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Quantum correlations in a clusterlike system
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We discuss a clusterlike one-dimensional system with triplet interaction. We study the topological properties
of this system. We find that the degeneracy depends on the topology of the system and is well protected against
external local perturbations. All these facts show that the system is topologically ordered. We also find a string
order parameter to characterize the quantum phase transition. Besides, we investigate two-site correlations
including entanglement, quantum discord, and mutual information. We study the different divergence behaviors
of the correlations. The quantum correlation decays exponentially in both topological and magnetic phases, and
diverges in reversed power law at the critical point. And we find that in topological order systems, the global
difference of topology induced by dimension can be reflected in local quantum correlations.
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I. INTRODUCTION

Nowadays, quantum correlation has been attracting much
attention since it plays a crucial role in quantum computation
and quantum information. Entanglement, as an important
quantum resource, takes responsibility for most quantum-
information tasks such as quantum teleportation and com-
putation [1]. But entanglement is fragile in open systems.
Environment-induced decoherence destroys entanglement cor-
relation in a short time, which makes quantum task difficult
for implementation.

However, recent research shows that entanglement may not
be the only worker carrying on quantum tasks. The quantum
correlation without entanglement may also take effect in some
scenes, e.g., the quantum computation with mixed states plus
one pure qubit (DQCI) [2-4].

Quantum discord has been developed for the measure of
“quantumness” of a pairwise correlation [5]. It makes it clear
that entanglement is one kind of nonclassical correlation but
not the only one. The quantum discord of some separable
states is also nonzero. It may be used as a powerful tool to
study quantum correlations.

Lots of work has been devoted to the study of correlations
in different processes, such as decoherence and quantum phase
transition [6—13]. The entanglement of formation [14] does not
behave as smoothly as the correlation functions, and shows
sudden death and rebirth in some scenes [15], which behavior
has attracted more and more researchers. Quantum discord
is pointed out to signal the quantum phase transition [8]
such as fidelity [16], while our previous work also finds that
in a topological quantum phase transition (TQPT) the local
correlations are classical and the quantum correlation hides in
the global system [9].

Topological order is a new kind of order beyond the
conventional symmetry-breaking theory. In a topological order
system, the degeneracy of the ground-state space depends on
the topology of the system configuration, and the degenerate
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ground-state space is well protected against local perturbation.
Such properties can be used for fault-tolerant computation
[17-19]. Another idea is measurement-based computation, in
which a cluster state is prepared and measured as the com-
putation process [20]. There are deep relationships between
these two methods of computation.

In this paper, we study pairwise correlations in a one-
dimensional (1D) clusterlike system with triplet interaction,
which can be implemented in optical lattice [21]. We discuss
the properties of the topological order in the system, such as
boundary-dependent degeneracy and topological protection.
We find the string order parameter (SOP) by the method of
duality mapping [22,23] to characterize TQPT.

Furthermore, the system can be decomposed as two
independent chains of odd and even sites, namely, the spins on
sites i are independent of spins on sites i + (2n + 1) where n
is an integer, and we call this “bridge correlated.”

The divergence of quantum discord with the distance of
two sites is studied. We find that it behaves much like the
correlation functions, i.e., it decays exponentially in both
topological and magnetic phase areas and diverges in reversed
power law at the critical points.

Moreover, the study of quantum discord and entanglement
shows that the local quantum correlation of two sites is sup-
pressed in the topological phase area. This is different from the
study in two-dimensional (2D) TQPT [9], in which local quan-
tum correlations vanish completely. And that means that in
TQPT systems the global difference of the topology caused by
dimension can be reflected in the local quantum correlations.

The paper is organized as follows. In Sec. II, we show the
basic model of this clusterlike system. We discuss topological
properties such as the degeneracy of the ground state space
and topological protection. In Sec. III, we study the quantum
correlation of this model. We investigate quantum discord, and
mutual information and their divergence behaviors. Finally, we
draw a summary in Sec. V.

II. TOPOLOGICAL PROPERTIES OF
CLUSTERLIKE SYSTEM
In this section, we introduce the 1D clusterlike system
originally proposed for quantum computation in optical lattice
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FIG. 1. Configuration of the system in optical lattice implemen-
tation. Tunneling between the nearest three sites (black points) in a
triangle gives rise to the triplet interaction term.

