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Quantum correlation between the selection of the problem and that of the solution
sheds light on the mechanism of the quantum speed-up
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In classical problem solving, there is, of course, correlation between the selection of the problem on the part of
Bob (the problem setter) and that of the solution on the part of Alice (the problem solver). In quantum problem
solving, this correlation becomes quantum. This means that Alice contributes to selecting 50% of the information
that specifies the problem. As the solution is a function of the problem, this gives to Alice advanced knowledge
of 50% of the information that specifies the solution. Both the quadratic and exponential speed-ups are explained
by the fact that quantum algorithms start from this advanced knowledge.
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I. OUTLINE OF THE ARGUMENT

Quantum algorithms require fewer computation steps than
their classical counterparts. The reason for this quantum
speed-up is not well understood. For example, recently Gross
et al. [1] asserted that the exact reason for it has never been
pinpointed. The key to the present explanation of the speed-up
is the quantum correlation existing between the selection of the
problem on the part of Bob (the problem setter) and that of the
solution on the part of Alice (the problem solver). Because of it,
all is like Alice contributed to selecting 50% of the information
that specifies the problem. Since the solution is a function of the
problem, this gives to Alice the advanced knowledge of 50%
of the information that specifies the solution. The speed-up
is explained by the fact that Alice starts from this advanced
knowledge.

The quantum correlation we are dealing with appears at the
level of the whole quantum experiment, from the measurement
required to put the quantum system in a known state, necessary
to prepare the problem, to the measurement required to extract
the solution; see also Refs. [2–4].

We focus on Grover’s [5] quantum search algorithm. Bob
selects a value of b ∈ {0,1}n, Alice should find it by computing
the Kronecker function δ(b,a) for various values of a ∈ {0,1}n.
We consider the simplest instance n = 2. With a classical
algorithm, Alice should plan three computations of δ(b,a) to
be certain of finding the solution, with Grover’s algorithm, one
computation. There is a quantum speed-up.

In the original Grover’s algorithm, a register A, under the
control of Alice, contains the value of a; the value of b is hard
wired inside the black box that, given in input a value of a,
computes δ(b,a). To highlight quantum correlation, we add a
register B, under the control of Bob, containing the value of b.
We call Â the content of register A, B̂ that of register B – Â

and B̂ are commuting observables.
Initially, register B is in a maximally mixed state. As usual,

Alice prepares register A in a uniform, coherent superposition
of all the possible values of a. The initial state of the two
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registers is thus:

|ψ〉 = 1
4 (eiϕ0 |00〉B + eiϕ1 |01〉B + eiϕ2 |10〉B + eiϕ3 |11〉B)

(|00〉A + |01〉A + |10〉A + |11〉A), (1)

where the ϕi are independent random phases, each with
uniform distribution in [0,2π ]. We use the random-phase
representation of a mixed state, instead of the density operator,
to keep the usual state vector representation of the quantum
algorithm. The density operator is simply the average over
all the ϕi of the product of the ket by the bra: 〈|ψ〉〈ψ |〉∀ϕi

.
The two bits von Neumann entropy of the state of B—and of
the overall quantum state (1)—corresponds to the complete
indeterminacy of the value of b.

In order to prepare register B in the desired value of b, say
b = 00, Bob measures B̂ in state (1), thus randomly selecting
a value of b, say b = 01. This projects state (1) on:

Pα|ψ〉 = 1
2 |01〉B (|00〉A + |01〉A + |10〉A + |11〉A), (2)

here and in the following we denote projection operators by
the letter P . The entropy of the quantum state goes to zero with
the determination of the value of b. Then he applies to register
B a permutation of the values of b—a unitary transformation
UB—that changes the randomly selected value into the desired
one:

UBPα|ψ〉 = 1
2 |00〉B(|00〉A + |01〉A + |10〉A + |11〉A). (3)

The unitary part of the quantum algorithm, UBA, sends
state (3) into

UBAUBPα|ψ〉 = |00〉B |00〉A. (4)

Register A contains the solution, namely the value of b
chosen by Bob. Alice acquires the solution by measuring Â.
Of course there is a one-to-one correlation between the value
of b chosen by Bob and the solution found by Alice. Up to
the permutation introduced by UB , this corresponds to the
quantum correlation between the outcome of measuring B̂ in
(1) and that of measuring Â in (4). From the standpoint of
quantum correlation, which concerns repetitions of the same
quantum experiment, UB should be considered fixed. The fact
that Bob chooses the permutation UB to obtain the desired
value of b belongs to a different film.
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With UB fixed, all is like Bob’s measurement of B̂ randomly
selected the value b = 00, which becomes in fact a fixed
permutation of the randomly selected value b = 01; in this
special sense, we will speak of the random selection also of
the value of b chosen by Bob. Moreover, Bob’s measurement
can be performed indifferently at the beginning or the end of
the algorithm. We show the quantum development in the case
that this measurement is performed at the end:

|ψ〉 = 1
4 (eiϕ0 |00〉B + eiϕ1 |01〉B + eiϕ2 |10〉B + eiϕ3 |11〉B )

