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Universal quantum computation in a semiconductor quantum wire network
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Universal quantum computation (UQC) using Majorana fermions on a two-dimensional topological
superconducting (TS) medium remains an outstanding open problem. This is because the quantum gate set
that can be generated by braiding of the Majorana fermions does not include any two-qubit gate and also
no single-qubit π/8 phase gate. In principle, it is possible to create these crucial extra gates using quantum
interference of Majorana fermion currents. However, it is not clear if the motion of the various order parameter
defects (vortices, domain walls, etc.), to which the Majorana fermions are bound in a TS medium, can be quantum
coherent. We show that these obstacles can be overcome using a semiconductor quantum wire network in the
vicinity of an s-wave superconductor, by constructing topologically protected two-qubit gates and any arbitrary
single-qubit phase gate in a topologically unprotected manner, which can be error corrected using magic-state
distillation. Thus our strategy, using a judicious combination of topologically protected and unprotected gate
operations, realizes UQC on a quantum wire network with a remarkably high error threshold of 0.14 as compared
to 10−3 to 10−4 in ordinary unprotected quantum computation.
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I. INTRODUCTION

The decoherence of quantum states by the environment is
the nemesis of any proposed quantum computation scheme.
Topological quantum computation (TQC) proposes [1,2] an
elegant way to solve this environmental decoherence problem
by encoding quantum information in an intrinsically nonlocal
way. Quantum information thus stored is expected to be essen-
tially immune to any local perturbation due to the environment.
A class of quantum many-body states, characterized by
excitations with non-Abelian statistics (non-Abelian anyons),
allows such nonlocal encoding of quantum information. In
principle, the non-Abelian anyons can be moved (braided)
around each other to exploit their statistics, which can be
used to manipulate the stored quantum information and build
quantum gates [3–6]. Therefore, TQC using non-Abelian
excitations is intrinsically fault tolerant, which holds consid-
erable promise in overcoming the environmental decoherence
problem.

Statistics [7] is defined as the unitary transformations on
many-body wave functions by the pair-wise exchange of
the particles’ quantum numbers. In (2 + 1)-dimensions, if
the many-body ground state wave function happens to be a
linear combination of states from a degenerate subspace, a
pair-wise exchange of the particles can unitarily rotate the
wave function in the ground-state subspace. In this case,
the statistics is non-Abelian [1,2] and the system of such
quantum particles is a non-Abelian system. Non-Abelian
quantum systems in the so-called Ising topological class [2]
are characterized by topological excitations called Majorana
fermions. In some topological superconducting (TS) systems
[8], Majorana fermions arise as nondegenerate zero-energy
excitations bound to vortices of the superconducting order
parameter. These topological excitations are protected from
the higher-energy, nontopological, Bogoliubov excitations at
the vortex cores [9] by the so-called mini-gap ∼ �2

εF
, where

� is the superconducting pair potential and εF is the Fermi

energy. The second quantized operators γi corresponding to
the Majorana excitations are self-Hermitian, γ

†
i = γi , which

is in sharp contrast to ordinary fermionic (or bosonic)
operators for which ci �= c

†
i . Therefore, each Majorana particle

is its own antiparticle [10] unlike Dirac fermions where
electrons and positrons (or holes) are distinct. Majorana
particles have been predicted to occur in some exotic
many-body states such as the proposed Pfaffian states in
the filling fraction ν = 5/2 fractional quantum Hall (FQH)
system [11], spinless chiral p-wave superconductors or su-
perfluids [12,13], the surface of three-dimensional strong
topological insulators (TIs) [14], and noncentrosymmetric
superconductors [15].

