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Periodic revival of entanglement of two strongly driven qubits in a dissipative cavity
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We present a phenomenon of an asymptotic revival of bipartite entanglement between two stable solid-state
qubits interacting via a single-mode cavity subject to dissipation. This effect is achievable in cavity quantum
electrodynamics systems, assisted with strong classical pumping detuned from the cavity eigenmode, under the
assumption of short system-bosonic reservoir correlation times. Moreover, we prove that this effect is independent
of the initial cavity state and that all initially prepared Bell states experience the same qualitative effects. We
present a method that can be used to generalize an arbitrary number of solid-state qubits.
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I. INTRODUCTION

Entanglement is a resource essential for successful im-
plementation of quantum information processing [1], and
engineering sustainable entanglement is a necessary require-
ment for any physical realization of a quantum computer.
Since a number of solid-state qubits have been successfully
realized and single qubit operations have been demonstrated
[2], the attention of experimentalists has now shifted toward
interactions between qubits. It is therefore of vital importance
to study processes that can generate or alter entanglement
through an interaction between two or more qubits.

In many realizations it is easier to use cavity quantum
electrodynamics (CQED) systems [3] and couple solid-state
qubits via an optical or a microwave cavity rather than
directly. However, the dissipation inherent to the cavity is
detrimental for the entanglement. It is known that qubit or
cavity dissipation can very quickly lead to disentanglement
of two qubits [4–8]. For carefully chosen initial conditions
and system parameters, a period of disentanglement can
be followed by a finite period of the entanglement revival;
however, the predicted degree of entanglement after revival is
typically about 1% –10% of its initial value [9]. Additionally, a
small amount of entanglement can be created to later undergo
a decay [10]. Moreover, the concept of entanglement revival
has been studied outside the Markovian regime [11–13].

In this article we prove that there are systems where
entanglement is robust against Markovian dissipation. We
find an entanglement behavior where two initially entangled
qubits experience periodic entanglement drops and revivals
to asymptotically recover its initial value. This phenomenon
can be achieved with two qubits driven by a classical ac
off-resonant field and coupled via a dissipative cavity so that
the direct interaction between the qubits is negligible. The
dissipation of the qubits must be sufficiently weak. Lastly we
show that this result is universal with regard to the initial
amplitude of the coherent state of the cavity. Our theory can
be experimentally realized in superconducting qubits coupled
to a microwave cavity [14] or a nitrogen-vacancy (NV) center
in diamond strongly coupled to an optical cavity [15].

This paper is structured as follows. In Sec. II we present
the derivation of the effective multiqubit Hamiltonian in the
interaction picture. Afterward we find the solutions for a
problem of a single qubit interacting with a coherent mode
of radiation in a dissipative cavity, which is followed by an

extension of this problem to the two-qubit case. In Sec. III we
analyze the temporal dynamics of entanglement of this system.
We state our conclusions in Sec. IV.

II. THE MODEL

The interaction of a qubit and a cavity is commonly
described in terms of the Jaynes-Cummings model (JCM) [16],
which is one of the few interacting quantum systems admitting
closed-form solutions. The JCM and its several variants have
become a textbook tool to discuss coupled qubit and photon
systems. Recently, it has been realized that the qubit-field
interaction with an additional strong driving also can be solved
analytically [17–19] even if the cavity dissipation is also
included in the system. Moreover, in Refs. [20,21] it has been
proven that the solutions to the equations of motion for strongly
driven qubits interacting through a cavity vacuum field can be
extended to an unlimited number of qubits, which cannot be
achieved in the simple JCM Hamiltonian.