(|00〉A + |01〉A + |10〉A + |11〉A) (5)

UB |ψ〉 = |ψ〉 (6)

UBAUB |ψ〉 = 1
2 (eiϕ0 |00〉B |00〉A + eiϕ1 |01〉B |01〉A
+ eiϕ2 |10〉B |10〉A + eiϕ3 |11〉B |11〉A), (7)

PωUBAUB |ψ〉 = |00〉B |00〉A; (8)

of course UB changes the maximally mixed state of register
B into itself; for reasons that will become clear, we have
assumed that the final measurement of Â on the part of Alice
still randomly projects on b = 00. We can see why Bob’s
measurement can be deferred at the end: the projection of (7)
on (8), back evolved by U

†
BU

†
BA, becomes the projection of (1)

on (2).
Thinking that all measurements are performed in the

maximally entangled state (7) makes it more clear that the
value of b is randomly selected by either Bob’s or Alice’s
measurement. Either measurement projects state (7) on the
solution eigenstate (8), where both registers contain the
randomly selected value of b; correspondingly, the two-bit
entropy of the quantum state goes to zero.

Unlike measurements, projections are not localized in time.
They can be back evolved by the inverse of the time forward
unitary evolution. Thus, there is no reason to ascribe the
projection on the solution eigenstate, or the corresponding
reduction of entropy and random selection of the value of
b, to one measurement rather than the other. Because of the
symmetry between the two measurements, we ascribe the
determination of 50% of the bits of b to the measurement
performed by Alice, the other 50% to that performed by Bob.

Halving the projection on the solution can be done in many
ways. In Sec. II C we will symmetrize for all the possible
ways, here we exemplify one way. We break down Â into
content of first qubit Â0 and content of second qubit Â1; we
call a0 (a1) the eigenvalue obtained by measuring Â0 (Â1).
We define in a similar way B̂0, B̂1, b0, and b1. We ascribe
to Alice the measurement of Â0, which selects a0 = b0 = 0,
to Bob the measurement of B̂1, which selects a1 = b1 = 0.
Together, the two corresponding projections project on the
solution; individually, they halve the projection on the solution.

Summing up, half of the bits of b are randomly selected
by Bob, the other half by Alice. We show that this means
that Alice knows in advance 50% of the bits of b. It suffices
to note that states (5) through (8) are the original quantum
algorithm—namely states (1) through (4)—with the quantum
state relativized to the observer Alice in the sense of relational
quantum mechanics [6]. By definition, initially Alice does not
know the content of register B. To her, register B is in a
maximally mixed state even if Bob has already measured B̂.

The 2 bit entropy of this state—and of the overall quantum
state (5)—represents Alice’s ignorance of the value of b.
When Alice measures Â at the end of the algorithm, the
quantum state (7) is projected on the solution eigenstate (8).
This projection is random to Alice, it is actually on the value
of b chosen by Bob. The entropy of the quantum state goes
to zero and Alice acquires full knowledge of the value of
b. Thus, the entropy of the relativized quantum state gauges
Alice’s ignorance of the value of b throughout the execution
of the algorithm.

As we have said before, when Alice measures Â at the end of
the algorithm, half of the projection on the solution eigenstate
is Alice’s contribution to the random selection of the value of
b. We back evolve to the beginning of the quantum algorithm
(to immediately after the permutation UB) this halved projec-
tion, for example, the projection associated with measuring
Â0 and obtaining a0 = b0 = 0; we should apply U

†
BA to the

projection. This projects the initial state (6) on

1

2
√

2
(eiϕ0 |00〉B + eiϕ1 |01〉B)(|00〉A +|01〉A +|10〉A +|11〉A),

(9)

halving the entropy of the state of register B. This means
that Alice, before starting the algorithm and “after” this back-
evolved half projection, knows that b0 = 0, namely one of the
two bits of the solution she will read in the future in register A.

We are at the level of elementary logical operations,
where knowing means doing. Alice knows of the advanced
information by acting like she knew it, namely by using it to
identify classically the missing bit (the value of b1) with a
single computation of δ(b,a). Correspondingly, as we showed
in Refs. [3,4], the quantum algorithm is the superposition
of all the possible ways of taking one bit of information
about the solution and, given the advanced knowledge of
this bit, classically identifying the missing bit with a single
computation of δ(b,a). This explains the speed-up from three
computations to one computation.

We note that the entangled state (7) is the outcome of
the unitary part of any quantum algorithm that starts with a
maximally mixed state of register B and solves the database
search problem, with or without a quantum speed-up. In fact,
the quantum algorithm can do either without or with the
advanced knowledge. In the former case, it is isomorphic
with a classical algorithm that starts from the usual initial
state and yields no speed-up. In the latter, it is isomorphic with
a classical algorithm that starts from the initial state “after”
the back-evolved half projection on the solution—thus with
advanced knowledge of 50% of the bits of the solution.

The above explanation of the speed-up generalizes to n > 2
and to the very diverse quantum algorithms that yield an
exponential speed-up. In all the cases examined, the quantum
algorithm requires the number of function evaluations [compu-
tations of δ(b,a) in Grover’s case] of a classical algorithm that
knows in advance 50% of the information about the solution.
In a previous work [3], we called this the 50% rule of the
quantum algorithms.