II. SEMICONDUCTOR AS A NON-ABELIAN SYSTEM

Recently, a semiconductor thin film with Rashba-type
spin-orbit (SO) coupling was proposed to be a suitable
platform for realizing a Majorana-carrying TS state by the
proximity effect [16,17]. It was shown that in the presence of
an s-wave superconducting pair potential � and a Zeeman
splitting Vz, both of which can be proximity-induced (Vz

can also be induced by a parallel magnetic field when the
SO coupling includes a Dresselhaus component [18]), the
appropriate TS state is realized when the parameters satisfy
V 2

z > �2 + µ2 where µ is the chemical potential in the
semiconductor. Following this, it was quickly realized [19]
that the one-dimensional (1D) version of the same setup,
a semiconducting quantum wire with zero-energy Majorana
states trapped at the two ends, would be an easier system
in which to explore the physics of Majorana fermions, since
the relevant mini-gap at the wire ends is of order � � �2

εF

(there are no other subgap states localized near the ends
other than the Majorana states). It is important to note that
s-wave proximity effect on an InAs quantum wire (which has
a sizable SO coupling) has possibly been already realized in
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FIG. 1. (Color online) Schematic of entanglement generation in
quantum wire topological qubits using superconductor Josephson
junctions. The light blue background represents superconducting
islands labeled A, B and C. The dark blue unnumbered segments are
semiconductor quantum wires in the nontopological superconducting
state, while the red numbered segments are semiconductor quantum
wires in the topological superconducting state. The purple circles
represent the Majorana fermions at the end of topological segments.
The topological segments 1 and 2 form a representative topologically
protected qubit. Entanglement is generated in the qubits formed by
the topological segments (3,4) and (5,6) by transferring segments
4 and 6 to island B and then performing a quantum nondemolition
measurement of the number of neutral fermions on island B using
microwaves. � is the bias flux in the central hole. See text
for details.

experiments [20]. Moreover, the required Zeeman splitting
V in the wire can be introduced more easily than in the
two-dimensional (2D) case by a magnetic field parallel to the
superconductor [21,22]. For all these reasons, it seems that a
Majorana-carrying TS state in a semiconductor quantum wire
may be within experimental reach. A discussion of the SO
coupled semiconductor as a non-Abelian platform in both 2D
and 1D, along with scanning tunneling microscopy (STM)
signatures of Majorana modes from the wire ends, can be
found in Ref. [23].

III. TOPOLOGICAL QUBIT USING QUANTUM WIRES

Let us consider a semiconductor quantum wire in the
TS state (V 2 > �2 + µ2). Each wire i (shown as the red,
numbered segments in Fig. 1) has a pair of Majorana modes
γ

(L,R)
i (shown as circles at the wire ends) at the left (L) and

right (R) ends. With wire i we can associate a regular fermion

state represented by the operator d
†
i = γ

(L)
i +ıγ

(R)
i

2 . Thus, the wire
naturally forms a two-state system consisting of states |0〉 and
|1〉 = d

†
i |0〉, where di |0〉 = 0. Since the wave function for di

is composed of a pair of nonoverlapping Majorana states, it is
unaffected by all local changes in the Hamiltonian. Thus, the
wire in the TS state constitutes a decoherence-free two-state
system which can be used to build a topologically protected
qubit. However, such a two-state system does not allow the

superposition of the basis states, i.e., the states (|0〉 ± |1〉/√2)
do not exist, because they violate the conservation of fermion
parity [24]. To remedy this, a topological logical qubit can be
defined [24] via a pair of quantum wires in the TS state,
i.e., with the states |0̄〉 = |00〉 (d states in both quantum
wires unoccupied), and |1̄〉 = |11〉 (d states in both quantum
wires occupied). The superposition states, (|0̄〉 ± |1̄〉)/√2, are
now allowed because the superconducting condensate only
conserves fermion number modulo 2. Note also that these
two states do not mix with the other two states (|10〉,|01〉) of
the two-wire system by any unitary operation that conserves
fermion parity.