To keep the treatment general, we consider a Hamiltonian
of a system of N identical qubits coupled to a single-mode
cavity and additionally driven by a classical electromagnetic
field [19],

Ĥ = �

2

N∑
j=1

σ z
j + ωâ†â + A

N∑
j=1

(e−iωctσ+
j + eiωctσ−

j )

+
N∑

j=1

gj (σ+
j â + σ−

j â†), (1)

where � is the level spacing of the qubits, ω is the frequency of
the eigenmode of the cavity, A and ωc are the amplitude and the
frequency of the classical field, and gj is the coupling strength
between the j th qubit and the cavity mode. In addition to that
σ z and σ± = 1

2 (σx ± iσ y) are the (linear combinations of)
Pauli matrices and â (â†) is the annihilation (creation) operator
of the quantum field modes. See Fig. 1. Throughout the article
we set h̄ = 1. We assume that the qubits are driven strongly
and that they are very stable and moderately coupled to the
cavity mode, A � ω,ωc,|δ| � g � γ , where δ = ω − ωc is
the cavity mode-driving field detunning and γ stands for
the qubit decay rates. Therefore, we can ignore the qubit
dephasing or decoherence rates as well as the energy-violating
(“counterrotating”) Rabi Hamiltonian terms [19], σ+â† and
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FIG. 1. (Color online) Schematic representation of the setup.

σ−â. Additionally, we take the classical field to be sufficiently
off-resonant, ωc �= ω, so that we can ignore the classical
field-cavity coupling. In previous works [20,22] the coupling
strengths of the two qubits were taken to be identical; however,
here we insist on keeping them different. We recall that the
coupling strength is proportional to the scalar product of the
dipole moment and the polarization of the cavity eigenmode,
so it is very unlikely that two qubits will couple in exactly
the same way. We begin by applying an entanglement-
preserving time-local unitary transformation

Ĥ → Ĥ ′ = Û †Ĥ Û − iÛ †∂t Û ,

|ψ〉 → |ψ ′〉 = Û |ψ〉,
with Û = exp(−iωct â

†â − iωct
∑

j σ z
j /2). The resulting

Hamiltonian now takes the form

Ĥ = Ĥo + ĤI ,

Ĥo = 1

2
�

N∑
j=1

σ z
j + δâ†â + A

N∑
j=1

(σ+
j + σ−

j ),

ĤI =
N∑

j=1

gj (σ+
j â + σ−

j â†),

with � = � − ωc. The interaction picture Hamiltonian V =
e−iĤot ĤI e

iĤot upon setting the qubits in resonance with the
classical field � = 0 yields

V =
N∑

j=1

1

2
gj (|+j 〉〈+j | − |−j 〉〈−j | + e2iAt |+j 〉〈−j |

− e−2iAt |−j 〉〈+j |)âe−iδt + H.c.,

where |±j 〉 = 1√
2
(|ej 〉 ± |gj 〉) are the eigenstates of the Pauli

σx matrix in the j th qubit space. Disregarding the quickly
rotating terms and redefining 1

2gj → gj , we obtain

V =
N∑

j=1

gjσ
x
j (âe−iδt + â†eiδt ) =

N∑
j=1

Vj . (2)

A. Single qubit master equation

Let us first focus on an interaction between a single qubit
N = 1 and a coherent state of the cavity α. The evolution of this

system in a dissipative cavity is driven by the Lindblad-type
master equation,

dρ

dt
= 1

ih̄
[V̂,ρ] + κD(ρ), (3)

where D(ρ) = 2âρâ† − â†âρ − ρâ†â ≡ 2M(ρ) − R(ρ) −
L(ρ) is the so-called dissipation operator and κ represents
the cavity decay rate.

Using the interaction picture Hamiltonian and expressing
the qubit density matrix in the |±〉 basis as ρ(t) = pkl(t)|k〉〈l|,
k,l = ±, one can write the equations of motion (3) for
individual density-matrix entries,

ṗ++(t)|α〉〈α| = −ig[âe−iδt + â†eiδt ,|α〉〈α|]p++(t)

+p++(t)κD(|α〉〈α|), (4)

ṗ+−(t)|α〉〈α| = −ig{âe−iδt + â†eiδt ,|α〉〈α|}p+−(t)

+p+−(t)κD(|α〉〈α|). (5)

Here [·,·] ({·,·}) denote (anti)commutator brackets. Addi-
tionally, equations for p−−(t) and p−+(t) are obtained by
substituting g → −g in Eqs. (4) and (5), respectively.