[21]. We calculate the basic property of the low-energy
spectrum. In a 1D world, there are only a few kinds of
topologies that we are interested in, specifically, the open
string and the closed loop, which correspond to open and
periodic boundary conditions, respectively. We show that the
degeneracy of the ground-state space is different in these two
cases. Besides, the degeneracy is immune to local perturbation.
These are the typical characteristics of topological order. And
we find the SOP to characterize the quantum phase transition.

A. Model of clusterlike system

Here, we describe the model we discussed. The Hamilto-
nian of the system is described as follows:

H=-J Z (01070, + Boj) = —J Z (8 + Boy).

ey

where J > 0, o/ are the Pauli matrices acting on the ith site
and S; = 0" 070}, ,. Notice that §;’s commute with each
other.

The model is originally proposed in Ref. [21] for quantum
computation. It can be implemented in optical lattice. Atoms
are arranged in a triangle lattice as shown in Fig. 1. Tunneling
happens in the nearest three sites, which gives rise to the triplet
interaction term. The one-body term can be adjusted by the
Zeeman effect and appropriate laser field.

When B =0, the ground-state space is the common
eigenspace of S;’s that satisfies S;|g.s.) = |g.s.), which is a
typically clusterlike space [24]. Cluster states are a kind of
graph state, which plays an essential role in measurement-
based quantum computation [20].

Here we analyze the low-energy spectrum of the system
Eqg. (1) in the stabilizer scheme [19,25]. All S;’s commute
with each other, so we can treat the ground-state space of the
system as the protected space of a set of independent stabilizer
generators {S;}.

In the stabilizer scheme, we have N qubits and K
independent stabilizer generators which are the products of
Pauli operator o*. The stabilizer generators commute with
each other, and the common eigenspace of the stabilizers
satisfying S;|®) = |®) is called the protected space, whose
dimension is just 2V K ie., the stabilizers encode N — K
logical qubits in the protected space.

Assume we have N sites in the system Eq. (1); when
B =0, it is easy to see that the number of S;’s is N under
the periodic boundary condition, and N — 2 under the open
boundary condition. The dimensions of the protected space
of {S;} are 2° =1 and 2% = 4, respectively. That is to say,
the ground-state space of the system Eq. (1) is nondegenerate
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under the loop boundary condition, and fourfold degenerate
when it is opened, with the absence of an external field term.

Another important property of the system is that all
the local correlation functions, except those composed of
products of several S;’s, are zero. As an example, for 0 =
oi‘"cfj , we can always find a certain S; which anticommutes
with 0, so that (0) = (0Sk) = —(Sk6) = —(0) = 0. And the
system possesses Z symmetry, i.e., [H, [[o] = 0. These
are important properties as we will see below.

When B #0, by means of the
transformation

Jordan-Wigner

o = (c] + e [ [0 —2cke)).
J<i
(2

of = ZC;[ci -1,
we can transform the system Eq. (1) into a fermion chain,

—H/J =Y (cio1—cl_ e}, + )+ BQclei—1). (3)

We can see that the system can be regarded as two independent
chains containing odd and even sites, respectively.

Under the periodic boundary condition, the system pos-
sesses translational invariance. So it can be diagonalized in
Fourier representation

—H/J =) e %@ —al Yai +a)) + BQala, — 1),
k

4)

where ¢, = Y, e*"ay/ V/N. By using Bogoliubov transfor-
mation, we get the diagonalized Hamiltonian

H/T =Y aQyly— 1), ©)
k

where e,=(1 + B2—2B cos 2k)2, a; = cos O yy + i sin kaik,
and tan 26; = sin2k/(B — cos 2k).

When the string is opened, it is difficult to get the low-
energy spectrum, and we will discuss the degeneracy of the
ground-state space by the perturbation method in the following
section.

B. Topologically protected degeneracy

When the string is opened, the ground space becomes four-
fold degenerate when B = 0, as mentioned above. Actually
each independent chain contributes two states. In this section,
we show that this degeneracy is protected against external local
perturbations. More precisely, the energy splitting caused by
perturbation tends to zero in the thermodynamical limit.