IV. QUANTUM WIRE NETWORK AND
NON-ABELIAN STATISTICS

Recently, a network of 1D semiconductor quantum wires
has been proposed [25] as a suitable platform to create,
transport, and fuse Majorana fermions at the wire ends. The
wire network consists of wire segments in the TS state (shown
in red with numbers in Fig. 1) connected by segments in the
non-topological superconducting (NTS) state (shown in blue
without numbers in Fig. 1). The Majorana fermion states are
transported by shifting the end points of the TS segments
by applying locally tunable external gate potentials (which
control µ). That pair-wise exchange [25] of these Majorana
fermions leads to the familiar non-Abelian statistics (i.e.,
γi → γj but γj → −γi), which follows most simply from
fermion parity conservation. Suppose U is the unitary operator
for exchange of Majorana fermions. Suppose also that γi,γj

do not pick up a (relative) negative sign under U . U then
transforms the neutral fermion operator d† = γi + ıγj into
Ud†U † = ıd. Applying d† to U |0〉, where |0〉 is the empty
state, it is easy to see that U |0〉 = λ|1〉 = λd†|0〉, where λ

is a proportionality constant. This contradicts fermion parity
since U is even and d† is odd under fermion parity. It then
follows that there must be a relative negative sign whenever
two Majorana fermions are exchanged. Note also that the fact
that the Majorana fermions in the present case are situated
at the ends of 1D wires (and not in a 2D system like a 2D
chiral p-wave superconductor) does not make any difference,
since they are essentially zero-dimensional objects. In the
wire network, these zero-dimensional objects are being moved
(braided) on the 2D substrate of the superconductor. A more
microscopic derivation of this non-Abelian statistics using
Kitaev’s 1D construction for a TS state [26] has been given in
Ref. [25].

The exchange and braiding operations on the Majorana
fermions lead to some of the quantum gates such as the single-
qubit π/4 phase gate and the single-qubit Hadamard gate.
However, it is well known [24] that for a system of Majorana
fermions, the exchange or braiding operations alone fail to
provide any two-qubit gate: the topological braiding operations
allowed in a quantum wire network, as in its 2D FQH or
chiral p-wave Pfaffian counterpart, are not computationally
sufficient. A system of Majorana fermions can be made
computationally sufficient if the braiding-generated gate set is
supplemented by a single-qubit π/8 phase gate and a two-qubit
controlled-NOT, or CNOT, gate [24,27].
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V. UNIVERSAL QUANTUM COMPUTATION WITH
MAJORANA FERMIONS

A system of Majorana fermions can be made computation-
ally sufficient in one of two ways [24,28]: (1) by dynamically
changing the topology of the platform, which allows the
crucial extra gates to be obtained in a topologically protected
manner, or (2) by implementing these gates in a topologically
unprotected manner, which, provided the other gates are
topologically protected, can also lead to universal quantum
computation (UQC) with the aid of certain error-correction
protocols. At present, it is not clear how the topologically
protected route can be implemented in any proposed TQC
architecture including the quantum wire network. Therefore,
in this paper, we take the second route to UQC as described
above. In the proposal we will consider, only the π/8 phase
gate will be implemented in a topologically unprotected way.
The topologically protected single-qubit gates implemented
through the braiding operations can then be used to perform
“magic-state distillation” [24,29] to produce error-corrected
π/8 phase gates from noisy ones. This purification proto-
col (which has polylogarithmic overhead) consumes several
copies of a magic state, e.g., (|0〉 + eiπ/4|1〉)/√2, and outputs
a single qubit with higher polarization along a magic direction.
Once a sufficiently pure magic state is produced, it may then be
consumed to generate a π/8 phase gate. This protocol permits
a remarkably high error threshold of over 0.14 for the noisy
gates, as compared to 10−3 to 10−4 in ordinary unprotected
quantum computation. The simpler strategy of adopting the
topologically unprotected route to UQC using a TS system
still leaves us with a nontrivial problem. The principal reason
why any system of Majorana fermions is not computationally
sufficient is that two qubits cannot be entangled using the
braiding operations alone. Any logical state of the two qubits,
accessible by braiding one Majorana fermion around another,
can always be written as a product of the logical states of the
individual qubits. It has been shown [24] that a two-qubit CNOT