These decoupled equations can be solved using the super-
operator method [21,23] assuming that the cavity is initiated
in the coherent state |α〉,

p++(t) = egA/δ+κDt |α〉〈α|p++(0), (6)

p+−(t) = egB/δ+κDt |α〉〈α|p+−(0), (7)

where we define

A = c−(t) â(·) − c+(t) â†(·) − c−(t)(·) â + c+(t)(·) â†,

B = X + Y,

X = 2[c−(t) â(·) − c+(t)(·) â†],

Y = c−(t)(·) â − c−(t) â(·) − c+(t) â†(·) + c+(t)(·) â†,

c±(t) = ±iδ

∫ t

0
e±iδt ′dt ′ = e±iδt − 1.

Next, using the commutation relations (A1) to apply the Baker-
Campbell-Hausdorff formula to decompose expressions in (6)
and (7), we study the effects of the operators on the coherent
state (see Appendix A for details) to obtain

p++(t) = e
g

δκt
(1−e−κt )AeκDtp++(0)|α〉〈α|

= p++(0)|αe−κt − f (t) c+(t)〉〈αe−κt − f (t) c+(t)|,
(8)

p+−(t) = eh1(t)e
g

δtκ
(1−e−κt )YeκDt e− g

δtκ
(1−e−κt )X |α〉〈α|p+−(0)

= eh1(t)+h2(t)p+−(0)|αe−κt

− f (t) c+(t)〉〈αe−κt + f (t) c+(t)|. (9)

In the above we defined

f (t) = g

δtκ
(1 − e−κt ),

h1(t) = −(1 − cos δt)

(
8g2

δ2t2κ2
(e−κt − 1 + κt) + 4f (t)2

)
,

h2(t) =−2if (t)(2 − e−κt )[Im(α)α(cos δt − 1) − Re(α) sin δt].
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B. Two qubits interacting via a cavity

Extending this treatment to two qubits in a single cavity
requires taking another copy of the interaction picture Hamil-
tonian (2). The only difference is that now there will be more
Hamiltonians V̂i acting separately on different qubit states and

jointly on the same cavity state. Working in the eigenbasis of
the σx

1 ⊗ σx
2 operator one obtains a set of decoupled equations.

The solutions are obtained analogously to a single qubit case
(see Appendix B).

Tracing out the cavity leads to a two-qubits reduced density
matrix

ρq1,q2 =

⎛
⎜⎜⎜⎝

ρ++;++(0) �−(g2)ρ++;+−(0) �−(g1)ρ++;−+(0) �−(g1 + g2)ρ++;−−(0)

�+(g2)ρ+−;++(0) ρ+−;+−(0) �−(g1 − g2)ρ+−;−+(0) �−(g1)ρ+−;−−(0)

�+(g1)ρ−+;++(0) �+(g1 − g2)ρ−+;+−(0) ρ−+;−+(0) �−(g2)ρ−+;−−(0)

�+(g1 + g2)ρ−−;++(0) �+(g1)ρ−−;+−(0) �+(g2)ρ−−;−+(0) ρ−−;−−(0)

⎞
⎟⎟⎟⎠ ,

where we define

�±(ξ ) = exp

(
−8ξ 2(1 − cos δt)

δ2t2k2
(e−kt − 1 + kt)

)

× exp

(
−4iξ

δtk
(1 − e−kt )2[Im(α)(cos δt − 1)

− Re(α) sin δt]

)
.

In the above expression we see that the amplitude of the initial
coherent state enters as an argument of the trigonometric
functions of the imaginary part of the exponent. Effectively
it only acts as a phase present in every element independently.
Note that this phase is missing if the cavity is initiated in the
ground state and that this phase will be inconsequential to our
follow-up results.