As the string is opened, Fourier transformation does not take
effect. We calculate the splitting of the ground-state energy.
Assume the external field is absent at the time t — —o0,
and adiabatically switched on. That is, we construct a new
Hamiltonian with time-dependent external field A(f) = 7",
where 7 is infinitely small. At ¢ = 0, the system comes back
to Eq. (1). That is,

H(t) = Hy + Mt)H'. (6)

Since A(z) is switched on adiabatically, the system evolves
from the clusterlike ground state |®g) at t — —oo to an
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eigenstate |G) of Eq. (1) at ¢ = 0, which should be one of
the split ground states [26,27]. The average energy of the
state |G) is

(GIH(t = 0)|G)
= (®g|UT(0, — 00)(Hy + H)U(0, — 00)|®Dp).  (7)

U(0, — 00) = Texp[—i fi)oo H''(t)dt] is the time-ordered
evolution operator, expanded as

0

0
U0, — o0) = 1+(—i)/ dtH’I(t)+(—i)2/ dn

o0

x / L H )H (1) + - ®)

o]

where the perturbation term in the interaction picture is
H/] (t) — )\’(t)engtH/efiH()t
= A1) Z e‘”’(s"*l+S"+1)afe”’(s'*”rs"“), )

ignoring the boundary terms without loss of generality.
As e 1S = cos Jt —isin JtS;, we can see that the inner
product in Eq. (7) is composed of the sum of the multipoint
correlation functions, which all vanish until the Nth order,
according to what we saw in the last section. In the Nth term,
global terms such as ([] o) appear and take effect. We can
interpret it as a virtual particle running along the whole string.
Therefore, the energy splitting of the ground-state space is
~exp(—1/L), where L is the length scale of the system. In the
thermodynamical limit, L — oo, the degeneracy is perfectly
protected, like the case in toric code [17].

As we see, degeneracy emerges when the loop is opened.
Besides, the degeneracy is immune against local perturbation
when it is not too strong. These properties show that the
system is a topologically ordered system. We can see that
there is a close relationship between the clusterlike system
and topological order. Here we regard both the topology-
related degeneracy and topological protection as the essential
character of topological order.

C. String order parameter

Topological order is an unconventional phase that cannot be
described by the symmetry-breaking of local order parameters
[28]. When |B| — oo, the system leaves the topological order
and goes to a magnetized phase through quantum phase
transition. We can find some global string order parameter
to characterize the phase transition. Below, we show how to
find the SOP by duality transformation [22,23].

Under the periodic boundary condition, we make such
duality transformation below to represent the system by
another self-consistent Pauli algebra {u{},

af}: 14 i1 (10)
o = l_[ K-
J<i
The system turns to be an XY model,
—H/J =) =i Wy + Buj iy, (1n

1
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X Z

Further, let u} = T ansl w = l_[_/ <i T} the system can
be mapped to the Ising model in an external field,

—H/J =) =t} + Bt} 1, (12)
i
We can also see that the system is actually composed of
two independent chains. Combining the two transformations
together, we can actually see it is

Z o X_X X Z._x __ .z
07 =T; Tiyy, O0;_10;0jy = T\ . (13)

The three nearest sites in a triangle (see Fig. 1) make up a new
site in the dual lattice. The regular triangles and the inverted
ones construct two independent Ising chains. 7/ can be seen
as the observable that measures the “vortex” of the ith triangle
site, clockwise or counterclockwise.

Lots of work has been devoted to discussing the quantum
phase transition of the Ising model. There is a long-range order
in the dual system [29]. When |B| > 1, we have

Jim (g2} = (e ~ 00 = 1/B7)7, (14)

while it vanishes when |B| < 1. 75; can be regarded as the
order parameter characterizing the phase transition at B =
=+1. In the original spin representation, we can get the hidden
SOP as

Aeven(odd) = Hazzi(+1)- (15)

1

Note that we are treating two independent Ising chains.

When the loop is opened, some boundary terms appear
whose effects can be neglected in the thermodynamical limit.
The physics does not change.

Here we emphasize that the existence of SOP is not
the sufficient condition of topological order. As we see,
we can also get SOP in the XY model of Eq. (11), i.e.,
)T = l_[lzi 61 7 , by the duality map, whichis a conventional
symmetry-breaking system that has been studied so much.
However, duality mapping is a useful tool to help us find the
nonlocal order in a topological order system.