gate can be created with Majorana fermions provided there is
a supply of entangled pairs of two topological qubits. In the
FQH context, it has been proposed [24,28,30] that quantum
interference of Majorana currents can be used to generate the
two-qubit entanglement. However, in a TS system, in which the
Majorana fermions are trapped in the order parameter defects
(vortices or domain walls), it is not clear that the motion of
these defects is a quantum process that would lead to the
desired quantum interference. Further, creating a single-qubit
π/8 phase gate in a TS system is also problematic. A simple
method for this could be moving a pair of Majorana fermions
in a given qubit near each other. Because of the overlap of
the Majorana wave functions, the energy degeneracy of the
|0〉 and the |1〉 states are then split. The dynamic phase in
the resulting time evolution could then be used to produce
arbitrary single-qubit phase gates, were it not for the fact
that the Majorana wave functions in the TS medium are
oscillatory in space, which results in corresponding oscilla-
tions in the energy splitting as a function of inter-Majorana
distance [31]. We show in this paper that both of these
obstacles can be overcome in the quantum wire network,
which therefore allows a concrete realization of a UQC
architecture.

VI. UQC IN THE QUANTUM WIRE NETWORK

We first show that entangled pairs of qubits can be generated
by the setup shown in Fig. 1. The two superconducting islands
B and C in Fig. 1, together with the main superconductor
A (which holds the wire network), constitute a three-island
Josephson junction flux qubit, which when biased with half
a flux quantum, has a degenerate pair of states composed
of clock-wise supercurrent (CW) and counter-clock-wise
supercurrent (CCW). The charging energy of the islands leads
to tunneling between these two states, leading to a splitting
of the degeneracy with the new eigenstates 1√

2
(CW±CCW).

This splitting between the energies is also sensitive to a Berry
phase contribution which can be controlled by gate electrodes
in the vicinity of the islands [32]. In addition, as we show
later, the splitting also depends on the parity of the number
of neutral fermions shared between the pairs of Majorana
fermions at the ends of TS segments on island B (here we
have assumed that the capacitance of the main island A is
large enough so we can ignore its charging energy). Using this,
the system can be tuned such that an even number of neutral
fermions on island B leads to an exact degeneracy, while an
odd number of neutral fermions leads to a splitting between
the states 1√

2
(CW±CCW). This splitting can be measured by

coupling the system to an rf circuit [32], which can be used [33]
to perform a nondemolition measurement of the state (|0〉,|1〉)
of a pair of Majorana fermions on island B. As has been
emphasized in Ref. [33], this provides an explicitly quantum
mechanical method for the charge measurement of a pair of
Majorana fermions. Note that in the analogous method of
charge measurement using quantum interference of currents in
a TS state, it is not clear if the motion of order parameter defects
(vortices, domain walls) is a quantum mechanical process.

Let us now show how to use the quantum superposition
states of the flux qubit to also create quantum entanglement
between two topological qubits. The entangled state between
the two qubits can then be used [24] as the ancillary two-
qubit states to construct a two-qubit quantum gate. To generate
an entangled pair of qubits, we first create a pair of qubits
composed of TS segments (3,4) and (5,6) both in the state
|0̄〉 ≡ |0,0〉 on the main island A. By applying a Hadamard gate
to both, we then transform the states of both qubits to |0̄〉 + |1̄〉.
The combined state of the two-qubit system is now (|0̄〉 +
|1̄〉)3,4 ⊗ (|0̄〉 + |1̄〉)5,6. We then transfer the TS segments 4 and
6 to island B by applying external gate potentials. If the parity
of neutral fermions on segments 4 and 6 is even (odd), the
degeneracy of the states 1√

2
(CW±CCW) is split (not split). By

an rf measurement, one can then collapse the quantum states
of the two qubits as

(|0̄〉 + |1̄〉)3,4 ⊗ (|0̄〉 + |1̄〉)5,6

→ |0̄〉3,4 ⊗ |0̄〉5,6 + |1̄〉3,4 ⊗ |1̄〉5,6, (1)

which is the desired entangled pair. If in the rf measurement,
no splitting is observed (50% chance), the process has to be
repeated until a splitting is observed, producing the desired
entangled pair. Therefore, this method provides entangled pairs
of qubits with a 50% success rate deterministically.