III. ENTANGLEMENT EVOLUTION

Using the approach proposed in Ref. [24], we can now
quantify the degree of entanglement of a 2 × 2 system by
means of concurrence, defined as

C = max(0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4),

where λi are the descending eigenvalues of the real matrix
R = (σy ⊗ σy)ρ∗(σy ⊗ σy)ρ. We will assume that the qubit
pair is initialized in either of the generalized sets of Bell states

� = cos θ | + +〉 + eiφ sin θ | − −〉,
� = cos θ | + −〉 + eiφ sin θ | − +〉,

and afterward it is evolving according to the dynamics given
by (3). As a result, the concurrence is a nontrivial function of
time

C = sin 2θe−8(1−cos δt)(g1±g2)2(κt+e−κt−1)/(κ2δ2t2), (10)

where the upper (lower) sign is used to denote the entanglement
evolution of the � (�) states. The graph for the evolution of
both of these is plotted in Figs. 2 and 3. By approximating each
of the peaks with a Gaussian we find that every consecutive
maximum will have the form

Cn(t) = sin 2θ exp

(
− (t − 2πn/δ)2

τ 2
n

)
,

where we used the standard deviation τn to be a measure of
every consecutive revival time given by

τn = 2
√

2κnπ

g1 ± g2
[−2κπδn + δ2(1 − e− 2κnπ

δ )]−
1
2 . (11)

Equation (10) displays a number of striking properties.
First, after an initial sharp decrease the concurrence peri-
odically recovers its initial value sin 2θ , never exceeding it
throughout. This confirms the previous result that qubit-qubit
entanglement enhancement is not possible in this system
[20,22], and complements the work in Ref. [23] where a qubit-
cavity entanglement creation and partial revival have been
observed in a dispersive regime. Second, the entanglement
exhibits oscillatory behavior showing periodic revivals at δt =
2nπ , with the revival time intervals τn → ∞ as n,t → ∞.
Third, the greater the rate of cavity decay κ (Fig. 4) or the
degree of detuning δ (Fig. 5), the quicker is the recovery of
the initially entangled state. The reason is that with greater κ

the cavity eigenmode field depletes quicker and so the chance
for qubits to interact with the quantum field decreases. This
effect is enhanced if the qubits are detuned from the quantum

0 2 π 4 π 6 π 8 π
δt

sin 2 θ

C
t

i

ii

FIG. 2. (Color online) Concurrence for the Bell (i) � (blue)
and (ii) � (red) states. We see that the amplitude of variation is
significantly smaller and the entanglement recovery speed is greater in
the case of the latter states. Dashed lines are Gaussians with standard
deviations given by Eq. (11). Plots were made for g1t = 2g2t = 1
and κt = 1.
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FIG. 3. (Color online) Concurrence for the Bell � [red (1),
gold (2), and violet (3) solid lines] and [blue (i), green (ii), and
gray (iii) dashed lines] states. Plots were made for κt = 1,
and for (1) and (i) g1t = 2g2t = 1, for (2) and (ii) g1t = g2t = 1,
and for (iii) and (3) g1t = 30g2t = 3. If the coupling strengths are
the same, (ii) � will experience no changes. If the relative coupling
strength is large, (iii) and (3), the concurrences for � and � are very
similar.

eigenmode inhibiting interaction. As a result both of these
effects lead to a decreased opportunity of disentanglement.
Moreover, unlike Refs. [20,22], we have chosen to work
with an arbitrary initial coherent state amplitude α(0) �= 0
to observe that its value plays no role in the qubit-qubit
entanglement evolution, thus making this result universal for
all cavities.

Finally we also find, in line with Ref. [20], that qubits
initialized to different Bell states respond differently in this
system. In the aforementioned reference the authors claimed
that the concurrence of the � type states is unaffected by
cavity dissipation. We find that this is only true if the qubits are
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C t
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FIG. 4. (Color online) A plot of concurrence of � as a function
of time and detuning. For detunings δ � 1 GHz we observe the
entanglement behavior already noted by [22]. However, this is not
what is known as entanglement sudden death as the two qubits do
not disentangle in a finite time; here the δ = 0 contour corresponds
to a hyperexponential entanglement decay. For increasing values of
detuning, the concurrence function reaches the steady-state maximum
value quicker. Plots were made for g1 = 2g2 = 0.2 GHz and
κ = 0.1 GHz.
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FIG. 5. (Color online) A three-dimensional plot of concurrence of
� as a function of the cavity decay rate and time. For increasing decay
rates we observe that less entanglement is lost and its asymptotic
recovery is quicker. Plots were made for g1 = 3g2 = 0.3 GHz and
δ = 0.5 GHz.