The 50% rule has a practical interest: It allows us to
characterize the problems solvable with a quantum speed-up
in an entirely computer science framework with no physics
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involved—an important simplification. It should also allow us
to identify new quantum speed-ups.

Section II highlights the mechanism of the speed-up in
the case of Grover’s algorithm. In Sec. III, we check that
the 50% rule holds for a class of quantum algorithms that
yield an exponential speed-up. In Sec. IV, we develop a new
quantum speed-up out of the 50% rule. In Sec. V we draw the
conclusions.

II. THE MECHANISM OF THE QUANTUM SPEED-UP
IN GROVER’S ALGORITHM

We develop in detail the line of thinking provided in the
former section, first for n = 2 then for n > 2.

A. Extended representation of Grover’s algorithm

We relativize to Alice the quantum state of the original
Grover’s algorithm. With n = 2, registers B and A are two
qubits each. A one-qubit register V is meant to contain the
result of the computation of δ(b,a), modulo 2 added to its
initial content for logical reversibility. Let us assume that Bob
chose b = 00; the initial state of the three registers is in any
case:

|ψ〉 = 1

4
√

2
(eiϕ0 |00〉B + eiϕ1 |01〉B + eiϕ2 |10〉B + eiϕ3 |11〉B )

× (|00〉A + |01〉A + |10〉A + |11〉A)(|0〉V − |1〉V ).

(10)

The two-bit entropy of the state of register B represents Alice’s
initial ignorance of Bob’s choice.

The computation of δ(b,a) is performed in quantum paral-
lelism on each term of the superposition. For example, the input
eiϕ1 |01〉B |01〉A|0〉V means that the input of the computation
of δ(b,a) is b = 01, a = 01 and that the initial content of
register V is 0. The computation yields δ(01,01) = 1 that,
modulo 2 added to the initial content of V , yields the output
eiϕ1 |01〉B |01〉A|1〉V (B and A keep the memory of the input for
logical reversibility). Similarly, the input −eiϕ1 |01〉B |01〉A|1〉V
goes into the output −eiϕ1 |01〉B |01〉A|0〉V . More in general,
the input eiϕb |b〉B |a〉A(|0〉V − |1〉V ) goes into the output
−eiϕb |b〉B |a〉A(|0〉V − |1〉V ) if a = b, remains unaltered oth-
erwise. In the overall, a single computation of δ(b,a) sends
state (10) into:

Uδ|ψ〉 = 1

4
√

2
[eiϕ0 |00〉B(−|00〉A + |01〉A + |10〉A + |11〉A)

+ eiϕ1 |01〉B (|00〉A − |01〉A + |10〉A + |11〉A)

+ eiϕ2 |10〉B (|00〉A + |01〉A − |10〉A + |11〉A)

+ eiϕ3 |11〉B (|00〉A + |01〉A + |10〉A − |11〉A)]

× (|0〉V − |1〉V ), (11)

a maximally entangled state where four orthogonal states
of register B, each containing a single value of b, are
correlated with four orthogonal states of register A. To
transform entanglement into correlation between measurement

outcomes, we apply to register A the unitary transformation
UA such that:

UAUδ|ψ〉 = 1

2
√

2
(eiϕ0 |00〉B |00〉A + eiϕ1 |01〉B |01〉A

+ eiϕ2 |10〉B |10〉A + eiϕ3 |11〉B |11〉A)

× (|0〉V − |1〉V ). (12)

We incidentally note that eliminating register V , like we
did in Sec. I, does not alter the unitary character of the
transformations. Measuring Â in state (12), projects it on the
solution eigenstate:

1√
2
|00〉B |00〉A(|0〉V − |1〉V ), (13)

yielding the eigenvalue a = 00, namely the solution of the
problem. Alice acquires full knowledge of the value of b
chosen by Bob and the entropy of the quantum state becomes
zero. This entropy gauges Alice’s knowledge of the value of b
throughout the execution of the algorithm.

B. Back evolving 50% of the projection on the solution

We show the consequence of ascribing 50% of the deter-
mination of the value of b to a partial measurement performed
by Alice.1 We adopt the example of Sec. I; we assume that
the value of b chosen by Bob is b = 00 and that the partial
measurement is that of Â0. This selects the eigenvalue a0 = 0,
projecting (12) on:

1
2 (eiϕ0 |00〉B |00〉A + eiϕ1 |01〉B |01〉A)(|0〉V − |1〉V ). (14)

We back evolve this projection to the beginning of the quantum
algorithm, by applying to state (14) the inverse of the unitary
part of the algorithm, namely U

†
δ U

†
A. This projects the initial

state of the algorithm, (10), on:

1
4 (eiϕ0 |00〉B + eiϕ1 |01〉B)(|00〉A + |01〉A + |10〉A

+ |11〉A)(|0〉V − |1〉V ). (15)

That the state of register B should have the form it
has in (15) can be seen more directly as follows. We
note that the unitary part of the quantum algorithm is the
identity on the reduced density operator of register B that,
in the random-phase representation, is ρB = 1

2 (eiϕ0 |00〉B +
eiϕ1 |01〉B + eiϕ2 |10〉B + eiϕ3 |11〉B) in both (10) and (12).
By measuring Â0 in state (12), Alice projects ρB on

1√
2
(eiϕ0 |00〉B + eiϕ1 |01〉B). This projection goes back unal-

tered to the beginning of the algorithm.
State (15) says that, “after” back evolved projection, Alice

knows in advance that the value of b is either b = 00 or b = 01,
namely that b0 = 0. Correspondingly, the entropy representing
Alice’s initial ignorance of the solution has decreased from
two to one bit. How Alice utilizes this gain in information to
achieve a speed-up is explained in the next section.