In addition to two-qubit entanglement and a CNOT gate, for
UQC, one needs a single-qubit π/8 phase gate. As discussed
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earlier [24,28], a simple way to create such a gate could
be to bring a pair of Majorana fermions from a topological
qubit near each other and let the microscopic physics split the
degeneracy between the |0〉 and |1〉 states. This has also been
discussed in the context of general anyons [34]. Any arbitrary
single-qubit phase gate can then be created in principle by
accumulating the relative dynamic phase between the |0̄〉 and
|1̄〉 states over a finite period of time. However, it now appears
that such a scheme does not work in both TS and FQH systems,
because the splitting between the |0̄〉 and |1̄〉 states oscillates
with distance between the Majorana fermions in a given pair
because of the oscillatory nature of the wave functions [31,35].
Recently an interferometric proposal has been suggested to
avoid these oscillations in the FQH system [6]. At first glance,
it appears that the same problem would arise in our quantum
wire network, because the Majorana wave functions oscillate
in the TS segments as a function of distance from the domain
wall [oscillating solid black lines in Fig. 2(a)] just like in
the case of a chiral p-wave superconductor. However, it is
important to note that these functions do not oscillate and
in fact monotonically decay with a decay length inversely
proportional to the gap (which is essentially proportional to
the gate voltage Vgate for Vgate � µ) in the nontopological
segments of the wire network [decaying solid black lines in
Fig. 2(a)]. Further, in the wire network, to induce splitting
between the states |0̄〉 and |1̄〉 between a pair of Majorana end
states, one does not need to physically move these states near
each other (a process which is prone to errors). Instead, one
could simply reduce Vgate in the nontopological segments to
generate the required overlap of the Majorana fermion wave
functions on the two ends.

The presence of oscillations in the wave functions in the
TS and the absence thereof in the NTS can be understood
from simple considerations of the asymptotic wave functions.
The TS segment consists of a superconducting state on a
Fermi-liquid-like state with Fermi wave vector kF . Therefore,
the wave function of a zero-energy Majorana state has
an asymptotic form ψ(r) ∝ e−r/ξ eikF r where the coherence
length ξ = �/vF . [23] The overlaps of this wave function ψ

clearly has oscillations at the wave vector kF as is the case
with p-wave superconductors [31]. In contrast, the NTS part
of the system is depleted and therefore has a vanishing Fermi
wave vector (kF = 0). Thus the overlaps across the NTS have
a purely decaying form as is clear from Fig. 2. Below, with the
help of Fig. 2, we explicitly show how an arbitrary single-qubit
gate can be constructed.

From the plot of the wave function (solid black line) in
Fig. 2(a), it is clear that the wave functions no longer oscillate
in the NTS segment. To generate a phase shift, we first distort
the TS segment 1 in the qubit in Fig. 2(b) into a U shape.
This step is necessary to bring the two Majorana modes at
the two ends of segment 1 separated by a NTS region. The
gate voltage Vgate in the NTS segment is still kept large such
that the overlap of the wave functions is still negligible. We
now lower the gate voltage in the NTS segment to increase
the decay lengths of the wave functions. This causes overlap
between the Majorana fermion wave functions at the ends of
the NTS segment. As seen in Fig. 2(b), this leads to a clear
nonoscillatory dependence of the energy splitting between the
|0̄〉 and |1̄〉 states as a function of the applied gate voltage.
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FIG. 2. (Color online) (a) Majorana wave functions (black lines)
are fused across a nontopological wire segment (blue middle segment)
with a Gaussian potential (red dashed line) with peak height 2.0 meV
for an InAs nanowire. Note that there are no oscillations of the wave
functions in the nontopological blue segment. The wave function, on
the other hand, rapidly oscillates in the red (left and right) topological
segments. The purely decaying wave functions in the nontopological
segment lead to a well-controlled phase shift as a function of time.
(b) Inset shows arbitrary single-qubit phase gate constructed by
controlled overlap of Majorana fermion wave functions through the
nontopological segment. The plot shows the dependence of the phase
rotation period on the barrier height.