equally coupled to the cavity vacuum field. As a result all Bell
states formed with unequally coupled qubits will decay and
be revived, depending on the values of δ and κ; however, the
� states will do it at a slower rate and the value of concurrence
will drop to a lesser extent (see Fig. 2).

To simplify calculations, we have chosen the regime
A � ω,|δ| � g � γ . These conditions can be realized in two
types of solid-state qubits. In a superconducting qubit coupled
to a microwave cavity [14], one can achieve ω ≈ 5 GHz,
g ≈ 100 MHz, and γ ≈ 1 MHz. The critical parameter here
is the qubit dissipation rate γ , which in our analytical study is
assumed to be zero. We realize that this is an idealized case and
we expect that the imposition of the condition g � γ will not
qualitatively affect the results; however, the quantitative aspect
merits a separate investigation. Another system is a NV center
in diamond strongly coupled to an optical cavity [15] and used
as a spin qubit. For this realization, the coupling strength is
the crucial parameter to observe the entanglement revival.

IV. CONCLUSIONS

We have presented a system exhibiting non-trivial entangle-
ment dynamics, with asymptotic entanglement recovery being
the most striking feature. Additionally, we show that the result
is independent of the cavity coherent state chosen, and that no
Bell states are strictly protected; however, they can be better
secured by skillful adjustment of the detuning parameter.

We have disregarded the decay of the qubits, and all
dissipation in our system originates from the cavity. It was
shown in the literature that two directly interacting qubits can
become entangled via a spontaneous decay [9,10]. However,
in our case the entanglement between the qubits must be
generated externally and does not result from the interaction
with the cavity.

This study can be extended by considering the dynamics of
a tripartite system composed of any Bell state and the coherent
state of the cavity. Here one can consider the evolution of
entanglement between any selected pair of subsystems and
study entanglement creation between the cavity and the qubits
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during the qubit-qubit disentanglement phase. These results
will be published elsewhere [25].

Moreover, by virtue of extendibility of this model to an
arbitrary number of qubits as well as cavities, using this
framework one could study multipartite entanglement and
how, depending on the conditions and parameters choice
(i.e., coupling strengths and decay rates), entanglement could
be exchanged or transferred between different subsystems.
Additionally, even with three qubits in the cavity, one could try
to find more differences in evolution between two maximally
entangled classes: the GHZ and the W states.
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APPENDIX A: SINGLE QUBIT MASTER EQUATIONS AND
DECOMPOSITION INTO INDIVIDUAL OPERATORS

Here we present in detail how expressions (8) and (9) are
obtained from (6) and (7). These results are later used in
Appendix B to find the two-qubit interaction solutions.

In order to obtain (8) from (6) we have to use the Bakker-
Hausdorf-Cambell formula

et(X+Y ) = etXetY e− t2

2! [X,Y ]e
t3

3! ([X,[X,Y ]])e
−t4

4! [[[X,Y ],X],X] · · ·
and the fundamental commutation relations

[â·,â†·] = 1, [·â,·â†] = −1,

which finally lead to

[D,A] = −A, [D,X ] = X , [D,Y] = −Y,
(A1)

[A,B] = 0, [X ,Y] = −8(1 − cos δt).

As a result of the first commutator we get

e( g

δ
A+κD)t = eκDt e

g

δ
Ae

t2

2!
g

δ
κAe

t3

3!
g

δ
κ2Ae

t4

4!
g

δ
κ3A · · ·

= eκDt e
g

δκ
(eκt−1)A.