1We should keep in mind that Alice’s measurement contributes
to the random selection of a value of b, then transformed into the
value chosen by Bob by the unitary transformation UB . Since this
latter should be considered fixed from the standpoint of quantum
correlation, we can say that Alice contributes to Bob’s choice.
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C. Utilizing the back evolved half projections

By measuring Â Alice projects state (12) on the solution
eigenstate. Let us go exhaustively through all the possible
ways of halving this projection on the solution. Until now we
have considered the binary observable Â0, whose measurement
tells whether b ∈ {00,01} or b ∈ {10,11}, and Â1, whose
measurement tells whether b ∈ {00,10} or b ∈ {01,11}. There
is a third binary observable, say Â+, whose measurement
tells whether b ∈ {00,11} or b ∈ {01,10}. Measuring any pair
of these three observables projects the output state (12) on
the solution. Measuring any single observable halves the
projection on the solution.

In the overall, there are six halved projections, on {00,01},
{10,11}, . . . , and {01,10}—all the ways of taking a pair
of elements of four. Each halved projection (actually, on
an incoherent superposition of two values of b) goes back
unaltered to the beginning of the quantum algorithm, where it
halves the entropy of Alice’s state of knowledge of the value of
b, originating eight classical computation histories, as follows.

Let us start with the projection on b ∈ {00,01}. In other
words, Alice knows in advance that b ∈ {00,01}. To identify
the missing bit, she should compute δ(b,a) for either a = 00
or a = 01. We assume that she does it for a = 00; we are
pinpointing one of the possible combinations. If the outcome
of the computation is δ = 1, this means that b = 00. This
originates two classical computation histories (represented as
sequences of sharp quantum states), depending on the initial
state of register V . History 1: initial state eiϕ0 |00〉B |00〉A|0〉V ,
the state after the computation eiϕ0 |00〉B |00〉A|1〉V . History 2:
initial state eiϕ0 |00〉B |00〉A|1〉V , the state after the computation
eiϕ0 |00〉B |00〉A|0〉V . If the outcome of the computation is
δ = 0, this means that b = 01. This originates the other
two histories. History 3: initial state eiϕ1 |01〉B |00〉A|0〉V , the
state after the computation eiϕ1 |01〉B |00〉A|0〉V . History 4:
initial state eiϕ1 |01〉B |00〉A|1〉V , the state after the computation
eiϕ1 |01〉B |00〉A|1〉V . If she computes δ(b,a) for a = 01 instead,
this originates the other four histories, and so on.

If we sum together all the different histories (some histories
are originated more than once), each with a suitable phase,
and normalize, we obtain the function evaluation stage of the
quantum algorithm, namely the transformation of state (10)
into (11).

This answers the question of how Alice knows of the
advanced information—the information conveyed back by
the back-evolved half projections on the solution. We are at
the level of elementary logical operations, where “knowing”
means “doing.” Alice knows of the advanced information by
acting like she knew it, namely by computing on the basis
of it the missing information. It should be noted that Alice
could also ignore (do without) the advanced information,
which simply means a quantum algorithm with no speed-up,
isomorphic with a classical algorithm that starts from complete
ignorance of the value of b. An algorithm that yields a speed-up
is isomorphic with a classical algorithm that starts from the
back-evolved half projections on the solution.

The 50% rule only says that the quantum algorithm can
be broken down into a superposition of classical computation
histories that start from the advanced information; the history
phases and the rotation of the basis of register A (i.e.,

UA) after the computation of δ(b,a) are what is needed for
reconstructing the quantum algorithm. However, in Refs. [3,4],
we have shown that the quantum algorithm can be synthesized
from the advanced information classical algorithm (from the
classical computation histories in quantum notation) through
an optimization procedure. We should choose history phases
and rotation of the basis of A in such a way that they
maximize (i) entanglement between registers A and B after
the computation of δ(b,a) and (ii) the information about the
solution readable in A at the end of the algorithm.