A π/8 phase gate is obtained by applying a Vgate pulse
over an appropriate length of time. The appropriate length
of time can be estimated by experimentally determining the
energy splitting between the |0̄〉 and |1̄〉 states. The rate of
phase shift �E can be determined by creating a test state
|0̄〉 and applying the sequence (Hadamard → phase gate →
inverse Hadamard) in order. After this process, the probability
of making a transition to the |1̄〉 state is given by

P (t) = 1 − cos �Et

2
. (2)

By experimentally determining this probability at time t , one
gets �E for a given t and Vgate. Arbitrary single-qubit phase
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gates can then be constructed by calculating the required time
and accumulating the correct phase shift for a given Vgate.

VII. MAJORANA BERRY PHASE IN THE FLUX QUBIT

To understand the origin of the Berry phase term generated
by Majorana fermions, it is necessary to revert back to the
fermion description of the system. This description is in
terms of the fermion fields ψα for the electrons in both the
semiconducting wires and on the superconducting island α =
A,B,C. The pairing interactions gα leading to Cooper-pairing
on the islands together with Coulomb interaction induced
capacitance Cα and gate potential V ext

α can be described in
terms of an action

S =
∫

ıψ̄α∂tψα − Hα[ψ̄α,ψα] − (
Vα + V ext

α

)
ψ̄αψα

− (�αψ̄αψ̄α+ �∗
αψαψα)+ CαV 2

α /2

+ ∣∣�2
α

∣∣/2gα + tαβψ̄αψβ, (3)

where Vα and �α are the effective Hubbard-Stratonovich fields
which may be interpreted as the time-dependent mean-field
electrostatic potential and pairing potential, respectively. The
relatively weak tunnelings tαβ between the islands and also the
wires on the different islands will give rise to the Josephson
couplings between the islands. For our calculation, we will
consider a phase model such that |�α| = |�|. We will also
assume that the capacitances of the islands is large enough so
that we can assume the quantum fluctuations in Vα and φα to
be slowly varying. In this limit, the fermionic part of the fields
that contribute to the partition function may be assumed to
follow the ground state of the Hamiltonian

Hmf [Vα,φα] = Hα[ψ̄α,ψα] + (
Vα + V ext

α

)
ψ̄αψα

+ (�αψ̄αψ̄α + �∗
αψαψα) + tαβψ̄αψβ (4)

as φα and Vα vary in time adiabatically. For systems containing
Majorana fermions the ground state is degenerate. The Majo-
rana fermion sector of the Hamiltonian may be described in
terms of pairs of Majorana fermions combined into regular
zero-energy fermions d

†
mα that are localized on the island α.

The relevant states may then be characterized by Q†|φα〉 where
|φα〉 denotes the ground state with all Majorana fermion states
empty, and Q† = ∏

d
†nmα
mα is the operator that accounts for

the Majorana state occupation. The transition matrix element
between the various phase states Q

†
i |φα,i〉 and Q

†
f |φα,f 〉 is

given by

T =
∑
wα

∫ φα,f +2wαπ

φα,i

Dφα〈φα,f |Qf U (tf ,ti)Q
†
i |φα,i〉, (5)

where dU (t,ti)/dt = Hmf (t)U (t,ti) is the unitary time evo-
lution matrix for the fermionic state over a particular phase
trajectory. The states Q

†
i |φα,i〉 and Q

†
f |φα,f 〉 are ground

states of Hmf (ti) and Hmf (tf ), respectively, with appropriate
Majorana state occupancy.

Since the zero-energy fermion operators d
†
mα are spatially

separated, and localized on each island α, they evolve with

phase φα according to

d†
mα =

∫
dr umα(r)ψ†

α(r)eı
∫

φ̇α/2 + umα(r)ψα(r)e−ı
∫

φ̇α/2.

(6)

Moreover, because of the absence of tunneling between
the Majorana fermions, the occupation of each of these
zero-energy modes is conserved during the evolution of the
Hamiltonian. Therefore under the time evolution U (tf ,ti),
Q

†
i evolves into U (tf ,ti)QiU (tf ,ti)† = Q

†
f (−1)

∑
α wαnα where

nα = ∑
m nmα and wα is the winding number of the

phase trajectory along a particular phase φα . Furthermore
Qf Q

†
f |φα,f 〉 = |φα,f 〉. Therefore the transition amplitude for

a given fermion occupation on each island nα is

T (nα) =
∑
wα

∫ φα,f +2wαπ

φα,i

Dφα(−1)wαnα 〈φα,f |U (tf ,ti)|φα,i〉.