We can also rearrange the order of exponents appearing in the
last line of the above expression by

eaDebAe−aD = ebe−aA,

where a and b are arbitrary real functions. As a result we can
write

e( g

δ
A+κD)t = eκDt e

g

δκ
(eκt−1)Ae−κDt eκDt

= e
g

δκ
(1−e−κt )AeκDt .

We are now in a position to study the action of the individual
operators on the coherent state present in the cavity. From
the Heuristic derivation of the cavity dissipation term found
in [3] we see that the dissipation operator is responsible for
transforming a coherent state |α〉 into |αe−κt 〉. The same result
can be obtained by further using the commutation relations

[L,M] = [R,M] = −M, [R,L] = 0.

We find that

eκtD = e−κ(R+L)t e2Mκt− (κt)2

2! 4M+ (κt)3

3! 8M−···

= e−κtRe−κtLe(1−e−2κt )M,

where in the last step we have used the fact that right and
left multiplication by creation and/or annihilation operators
commute. Now by using

ecâ†â|α〉 = e|α|2(e2c−1)/2|αec〉,
we can find the action of the operators separately,

ef (t)M|α〉〈α| =
∞∑

n=0

f (t)n

n!
ân|α〉〈α|(â†)n

= ef (t)|α|2 |α〉〈α|,
ef (t)R|α〉〈α| = e|α|2(ef (t)2 −1)/2|αef (t)〉〈α|,
ef (t)L|α〉〈α| = e|α|2(ef (t)2 −1)/2|α〉〈αef (t)|,

where f (t) is an arbitrary function, and by combining the
results we obtain

eκtD|α〉〈α| = e(1−e−2κt |α|2)e−κt(L+R)|α〉〈α|
= |αe−κt 〉〈αe−κt |.

Let us postpone the action of the ebA operator on the
coherent states and now find the solution to Eq. (7). The fact
that X and Y do not commute is the reason for decoherence
entering into the equations. When we attempt to break up the
exponent of the operators into exponents of an operator we first
decompose operator αX from the sum of operators aY + bD
(a and b arbitrary) so that

ea(X+Y)+bD = eaY+bDeaX e− 1
2 [aY+bD,aX ]

× e
1
3! ([X ,[aY+bD,aX ]]+[Y+bD,[Y+βD,aX ]]) · · · .

Since a double appearance of X in the commutator leads to
a commutator between a constant from [X ,Y] or another X
from [D,X ] = X , with another X , we only consider the singly
appearing X in the nested commutators. Additionally all of
the constants generated by the [X ,Y] commutator will be
vanishing throughout, unless they appear in the last stage.
Based on that we can write

[aY + bD,[aY + bD,[· · · ,X ]]]n
= [aY + bD,bn−1X − 8(1 − cos δt)bn−2a]

= bnX + 8(1 − cos δt)bn−1a,

where [·,[·,[· · · ,X ]]]n denotes n-fold commutation with con-
secutive commutators coming with the same operator from the
left. As a result we get

ea(X+Y)+bD

= eaY+bDeaX e− 1
2 (abX−4a2)e

1
3! (ab2X−4a2b)e− 1

4! (ab3X−4a2b2) · · ·
= eaY+bDe

a
b

(e−b−1)X e
4a2

b2 (e−b−1+b)
.

Following the same steps as we did when considering Eq. (8),
we cannot separate the other exponents and get

eαY+βD = eβDe
α
β

(eβ−1)Y
.
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By using the commutation relations found before, and by
noticing that the ones between D and A are of the same kind
as that of D and Y , we quickly find that

ektDefYe−ktD = ef e−ktY .

Thus finally we can write

e
g

δ
(X+Y)+κtD = e

−8g2(1−cosδt)
δ2 t2κ2 (e−κt−1+κt)

e
g

δtκ
(1−e−κt )YeκtD

× e
g

δtκ
(e−κt−1)X . (A2)

By invoking the definition of a coherent state and its expansion
in terms of Fock states we can show that

ef eitδ â† |α〉 = exp(f eitδâ†) exp(−|α|2/2) exp(αâ†)|0〉
= e

1
2 |f |2+f (αe−itδ+α∗eitδ )|α + f eitδ〉.