D. Quantum search for n > 2

Registers B and A are n qubits each. Register V is one qubit.
Given the advanced knowledge of n/2 of the bits of the value
of b selected by Bob, in order to compute the missing n/2 bits,
Alice should compute δ(b,a) for all the values of a in quantum
superposition and apply to register A the appropriate unitary
transformation UA an O(2n/2) times; each time UA maximizes
the entanglement between registers B and A. Eventually we
obtain (approximately):

1

2(n+1)/2

(
2n−1∑
c=0

eiϕc |c〉B |c〉A
)

(|0〉V − |1〉V ) . (16)

Measuring either Â or B̂, or both, projects (16) on the solution
eigenstate. According to the rationale of the previous sections,
we should halve the final projection on the solution in all
possible ways; for example, by measuring Â0, . . . ,Â n

2 −1. Let
I be the information acquired by reading the solution at the end
of the algorithm. Evidently, the considerations of the previous
sections apply also here: Back evolving a half projection to
the beginning of the quantum algorithm, makes available at
the input of the computation the corresponding 50% of I.

The fact that, for large n, the optimal number of times
is π

4 2n/2, not 2n/2, does not imply that Grover’s algorithm
outperforms the 50% rule. In fact this optimal number is
associated with a nonzero probability—O (1/2n)—that the
algorithm delivers a wrong solution. One should look for the
possible cases where Grover’s algorithm yields the solution
with certainty, like in the case n = 2.

III. CHECKING THE 50% RULE ON OTHER
QUANTUM ALGORITHMS

Until now we have discussed the 50% rule on Grover’s
algorithm. It is therefore important to check that the rule
holds for the very diverse quantum algorithms that yield an
exponential speed-up. In many of these algorithms, there is a
set of functions fb : {0,1}n → {0,1}m known to both Alice and
Bob. Bob selects a value of b and Alice should find a character
of the function fb by computing fb (a) for various values
of a. Since the problems addressed by such algorithms are
structured, identifying the advanced information and sharing
out the projection on the solution between Alice and Bob
requires some care. With respect to the similar section of
Ref. [4], the present one provides various clarifications.
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A. Deutsch and Jozsa’s algorithm

In Deutsch and Jozsa’s [7] algorithm, the set of functions
known to both Bob and Alice is all the constant and “balanced”
functions (with an even number of zeros and ones) fb :

{0,1}n → {0,1}. Array (17) gives this set for n = 2. The
string b ≡ b0,b1, . . . ,b2n−1 is both the suffix and the table of
the function—the sequence of function values for increasing
values of the argument.

a f0000(a) f1111(a) f0011(a) f1100(a) f0101(a) f1010(a) f0110(a) f1001(a)
00 0 1 0 1 0 1 0 1
01 0 1 0 1 1 0 1 0
10 0 1 1 0 0 1 1 0
11 0 1 1 0 1 0 0 1

(17)

Alice should find whether the function selected by Bob
is balanced or constant by computing fb(a) = f (b,a). In the
classical case this requires, in the worst case, a number of
computations of f (b,a) exponential in n; in the quantum case
one computation.

The initial state of the algorithm relativized to Alice is:

1

2
√

2
(ρ0e

iϕ0 |0000〉B + ρ1e
iϕ1 |1111〉B + ρ2e

iϕ2 |0011〉B
+ ρ3e

iϕ3 |1100〉B + · · ·)(|00〉A + |01〉A + |10〉A
+ |11〉A)(|0〉V − |1〉V ). (18)

The coefficients ρi > 0, such that
∑

ρ2
i = 1, account for a

nonflat probability distribution of Bob’s selection. Things will
be simpler if we assume that the ρi are the same for dual values
of b, like 0000 and 1111. Modulo 2 adding the result of the
computation of f (b,a) to the content of V and performing the
Hadamard transform on register A yields the entangled state:

1√
2

[(ρ0e
iϕ0 |0000〉B − ρ1e

iϕ1 |1111〉B )|00〉A
+ (ρ2e

iϕ2 |0011〉B − ρ3e
iϕ3 |1100〉B )|10〉A + · · ·]

× (|0〉V − |1〉V ). (19)

Measuring B̂ and Â in (19) yields Bob’s selection of a value
of b and the solution found by Alice: all zeros if the function
is constant and not so if it is balanced.

We check that the quantum algorithm requires the number
of function evaluations of a classical algorithm that knows
in advance 50% of I; we call I the information acquired
by reading the solution at the end of the algorithm. Since
the solution is a function of b, we can define the advanced
information as any 50% of the information about the solution
contained in b, namely in the table of fb(a). If fb(a) is constant,
for reasons of symmetry, the advanced information is any 50%
of the table of the function; see Array (17). If the function is
balanced, still for reasons of symmetry, it is any 50% of the
table that does not contain different values of the function;
for each balanced function there are two such half tables.
In fact, the half tables that contain different values of the
function already indicate that the function is balanced and
thus contain 100% of I. For the good half tables, that do not
contain different values of the function, the solution (whether
the function is constant or balanced) is always identified by
computing fb(a) for only one value of a (any one) outside

the half table. Thus, both the quantum algorithm and the
advanced information classical algorithm require just one
function evaluation.

We should note that the present definition of advanced
information:

(i) Could be applied as well to Grover’s algorithm, where
it becomes any 50% of the table of δ(b,a) (for a given value of
b) that does not contain the value δ(b,a) = 1. All the results
of Sec. II would remain unaltered.

