by
semiclassical approaches involving more than one trajectory
(see, for instance, Ref. [34]). We expect a similar strategy to
be able to improve our results for longer times. This, however,
requires one to carefully revisit the formalism looking for
further contributing trajectories, which do not exactly obey
the boundary conditions (38).

As far as the entanglement is concerned—here, measured
by the linear entropy Slin = 1 − PT —we may write

Slin � 2HintTxTy, (53)

where we have defined the dimensionless time Tr ≡ ωrT .
In this expression, Hint corresponds precisely to the classical
version of the interaction Hamiltonian given in Eq. (46). Notice
that the short-time entanglement grows proportionally with
the magnitude of the interaction, as expected. Surprisingly,
however, it does not depend on h̄ at all, thus corroborating
our claim that the onset of the entanglement dynamics can be
described in terms of classical mechanisms.

It is worth noticing that our semiclassical formula does
predict a dependence on h̄, in general. Consider, for instance,
an arbitrary classical function H (q,p). The application of
usual quantization rules to this function (see, e.g., Ref. [35])
produces an h̄-independent operator H(q̂,p̂). However, the
classical Hamiltonian entering in our recipe is given by
〈z|h(q̂,p̂)|z〉 = H (q,p) + ∑

n>0 h̄nfn(q,p), which generally
depends on h̄ [17]. It follows that the stability matrix and
the semiclassical purity will depend on h̄ as well. However,
in the regime of large actions and energies, this dependence
manifests as a perturbation to the dynamics generated by
H (q,p) so that our claim remains valid.

V. FINAL REMARKS

We have derived a semiclassical formula for the purity of
pure bipartite systems initially prepared in a product of coher-
ent states. Since, here, we are concerned only with pure states,
our formula turns out to be a direct semiclassical measure of
entanglement. As a preliminary step toward the development
of our formalism, we have derived a unified semiclassical
formula, which is able to approach both propagators and their
complex conjugates.

Our result for the semiclassical purity is given in terms of a
very compact formula (44), which is shown to depend only on
the trajectories of an auxiliary classical system. Specifically,
the short-time entanglement dynamics is proven to depend
exclusively on the elements of the tangent matrix, which
defines the local stability of the classical trajectories. As a
consequence, the initially separable wave functions get spread
and then entangle according to a rate that strongly depends
on whether the corresponding classical trajectory is chaotic
or regular.

Finally, in order to illustrate the theory, the formalism
has been applied to the problem of two nonlinearly coupled
oscillators, whose dynamics is rich in quantum effects, such
as collapses and revivals. The semiclassical approximation
has been shown to exactly reproduce the entanglement
dynamics in the short-time regime. This is consistent with
the approximations underlying the method.

Our results are in qualitative consonance with those
reported in Refs. [18,19] and give additional analytical support
to the widely known fact that the entanglement dynamics in
the regime of short times depends on the characteristics of the
classical point in phase space in which the initial state has been
centered (see, e.g., Ref. [5]). Moreover, they emphasize the
fact that the short-time entanglement is promoted essentially
by classical mechanisms, which here have been identified to be
the stability of underlying classical trajectories. Our findings
provide, therefore, analytical support for the numerical results
of Refs. [6,8], which show that it is possible to mimic the
entanglement dynamics in terms of entropic measures defined
in the Liouvillian theory.

The natural continuation of this paper consists in extending
the formalism to spin degrees of freedom. Moreover, even
though we have assumed the initial state to be a product of
coherent states, the generalization of the semiclassical purity
for arbitrary initial states is possible. Research on these topics
is now in progress.
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