Next, realizing that the ordering of the algebra of su-
peroperators behaves such that (·â)(·â†)ρ = ρâ†â, we find
that

ef (t)A|α〉〈α| = e−f (t)2c+c−e−f (t)c+â†·ef (t)c−â·|α〉〈α|ec+f (t)·â†
e−c−f (t)·â

= |α + c−f (t)〉〈α + c−f (t)|,
ef (t)Y |α〉〈α| = ef (t)2c+c−e−f (t)c+â†·e−f (t)c−âef (t)c+·â†

ef (t)c−·â|α〉〈α|
= e4f (t)2(1−cos δt)+2if (t)[�(α) sin δt+�(αt)(1−cos δt)]|α − f (t)c+〉〈α + f (t)c+|.

Alternatively, we can say that the action of the efA on
the coherent state density matrix upon decomposition into
left- and right-acting creation and annihilation operators
leaves left- and right-acting coherent state creation operators
D(α) = exp(αâ† − α∗â) with the coefficient α = − g

δkt
(eiδt −

1)(1 − e−kt ), which leads to the solution (8). It should not
be surprising that these states do not leave any additional
state prefactors behind, as these these expressions are in
our model characteristic to the diagonal elements and as
such should be trace preserving. The action of efY , on the

other hand, brings about oscillations and decays in overall
coherence.

APPENDIX B: EQUATIONS AND SOLUTIONS TO A
TWO-QUBIT MASTER EQUATION

Here we present the equation and solutions to Eq. (3) for a
two-qubit case. The density matrix of the two-qubits states is
labeled by pij ;kl,α(t), where i,j = ± and k,l = ± refer to the
first and second qubits, respectively. Equations for individual
atomic density-matrix entries read

ṗ++;++|α〉〈α| = p++;++

(
g1 + g2

i
[âe−iδt + â†eiδt ,|α〉〈α|] + κD(|α〉〈α|)

)
,

ṗ++;+−|α〉〈α| = p++;+−
(g1

i
[âe−iδt + â†eiδt ,|α〉〈α|] + g2

i
{âe−iδt + â†eiδt ,|α〉〈α|} + κD(|α〉〈α|)

)
,

ṗ++;−+|α〉〈α| = p++;−+
(g1

i
[âe−iδt + â†eiδt ,|α〉〈α|] − g2

i
{âe−iδt + â†eiδt ,|α〉〈α|} + κD (|α〉〈α|)

)
,

ṗ++;−−|α〉〈α| = p++;−−

(
g1 + g2

i
{âe−iδt + â†eiδt ,|α〉〈α|} + κD(|α〉〈α|)

)
,

ṗ+−;+−|α〉〈α| = p+−;+−

(
g1 − g2

i
[âe−iδt + â†eiδt ,|α〉〈α|] + κD(|α〉〈α|)

)
,

ṗ+−;−+|α〉〈α| = p+−;−+

(
g1 − g2

i
{âe−iδt + â†eiδt ,|α〉〈α|} + κD (|α〉〈α|)

)
,

ṗ+−;−−|α〉〈α| = p+−;−−
(g1

i
{âe−iδt + â†eiδt ,|α〉〈α|} − g2

i
[âe−iδt + â†eiδt ,|α〉〈α|] + κD (|α〉〈α|)

)
,

ṗ−+;−+|α〉〈α| = p−+;−+

(−g1 + g2

i
[âe−iδt + â†eiδt ,|α〉〈α|] + κD(|α〉〈α|)

)
,

ṗ−+;−−|α〉〈α| = p−+;−−

(−g1

i
[âe−iδt + â†eiδt ,|α〉〈α|] + g2

i
{âe−iδt + â†eiδt ,|α〉〈α|} + κD(|α〉〈α|)

)
,

ṗ−−;−−|α〉〈α| = p−−;−−

(
−g1 + g2

i
[âe−iδt + â†eiδt ,|α〉〈α|] + κD(|α〉〈α|)