III. PAIRWISE CORRELATIONS

In this section, we study the pairwise correlations in our
clusterlike system, such as quantum discord and entanglement
of formation (EoF). Quantum discord is used as a measure for
the “quantumness” of a pairwise state. Something interesting
is found. We find that the quantum correlations are greatly
suppressed in the topological order area compared with
the magnetic polarized phase. The quantum discord decays
exponentially as the distance of the two spins increases when
|B| # 1, and diverges in reverse power law at critical points,
in the behavior exactly like the two-point correlation function.
Only the EoF of the next-nearest spins is nontrivial, while that
of spins farther from each other vanishes.

A. Entanglement, mutual information, and quantum discord

Entanglement, as the most important quantum resource,
has been discussed a lot, and there are many different kinds of
measures. One of the most sophisticated is the entanglement
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of formation [30], which is an entanglement measure defined
for bipartite quantum states as

= 1 . E .
E(p) = min [Z piS (|¢,>>] , (16)

where p is the density matrix of the bipartite states and
{pi,|¥i)} satisfies the condition that p = )", p; |y:) (Wil [¥i)
is a bipartite pure state and SF(-) gives the Von Neumann
entropy of the reduced density matrix of |v;)(v;|. For pure
states, this quantity reduces to the entropy of entanglement.
For a two-qubit system, fortunately, EoF can be express with
concurrence C [14] as

E(p) = —f(C)log, f(C) —[1 = f(C)]log,[1 — f(O)],
a7

where f(C)=(1++/1—C?)/2. The concurrence C =
max[0,A; — Ay — A3 — A4] and A; are the square roots of the
eigenvalues of the matrix p(6” ® 0¥)p*(c” ® o).

Mutual information [25] quantifies the amount of common
information shared by two subsystems. The classical mutual
information is

I(A: B)=H(A)+ H(B)— H(AB) = H(A) — H(A|B),

where H(-) is the Shannon information and H(A|B) is the
conditional information, which means the average information
of A we gain when knowing the result of B. A natural
generalized quantum version is obtained by changing the
Shannon information to Von Neumann entropy,

Z(p*®) = S(p™) + S(p®) — S(p™5). (18)

Another generalization follows by giving the quantum
measurement version of conditional entropy. The conditional
entropy implies a measurement on B to get the information
about A. So we impose projective measurement {f[f} on B
and collect the information,

T (P {TP}) = S = Y- piS(OFp P11 /pi),  (19)

where p; = Tr[[15 pABT15].
Quantum discord is defined as the minimum of the
difference of Z and 7 [5],

D(p*?) = min[Z(p*") — T (p** : {T17})]. (20

Due to its power in mixed-state quantum computation [2—4],
it has been discussed a lot recently.

Quantum discord can be used as a measurement for the
quantumness of the bipartite correlation. It clarifies that
entanglement is not the only “quantum” character of states. For
example, for a separable state p = |00)(00|/2 + | + +)(+ +
|/2, where |+) = (]0) + |1))/\/§, the quantum discord is not
zero, which means p contains nonclassical correlation.

B. Pairwise state

To study the correlations in the system, we should first
get the state of two spins, i.e., their reduced density matrix.
The pairwise density matrix can be decomposed by a set of

basis {%O’iﬂd}}}, where © and v takes 0O, ...,3 and aio =11t

can be easily checked that {%ol.” oj‘f} is orthonormal under the
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Hilbert-Schmidt inner product (A, B)y_s = tr(ATB)[9,25,31].
The reduced density matrix of two spins can be written as

pij = %Z(aiﬂaj‘-’)ai”aj‘-’, (21)
7Y

where (o} of) = Tr(pgo} o)) =tr(p; ol o)) is the Hilbert-

Schmidt inner product of p;; and oo .

Because of the Z, symmetry of the system mentioned
before, most terms in Eq. (21) can be eliminated except those of
Lj,0/'0}, 07 ®1;,and 1; ® o}. So we just need to calculate
the expectation value of (¢/'c/, z) and (o). Since the system
can be treated as two independent fermion chains like Eq. (3),
it can be seen that (o/°c/, ) is zero when R is odd.