(ii) Identifies a back-evolved half projection on the solution.
In fact (disregarding the sign of the random-phase factors that
is irrelevant) the reduced density operator of register B in the
random-phase representation is:

ρB = ρ0e
iϕ0 |0000〉B + ρ1e

iϕ1 |1111〉B + ρ2e
iϕ2 |0011〉B

+ ρ3e
iϕ3 |1100〉B + · · · (20)

throughout the unitary part of the quantum algorithm. We
assume that the advanced information (a good half table) is
f (b,00) = 0 and f (b,01) = 0. This means that the function
selected by Bob is either f0000(a) or f0011(a); see Array (17).
This corresponds to projecting ρB on ρ ′

B = (ρ0e
iϕ0 |0000〉B +

ρ2e
iϕ2 |0011〉B ), up to normalization; this outcome goes back

unaltered to the beginning of the quantum algorithm, where
it becomes Alice’s advanced knowledge of the solution. We
should note that Alice, by measuring Â1 in state (19) and
finding a1 = 0, projects ρB not on ρ ′

B but on:

ρB = ρ0e
iϕ0 |0000〉B + ρ1e

iϕ1 |1111〉B
+ ρ2e

iϕ2 |0011〉B + ρ3e
iϕ3 |1100〉B, (21)

up to normalization. To project (21) on ρ ′
B , Bob should measure

a single B̂i , e.g., B̂0, thus finding in present assumptions b0 =
0. This latter projection, although performed by Bob, can be
added to Alice’s advanced knowledge of the solution. In fact
it selects between dual values of b, which does not disclose to
Alice any information about the solution and does not affect
the entropy of the reduced density operator of register A in
state (19).

This time, sharing out the projection on the solution
between Alice and Bob would be more complex, because of the
asymmetry between the two actions. However, we can bypass
this difficulty. It suffices to note that, with all the ρi > 0,
state (19) is certainly entangled. Thus, in the present criteria,
there is in any case a nonzero contribution to the determination
of the value of b on the part of both Alice and Bob. This is
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enough to see that the advanced information available to Alice
cannot exceed 50% of I. In fact, increasing it over 50% would
mean increasing any good half table by one row, which would
project the output state (19) on the solution, leaving to Bob
nothing to project. Summing up, we have ascertained that
Alice’s advanced information is back-evolved projection and
that it is (and cannot exceed) 50% of I.

Now we go to the history superposition picture. Let us
assume that the advanced information is f (b,00) = 0 and
f (b,01) = 0. Alice can find the value of b (thus the character
of the function), by performing function evaluation for either
a = 10 or a = 11. We assume that she does it for a = 10. If
the result of the computation is 0, this means that b = 0000.
This originates two classical computation histories in quantum
notation: history 1: initial state ρ0e

iϕ0 |0000〉B |10〉A|0〉V , the
state after the computation ρ0e

iϕ0 |0000〉B |10〉A|0〉V ; history 2:
initial state ρ0e

iϕ0 |0000〉B |10〉A|1〉V , the state after the compu-
tation ρ0e

iϕ0 |0000〉B |10〉A|1〉V . If the result of the computation
is 1, this means that b = 0011. This originates two histories:
history 3: initial state ρ2e

iϕ2 |0011〉B |10〉A|0〉V , the state after
the computation ρ2e

iϕ2 |0011〉B |10〉A|1〉V ; history 4: initial
state ρ2e

iϕ2 |0011〉B |10〉A|1〉V , the state after the computation

ρ2e
iϕ2 |0011〉B |10〉A|0〉V . If she performs function evaluation

for a = 11 instead, this originates other four histories, and
so on. If we sum together all the different histories, each
with a suitable phase, and normalize, we obtain the function
evaluation stage of the quantum algorithm.

To obtain the quantum algorithm, we should choose history
phases and the final unitary transformation applied to register
A in such a way that the information about the solution readable
in that register at the end of the algorithm is maximized.

B. Simon’s and the hidden subgroup algorithms

In Simon’s [8] algorithm, the set of functions is all the fb :
{0,1}n → {0,1}n−1 such that fb(a) = fb(c) if and only if a = c
or a = c ⊕ h(b); ⊕ denotes bitwise modulo 2 addition; the bit
string h(b)≡h

(b)
0 ,h

(b)
1 , . . . ,h

(b)
n−1, depending on b and belonging

to {0,1}n excluded the all zeros string, is a sort of period of the
function. Array (22) gives the set of functions for n = 2. The bit
string b is both the suffix and the table of the function. Since
h(b) ⊕ h(b) = 0, each value of the function appears exactly
twice in the table, thus 50% of the rows plus one surely
identify h(b).

h(0011) = 01 h(1100) = 01 h(0101) = 10 h(1010) = 10 h(0110) = 11 h(1001) = 11
a f0011(a) f1100(a) f0101(a) f1010(a) f0110(a) f1001(a)

00 0 1 0 1 0 1
01 0 1 1 0 1 0
10 1 0 0 1 1 0
11 1 0 1 0 0 1

(22)