)
.
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From the equations above the solutions immediatelly follow:

p++;++,α = p++;++(0)e(g1+g2)A/δ+κDt |α〉〈α|, (B1)

p++;+−,α = p++;+−(0)eg1A/δ+g2B/δ+κDt |α〉〈α|,
p++;−+,α = p++;−+(0)eg2A/δ+g1B/δ+κDt |α〉〈α|,
p++;−−,α = p++;−−(0)e(g1+g2)B/δ+κDt |α〉〈α|, (B2)

p+−;+−,α = p+−;+−(0)e(g1−g2)A/δ+κDt |α〉〈α|, (B3)

p+−;−+,α = p+−;−+(0)e(g1−g2)B/δ+κDt |α〉〈α|, (B4)

p+−;−−,α = p+−;−−(0)e−g2A/δ+g1B/δ+κDt |α〉〈α|,
p−+;−+,α = p−+;−+(0)e−(g1−g2)A/δ+κDt |α〉〈α|, (B5)

p−+;−−,α = p−+;−−(0)e−g1A/δ+g2B/δ+κDt |α〉〈α|,
p−−;−−,α = p−−;−−(0)e−(g1+g2)A/δ+κDt |α〉〈α|. (B6)

From the equations above we can see that Eqs. (B1), (B3),
(B5), and (B6) are of the form (8) and Eqs. (B2) and (B4)
are of the form (9) and can be solved by means presented in
Appendix A. The other equations involve both operators A
and B which can be decomposed into

e( g

δ
B+κD)t+A = e( g

δ
B+κtD)e

g

δtκ
(eκt−1)A.

We can now follow the single qubit case steps to further
decompose the exponent of g

δ
B + κDt into separate expo-

nents, see Eq. (A2). Finally, we obtain the following set of
solutions:

p++;++(t) = p++;++(0)|αe−κt − g1f c+ − g2f c+〉〈αe−κt − g1f c+ − g2f c+|,
p++;+−(t) = p++;+−(0)ex(g2,t)|αe−κt − g1f c+ − g2f c+〉〈αe−κt − g1f c+ + g2f c+|,
p++;−+(t) = p++;−+(0)ex(g1,t)|αe−κt − g1f c+ − g2f c+〉〈αe−κt + g1f c+ − g2f c+|,

p++;−−(t) = p++;−−(0)ex(g1+g2,t)|αe−κt − g1f c+ − g2f c+〉〈αe−κt + g1f c+ + g2f c+|,
p+−;+−(t) = p+−;+−(0)|αe−κt − g1f c+ + g2f c+〉〈αe−κt − g1f c+ + g2f c+|,

p+−;−+(t) = p+−;−+(0)ex(g1−g2,t)|αe−κt − g1f c+ + g2f c+〉〈αe−κt + g1f c+ − g2f c+|,
p+−;−−(t) = p+−;−−(0)ex(g1,t)|αe−κt − g1f c+ + g2f c+〉〈αe−κt + g1f c+ + g2f c+|,

p−+;−+(t) = p−+;−+(0)|αe−κt − g1f c+ + g2f c+〉〈αe−κt − g1f c+ + g2f c+|,
p−+;−−(t) = p−+;−−(0)ex(g2,t)|αe−κt − g1f c+ − g2f c+〉〈αe−κt − g1f c+ + g2f c+|,

p−−;−−(t) = p−−;−−(0)|αe−κt − g1f c+ − g2f c+〉〈αe−κt − g1f c+ − g2f c+|,

where we have defined

x(ξ,t) = −8ξ 2(1 − cos δt)

δ2κ2t2
(e−κt − 1 + κt)

+ 4ξ 2f (t)2(cos δt − 1) − 2iξf (t)(2 − e−κt )

× [Im(α)(cos δt − 1) − Re(α) sin δt],

and where f and c+ were defined before.

These solutions can be used to extend the treatment to more
than one unequally coupled qubit and to study multipartite
entanglement in this system.
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