From the Jordan-Wigner transformation of Eq. (2), we can
get (0%) and (o}'og) directly (we take i = 0 without loss of

generality).
(co — cg)(co + C(T))) = (Ao Bo),
(co — cg)(co + Cg)(CR - C;{)(CR + CL»
= (AoBoArBg),
(o5 k) = ((co = ch)er + eter = ehiea + b
e (eret = ch_er + )
= (AoB1AB, ... Agr_1Bg),
(0gor) = (=DF"N(ByA B A, ... Bp_1Ag),

(
(

(0%) =
(og07) =

where A; =¢; — ciT and B; = ¢; —|—cl.T. We can check that
(ApA;) = (BoB;) = 0 when i # 0, and the complicated ex-
pression in the above brackets can be handled with the help of

the Wick theorem [10,32]. Let G;_; = (A, B;), we have

(0%) = Go,
(ofor) = G§ — GRrG_g,
G_, G_, ... G_p
Gy G G_(r-1)
<Uo UR) = : : . : ,
Gr_o Ggr_3 ... G_,
G Gy G_(r-2)
.y G, G G_(r-3)
(a5 Uie) =
Gr Gpgr_y1 ... Gy

And we have

(AoBg) = ((co — ch)(cr + b))
1 N/2

. 27 : T
= 5 Z ezT’Rel(ﬁp-‘r@q)((y; — y,p)(yiq + 7))
p.q=—N/2

_ _l Zei%RezieP
N
P

Nes oo 1 2w e%Rr(B _ 67")
= —— dr .
4w J_», (1 4+ B2 —2Bcosr)l/2

Gr =
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FIG. 2. EoF as a function of magnetic field strength B. Entangle-
ment is born at Bg >~ 0.9767, and a sudden change happens at the
critical point.

Now we can substitute the expressions of correlation functions
above into Eq. (21). Thus we have the reduced density matrix
of any two spins in the system. Below, we will discuss the
pairwise correlations in the system.

C. Local correlations in quantum phase transition

Now we discuss the correlations in the system. First, we
calculate the EoF of two local spins. As we know, the nearest
two spins are irrelevant. We give the EoF of the next-nearest
spins shown in Fig. 2. In fact, numerical results show that the
EoF of the two spins, whose distance is further than 2, is zero.

In Sec. II, we noted that the quantum phase transition can
be characterized by SOP deduced from duality mapping, and
the critical point lies at B = +1. We can see that the EoF
in “most” of the topological order area is zero and behaves
like an order parameter, which is similar to the logarithmic
negativity in previous work [21]. However, the EoF is born
before reaching B = %1, at the point around |B| >~ 0.9767.
There is a tiny “gap” at the critical point, which results from

0.1 f
0.08 < =
0.06 = e
0.04 - = ////{5//////////////////
o0 = _  __ _ __ =
/////////// _— 14
12
10
) 8 Distance

05
0 03

|
Magnetic field B 157372

(b)

Quantum discord
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the finite scale, and it would decrease to a singular point in the
thermodynamical limit.

We cannot treat EoF as an order parameter. However,
it tells us that in the topological order area, local bipartite
entanglement, as an important quantum correlation, is greatly
suppressed. It invokes us to study the total quantum correla-
tions in this area.

Second, we calculate the quantum discord of two spins
with distance R in different magnetic field (Fig. 3), where R is
even. Around the point B = 1, quantum discord has a tiny gap
similar to that of EoF. These behaviors are both rooted in the
property of correlation functions and would become a singular
point in the thermodynamical limit.

It was mentioned in Ref. [9] that in a 2D TQPT, local
correlations are always classical and the quantum correlations
hide in the whole lattice, which also happens in many other
2D TQPT systems. But things are different in 1D systems (see
Fig. 3).

In 2D topological order systems, there often exist many
different conservative string operators whose paths are topo-
logically equivalent, and we can always find one that anticom-
mutes with certain local observables. Therefore, most local
correlation functions would be eliminated and the density
matrix Eq. (21) would become diagonalized.