Bob selects a value of b. Alice’s problem is finding the
value of h(b), “hidden” in fb(a), by computing fb(a) = f (b,a)
for different values of a. In present knowledge, a classical
algorithm requires a number of computations of f (b,a)
exponential in n. The quantum algorithm solves the hard part
of this problem, namely finding a string s(b)

j orthogonal2 to h(b),
with one computation of f (b,a). There are 2n−1 such strings.
Running the quantum algorithm yields one of these strings at
random (see further below). The quantum algorithm is iterated
until finding n − 1 different strings. This allows us to find h(b)

by solving a system of modulo 2 linear equations. Register
B is now 2n (n − 1)-qubit, given that b is the sequence of 2n

fields each on n − 1 bits.
The initial state of the algorithm relativized to Alice, with

register V prepared in the all zeros string (just one zero for
n = 2), is:

1
2 (ρ0e

iϕ0 |0011〉B + ρ1e
iϕ1 |1100〉B + ρ2e

iϕ2 |0101〉B
+ ρ3e

iϕ3 |1010〉B + · · ·)(|00〉A + |01〉A
+ |10〉A + |11〉A)|0〉V . (23)

2The modulo 2 addition of the bits of the bitwise product of the two
strings should be zero.

Computing f (b,a), which changes the content of V from
zero to the outcome of the computation, and performing the
Hadamard transform on register A yields:

1
2 {(ρ0e

iϕ0 |0011〉B + ρ1e
iϕ1 |1100〉B )[(|00〉A + |10〉A)|0〉V

+ (|00〉A − |10〉A)|1〉V ] + (ρ2e
iϕ2 |0101〉B

+ ρ3e
iϕ3 |1010〉B )[(|00〉A + |01〉A)|0〉V

+ (|00〉A − |01〉A)|1〉V ] + · · ·}, (24)

where, for each value of b, register A (no matter the content
of V ) hosts even weighted superpositions of the 2n−1 strings
s(b)
j orthogonal to h(b). By measuring Â and B̂ in state (24), we

obtain at random Bob’s selection of b and one of the s(b)
j .

We leave B in its after-measurement state, thus fixing
the value of b, and iterate the “right part” of the algorithm
(preparation of registers A and V , computation of f (b,a), and
measurement of Â) until obtaining n − 1 different s(b)

j .
We check that the quantum algorithm requires the number

of function evaluations of a classical algorithm that knows
in advance 50% of I. Any s(b)

j is a solution of the problem
addressed by the quantum part of Simon’s algorithm. The
advanced information is any 50% of the information about
the solution contained in b. For reasons of symmetry, this is
any 50% of the table of the function that does not contain the
same value of the function twice. In fact, the half tables that
contain a same value twice already specify the value of h(b)
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and thus the value of any s(b)
j . For the half tables that do not

contain the same value of the function twice, the solution is
always identified by computing f (b,a) for only one value of a
(any one) outside the half table. The new value of the function
is necessarily a value already present in the half table, which
identifies h(b) and thus all the s(b)

j . Thus, both the quantum
algorithm and the advanced information classical algorithm
require just one function evaluation. As in Sec. III A, the above
defined advanced information is back evolved projection on the
solution and cannot exceed 50% of I.

Now we go to the history superposition picture. For
example, let us assume that the advanced information is
f (b,00) = 0 and f (b,11) = 1, namely the first and last row of
either f0011(a) or f0101(a); see Array (22). To find which is the
case, Alice should perform a function evaluation for either a =
01 or a = 10. We assume she does it for a = 01. If the result of
the computation is 0, this means that b = 0011. This originates
two classical computation histories in quantum notation:
history 1: initial state ρ0e

iϕ0 |0011〉B |01〉A|0〉V , the state after
the computation ρ0e

iϕ0 |0011〉B |01〉A|0〉V ; history 2: initial
state ρ0e

iϕ0 |0011〉B |01〉A|1〉V , the state after the computation
ρ0e

iϕ0 |0011〉B |01〉A|1〉V . If the result of the computation is
1, this means that b = 0101. This originates two histories:
history 3: initial state ρ2e

iϕ2 |0101〉B |01〉A|0〉V , the state after
the computation ρ2e

iϕ2 |0101〉B |01〉A|1〉V ; history 4: initial
state ρ2e

iϕ2 |0101〉B |01〉A|1〉V , the state after the computation
ρ2e

iϕ2 |0101〉B |01〉A|0〉V . If she performs function evaluation
for a = 10 instead, this originates other four histories, and
so on. If we sum together all the different histories, each
with a suitable phase, and normalize, we obtain the function
evaluation stage of the quantum algorithm. To obtain the
quantum algorithm, we should choose history phases and the
final unitary transformation applied to register A in such a way
that the information about the solution readable in that register
at the end of the algorithm is maximized.

The 50% rule also applies to the generalized Simon’s
problem and to the hidden subgroup problem. In fact the
corresponding algorithms are essentially the same as the
algorithm that solves Simon’s problem. In the hidden subgroup
problem, the set of functions fb : G → W map a group G to
some finite set W with the property that there exists some
subgroup S � G such that for any a,c ∈ G, fb(a) = fb(c) if
and only if a + S = c + S. The problem is to find the hidden
subgroup S by computing fb(a) for various values of a. Now,
a large variety of problems solvable with a quantum speed-up
can be reformulated in terms of the hidden subgroup problem
[9]. Among these we find Deutsch’s problem, finding orders,
finding the period of a function (thus the problem solved by
the quantum part of Shor’s factorization algorithm), discrete
logarithms in any group, hidden linear functions, self-shift
equivalent polynomials, the Abelian stabilizer problem, and
the graph automorphism problem.

