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Universal quantum computer from a quantum magnet
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We show that a local Hamiltonian of spin- 3
2 particles with only two-body nearest-neighbor Affleck-Kennedy-

Lieb-Tasaki and exchange-type interactions has a unique ground state, which can be used to implement
universal quantum computation merely with single-spin measurements. We prove that the Hamiltonian is
gapped, independent of the system size. Our result provides a further step toward utilizing systems with
condensed-matter-type interactions for measurement-based quantum computation.
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I. INTRODUCTION

Quantum computers are believed to be more powerful than
their classical counterpart, resulting in tremendous efforts
to implement quantum computation with different physical
systems. The model of a one-way quantum computer [1,2]
has opened an approach toward the possible experimental
realization of quantum computation. In the one-way model,
quantum computation starts by preparing certain universal
resource states, namely, the cluster states [3], and is achieved
by merely performing single-qubit measurements on these
states. The principal task turns out to be the preparation of these
highly entangled resource states. One straightforward way is
to apply entangling gates to couple a lattice of qubits [4]. It is,
however, clearly appealing if there exists a universal resource
such as the unique ground state of a naturally occurring
gapped two-body local Hamiltonian for the advantage of
flexible-state preparation as well as the stability against the
local perturbations.

Recall that the cluster states cannot occur as a nondegener-
ate ground state of any two-local spin- 1

2 Hamiltonian [5] and
have singular entanglement features, e.g., vanishing two-point
correlation functions [6]. Perturbative Hamiltonians have been
proposed with (encoded) graph states as the approximate
ground states [7], which, however, require a highly precise
control over system parameters and for which the spectral
gap would get significantly smaller according to the order of
the perturbation. Recently, a gapped two-body Hamiltonian of
six-level particles [8] has been constructed with the so-called
tricluster state as its unique ground state, which is universal for
measurement-based quantum computation. Here, we construct
a gapped local Hamiltonian, with the constitutional two-body
Affleck-Kennedy-Lieb-Tasaki (AKLT) [9] and exchange-type
interactions acting on four-level particles. The simplicity of the
Hamiltonian might allow one to identify possible realizations
in models of condensed matter systems or in quantum optical
setups. The present approach differs from the previously
used methods to construct a parent Hamiltonian for projected
entangled pair states by finding the local support subspace
[8,10], but it can be utilized to construct a family of local
Hamiltonians with the same properties.

In this paper, motivated by the usage of the gapped ground
state of the one-dimensional (1D) AKLT spin-1 chain as a
universal quantum wire [11] (cf. [12,13]), we start from 1D

quasichain of spin- 3
2 particles as a building block. From there,

we construct a full two-dimensional (2D) resource that allows
a deterministic decoupling of the 1D quantum-wire structure
(in a similar way to the cluster state). After proving that
the 1D quasichain is gapped with a unique ground state, we
construct a gapped two-body Hamiltonian on an octagonal 2D
lattice, which is transitionally invariant and consists of only
nearest-neighbor AKLT together with exchange-type interac-
tions. We demonstrate how to implement universal quantum
computation by simply making single-spin measurements on
the individual four-level particles of its unique ground state.
This Hamiltonian provides an example that can be utilized as a
complete measurement-based ground-code quantum computer
without the demand of dynamical coupling [11]. Extensions
of our approach to the other geometric configurations, e.g., 2D
lattice, or other Hamiltonians are also possible.

II. 1D AKLT QUASICHAIN

We first consider the 1D AKLT model defined on the
quasichain, as in Fig. 1, and show that the model is gapped
and has a unique ground state. The quasichain consists of
spin- 3

2 (A) and spin- 1
2 particles (b) coupled with nearest-

neighbor two-body interactions:

H = J

(
N−1∑
i=1

P 3
Ai,Ai+1

+
N∑

i=1

P 2
Ai,bi

+ P 2
A1,b0

+ P 2
AN,bN+1

)
,

(1)

where P S
m,n represents the projector onto the spin-S irre-

ducible representation of the total spin for particles m and n

(cf. Refs. [9,14]). As the spin per particle equals half of the
local coordination number (i.e., the number of the bonds
from a particle), the 1D AKLT quasichain in Eq. (1) has a
unique ground state |G〉 [15], which can be obtained via a
projector which maps the symmetric part of three spin- 1

2 virtual
qubits of maximally entangled pairs into one spin- 3

2 physical
particle.

To prove that the 1D AKLT quasichain is gapped in the
thermodynamic limit, we first regroup the Hamiltonian in
Eq. (1) into blocks as H = ∑

i �i,i+1 (see Fig. 1), where

�i,i+1 = P 3
Ai,Ai+1

+ 1
2P 2

Ai,bi
+ 1

2P 2
Ai+1,bi+1

(2)
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FIG. 1. (Color online) Configuration of a 1D AKLT quasichain,
which consists of spin- 3

2 (red, large circles) and spin- 1
2 (green, small

circles) particles. The Hamiltonian is regrouped into blocks, each of
which is marked by a dotted circle.

is the sum of the AKLT interactions among the particles inside
the block. We consider the ground state |G〉 and denote the
support subspace of the reduced density matrix corresponding
to each block as Si,i+1 and the projector onto the orthogonal
subspace as S⊥

i,i+1. From Si,i+1 = ker �i,i+1 it follows that |G〉
is also the unique ground state of the projective Hamiltonian
Hp = ∑N

i=0 S⊥
i,i+1. One can directly calculate the energy gap γ

of �i,i+1 and find γ � 0.3518, which leads to

�i,i+1 � JγS⊥
i,i+1. (3)

We further write the block Hamiltonian from Hp on n + 1
units as hn,i = ∑i+n−1

j=i S⊥
j,j+1. If h2

n,i � εhn,i , the results in
Ref. [16] imply that

H 2
p � n

n − 1

(
ε − 1

n

)
Hp. (4)

Our calculations show that ε = 0.4132 for n = 4. We thus
conclude that Hp is gapped as ε > 1

4 , where better bounds can,
in principle, be obtained for higher n. Therefore, the energy
gap of the 1D AKLT quasichain is lower bounded by �E �
0.0766J .