However, in 1D systems, degrees of freedom are restricted.
There are not so many topologically equivalent conservative
string operators as in 2D. The 1D systems do not possess such
high symmetry as in 2D systems, and many local correlation
functions survive. The quantum discord, which measures the
quantumness of pairwise correlations, gives zero only at the
cluster state when B = (. Nevertheless, qualitatively speaking,
we can see that quantum discord is still quite small in most
of the topological order area compared with that in the area
|B] > 1. And we say that the local quantum correlation is
greatly suppressed in the topological phase area.

On the other hand, this means that in TQPT systems the
global difference of topology induced by dimension is reflected
in the local quantum correlations. The dimension constrains
the topology of the system, and also the types of global
conservative quantities. In systems with higher dimension
like that in Ref. [9], the external field term breaks some

0.09

oo | S
007 b ’ ‘ R

0.06 . . 1

0.05

0.04 | L 8
1.01

0.5 0 0.5 1
Magnetic field B

FIG. 3. Quantum discord vs B and R, where B is the magnetic field strength parameter and R is the site number which correlates with

site 0.

052320-5



YI-XIN CHEN, SHENG-WEN LI, AND ZHI YIN

10
8 — Discord
= Mutual information
%D 6F ~—ZZ Correlation
3
>
S 4
D
A
2
0
0.0 0.5 1.0 1.5 2.0

Magnetic field B

PHYSICAL REVIEW A 82, 052320 (2010)

(b)

- 77
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Discord
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FIG. 4. (Color online) (a) Decay length of quantum correlations (quantum discord, mutual information, and the correlation function (ojo))
vs magnetic field strength B. (b) Decay behavior at B = 1. The correlations decay as ~R~*. We take R as even.

global conservative operators, while the survival ones are still
capable to eliminate local quantum correlations. However, in
1D systems like what we study in this paper, there are not
enough global conservative quantities left in the presence the
magnetic field and the local quantum correlations are just
suppressed. The survival of the local quantum correlation
reflects the global restriction of the topology induced by
dimension.

Besides, we are interested in the decay behavior of quantum
discord along with the increase of the distance of the two spins
we study. Numerical results show that the decay behaviors
of quantum discord and total mutual information [Eq. (18)]
are just similar to those of two-point correlation functions,
i.e., they decay exponentially when |B| # 1 and with reversed
power law at the critical points. This is different from the
sudden change behavior of EoF, although EoF and quantum
discord are defined in a similar way, namely, by finding
the extreme. We show the exponential decay length of the
correlations with the magnetic field strength B in Fig. 4.

At the critical points B = %1, the correlations diverge as
~R~¢. We show them in Fig. 4(b). For quantum discord,
&p >~ 1.0576 and mutual information &,; >~ 1.0179, and for the
correlation function (o505), £77 >~ 2.0464. We guess this may
relate to the universal scaling factor. When B = 0, the system
is in the cluster state, and local quantum correlations vanish
while quantum correlations still hide in the chain globally.

IV. SUMMARY

We investigate a special model whose Hamiltonian
contains three-spin interactions. This model is composed of
a cluster and a magnetic term, and we discuss the topological
properties of this system. The degeneracy of the ground-state

space differs in closed and open boundary conditions, and
the degeneracy is topologically protected. We obtained the
global SOP of this system by the method of duality mapping
to characterize the TQPT.

Further, we discuss quantum correlations of this system.
We calculate quantum discord, mutual information, and
entanglement in this system. The EoF of two local spins is
“dead” in most of the topological order area. Together with the
study of quantum discord, we believe the quantum correlation
is greatly suppressed in the topological order area. This is
different from previous work in 2D TQPT [9], where local
quantum correlations all vanish. We believe that is because 1D
systems do not have the rich topology or high symmetry found
in 2D systems.

On the other hand, in topological order systems, the dimen-
sion of the configuration constrains the topology of global
conservative quantities. This global difference of topology
induced by dimension can be reflected in the local quantum
correlations. For example, the local quantum correlations
survive in 1D TQPT systems, while they completely vanish
in 2D, where there are more global conservative quantities left
which are rooted in the richer topology of 2D systems.

Besides, we study the divergence behavior of the corre-
lations. Quantum discord and mutual information diverge in
reversed power law at the critical points and exponentially
elsewhere. We believe more work can be done on the study of
the universal scaling behavior of the divergence.
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