(7)

The factor (−1)
∑

α wαnα is precisely the Berry phase term
associated with Majorana fermions and can be accounted for
by adding a term φ̇αnα/2 to the phase action of the system.
Adding this to the phase action considered by Tiwari and
Stroud [32], which can be obtained by performing the Vα

integral, is

S[nα,φα] ≈ φ̇2
α

/
2Cα + φ̇α

[
V ext

α

Cα

+ nα

]
− Jαβ cos (φα − φβ).

(8)

In the presence of an externally applied flux � as shown in
Fig. 1, we replace the phase differences in the above equation
by the gauge-invariant phase differences φ1 = φB − φA →
φ + a1, φC − φB → (−φ + φ′ + a2), and φ2 = φA − φC →
−φ′ + a3. The Josephson couplings are taken to be JAB =
JCA = J and JBC = αJ . The gauge potentials are chosen such
that a1 = a2 = a3 = 2π�/(3�0). Here the phase of island B,
φB = φ and φC = φ′.

The lowest Josephson energy configurations of this sys-
tem are given by (φ1,φ2) = (φ∗ + 2mπ,−φ∗ + 2nπ ),(−φ∗ +
2mπ,φ∗ + 2nπ ) where φ∗ = cos−1 1

2α
[32]. In the geometry

considered, ignoring the large capacitances C−1
A = C−1

C = 0,
the capacitance term φ̇2/2C can cause tunneling between the
two minima [36]. For the case α > 1, and starting at (φ∗,−φ∗),
there are two equivalent-in-energy low-barrier tunneling
paths to two equivalent points (2π − φ∗,φ∗) and (−φ∗,−2π +
φ∗) which are related to each other by the symmetry
φ1 ↔ −φ2.

The total tunneling matrix element using the instanton
approach [36] is now given by the imaginary time action SE,j

for tunneling path j as

� =
∑
j=1,2

ωje
−SE,j , (9)

where ωj is the attempt frequency. The contributions to the
tunneling amplitudes from the two paths are identical by
symmetry except for the term φ̇(V ext

B − d̄mBdmB/2) which
creates a difference in the two paths of

SE,1 − SE,2 = 2ıπ (Q − nB/2), (10)
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where nB = ∑
m d̄mBdmB is the total number of fermions on

island B. This leads to an interferometric dependence

|�| =
√

2�0 cos π (Q − nB/2), (11)

and �0 is the single path tunneling amplitude. The interference
effect between the two paths may be interpreted as a flux
tunneling around the charge and has been referred to as an
Aharanov-Casher effect [36]. Tuning Q = 0, this leads to a
splitting for n0 (mod 2) = 1 and no splitting for n0 (mod 2) = 0.

The magnitude of the splitting �, which contains informa-
tion about the Aharanov-Casher phase, can be measured by
applying a flux of � = �0/2. In this case the two minimum
Josephson energy configurations are degenerate, and any
splitting that is measured is a result of the Aharanov-Casher
phase.

VIII. CONCLUSION

We show that a network of semiconductor quantum wires
in the vicinity of an s-wave superconductor allows universal
quantum computation. To do this, we propose a scheme to
generate entanglement between two topological qubits in the
wire network with the assistance of a flux qubit. We also show

that the wave functions of the Majorana fermion states at the
end points of the topological segments do not oscillate in
the adjoining nontopological segments, even though they have
the familiar oscillatory behavior [31,35] in the topological
segments. This fact can be used to create arbitrary single-
qubit phase gates by controlled overlap of the Majorana
wave functions via the nontopological segments of the wire
network. Our schemes for deterministically generating two-
qubit entanglement and arbitrary single-qubit phase gates
establish the semiconductor wire network as a viable platform
for universal quantum computation.

Note added in proof. Recently, we became aware of the
appendix in Ref. [33] where some related issues have been
discussed.
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