IV. APPLYING THE 50% RULE TO THE SEARCH
OF QUANTUM SPEED-UPS

In hindsight, the quantum algorithms examined are skill-
fully designed around the 50% rule. In unstructured database
search, the advanced knowledge of 50% of the solution yields

a quadratic speed-up, given that the number of function
evaluations goes from O (2n) to O(2n/2). Thus, the possibility
of a quadratic speed-up is established by the 50% rule; one
does not need to know Grover’s algorithm. Similarly, in
the structured algorithms that yield an exponential speed-up,
the problem is chosen in such a way that, if one knows
in advance 50% of the rows of the table of the function,
computing fb(a) for a single value of a outside the half table
yields the solution. Thus, the possibility of an exponential
speed-up is established by the 50% rule before knowing the
quantum algorithm.

One way of searching for new quantum speed-ups is thus
looking for problems solvable with a single computation of
fb (a) once that 50% of the rows of the table of the function
are known. We provide an example; see also Ref. [4]. The set
of functions is the 4! functions fb : {0,1}2 → {0,1}2 such that
the sequence of function values is a permutation of the values
of the argument.

a f00011110(a) f00110110(a) f00011011(a) · · ·
00 00 00 00 · · ·
01 01 11 01 · · ·
10 11 01 10 · · ·
11 10 10 11 · · ·

(25)

The string b is both the suffix and the table of the function—the
sequence of function values for increasing values of the
argument. We have chosen this set because, if we know 50% of
the rows of one table, we can identify the corresponding value
of b with a single computation of fb(a). Without advanced
information, three computations of fb(a) are required. Thus
there is room for a speed-up. We build a quantum algorithm
over this possibility. Register B is eight qubits, register A is
two qubits, and register V is two qubits, denoted V0 and V1.
The result of the computation of fb(a) = f (b,a) is bitwise
modulo 2 added to the former content of V . The initial
state is:

1

8
√

6
(eiϕ0 |00011110〉B + eiϕ1 |00110110〉B
+ eiϕ2 |00011011〉B · · ·)(|00〉A + |01〉A + |10〉A
+ |11〉A)(|0〉V0 − |1〉V0 )(|0〉V1 − |1〉V1 ).

Computing f (b,a), then performing the Hadamard transform
on register A, yields

1

4
√

6
[(eiϕ0 |00011110〉B + · · ·)|01〉A + (eiϕ1 |00110110〉B
+ · · ·)|10〉A + (eiϕ2 |00011011〉B + · · ·)|11〉A]

× (|0〉V0 − |1〉V0

)(|0〉V1 − |1〉V1

)
,

an entangled state where three orthogonal states of B (each a
superposition of eight values of b, corresponding to a partition
of the set of 24 functions) are correlated with, respectively,
|01〉A,|10〉A, and |11〉A. Measuring Â in the above state tells
which of the three partitions the function belongs to. In the
case of a classical algorithm, identifying the partition requires
three computations of f (b,a), as readily checked. There is thus
a quantum speed-up.

With the 50% rule, one can figure out any number of these
speed-ups in terms of number of function evaluations. Thus,
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this rule provides a playground for studying the engineering
of quantum algorithms.

V. CONCLUSION

Summarizing, moving from classical to quantum problem
solving, the classical problem-solution correlation becomes
quantum. There is quantum correlation between the selection
of an eigenvalue of B̂ on the part of Bob and that of an
eigenvalue of Â—the solution—on the part of Alice. The
random selection of an eigenvalue of B̂ is required to set
register B in a known eigenstate and then put it in the desired
eigenstate by means of a permutation of the basis vectors of
B. From the standpoint of correlation, which is defined on
repetitions of the same quantum experiment, this permutation
should be considered fixed: the fact that Bob can change it to
always obtain the desired value of b belongs to a different film.
Because of quantum correlation, all is like Alice contributed to
selecting 50% of the information that specifies the problem. As
the solution is a function of the problem, this becomes Alice
knowing in advance 50% of the information that specifies the
solution.

The fact that the quantum speed-up comes from comparing
two classical algorithms, with and without advanced infor-
mation, has a practical interest. It allows us to characterize
the problems solvable with a quantum speed-up in an entirely
computer science framework, with no physics involved—an
important simplification. It should also allow us to identify
new quantum speed-ups, as exemplified in Sec. IV.

The fact that quantum algorithms are faster because they
know in advance 50% of the solution they will themselves
produce in the future has an obvious interest from the
standpoint of the philosophy of quantum mechanics. Future
work should aim to check the 50% rule for all quantum
algorithms found so far, to possibly demonstrate it in a
more general way, for example, for the generic quantum
computational network or quantum Turing machine, and to
explore the quantum speed-ups achievable on the basis of it.
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