III. 2D GAPPED HAMILTONIAN BY MERGING
1D QUASICHAINS

With the results for the 1D AKLT quasichain established
here, we will show how to obtain a model on an octagonal
lattice with two-body interactions that is gapped and has a
unique ground state. We start from a number of independent
1D AKLT quasichains and introduce the unitary transforma-
tion U , which maps two spin- 1

2 particles into one spin- 3
2

particle by

U =
∑

m1,m2=± 1
2

∣∣∣∣3

2
,m1 + 2m2

〉 〈
1

2
,m1

∣∣∣∣
〈

1

2
,m2

∣∣∣∣ , (5)

where the label |j,m〉 denotes |S,Sz〉. Notice that, in principle,
any unitary operation can be used at this stage, each leading
to a gapped model with a unique ground state that can be
used for universal measurement-based computation. Using
such a transformation, we can merge a number of 1D
quasichains and get a 2D Hamiltonian as H2d = U

∑
i H

(i)U†

with U = ⊗
〈bk,bl〉∈E U (bk,bl), where 〈bk,bl〉 ∈ E denotes two

neighboring spin- 1
2 particles in the same merging circle

uA

B b

uA

A

1b

2b
B

AdA dA

FIG. 2. (Color online) A 2D gapped Hamiltonian from 1D AKLT
quasichains. Two spin- 1

2 particles (b1 and b2) on two neighboring
chains are mapped into one spin- 3

2 particle (B). The nearest-neighbor
interactions consist of two-body couplings as Ea(red, thick solid), Eu

(yellow, dashed), Ed (blue, dotted), Eb (green, thin solid).

(see Fig. 2). Thus,

H2d =
∑

t=a,b,u,d

∑
〈m,n〉∈Et

�t
m,n, (6)

where �a
m,n = P 3

m,n, �b
m,n = P 2

m,n, �u
m,n = U (P 2

A,b ⊗ I)U †,
and �d

m,n = U (I ⊗ P 2
b,A)U † and Ea , Eu, Ed , and Eb represent

different types of couplings (see Fig. 2). The couplings
between A- and B-type particles,

�u = 1
2 SAu

· S′
B + 5

8I, �d = 1
2 S′′

B · SAd
+ 5

8I, (7)

are effectively exchange-type interactions with S′ = s(− 3
2 ,

− 1
2 ) ⊕ s(+ 1

2 , + 3
2 ) and S′′ = s(− 3

2 , + 1
2 ) ⊕ s(− 1

2 , + 3
2 ),

where s(α,β) is the effective spin- 1
2 operator defined on two

levels, Sz = α,β. It is easy to verify that S′ and S′′ satisfy
the commutation relations analogous to the spin angular
momentum.

As H2d is equivalent up to a unitary transformation to
N independent AKLT quasichains, the spectrum and the
corresponding eigenvalues can be easily obtained from the
spectrum and eigenvalues of H . In particular, it follows that
H2d is gapped (with the same constant energy gap �E as H )
and has the unique ground state |�〉 = U(|G〉 ⊗ · · · ⊗ |G〉).

IV. MEASUREMENT-BASED QUANTUM COMPUTATION

We will demonstrate how to use the resource state |�〉 for
measurement-based quantum computation by following the
notation and scheme of Refs. [12,13,17–19]. The state |�〉
can be represented as a projected entangled pair state [17,20],
in which a number of maximally entangled pairs 1/

√
2(|00〉 +

|11〉) of virtual qubits are mapped into physical particles; see
Fig. 3 for one computational block. The corresponding tensor
matrices for the physical site Au are

Au

[+ 3
2

] = |1〉r〈0|l ⊗ 〈1|d , (8)

Au

[− 3
2

] = |0〉r〈1|l ⊗ 〈0|d , (9)

Au

[+ 1
2

] = −1/
√

3(Z ⊗ 〈1|d + |1〉r〈0|l ⊗ 〈0|d ), (10)

Au

[− 1
2

] = 1/
√

3(Z ⊗ 〈0|d − |0〉r〈1|l ⊗ 〈1|d ). (11)
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FIG. 3. (Color online) Computational tensor network per single
block. Entangled pairs of virtual qubits (left), which carry logical
quantum information, are mapped into physical particles (right). The
measurement on site B in different bases effectively prepares the
vertical virtual qubits (yellow, small light circles) at sites Au and Ad

(d and u) into either a product state or an entangled state, which is
used to implement decoupling 1D chains (single-qubit rotations) or
two-qubit gates, respectively.

The local tensor Ad can be written in a similar way. The tensor
matrices for site B are

B
[+ 3

2

] = |0〉u〈1|d , (12)

B
[− 3

2

] = −|1〉u〈0|d , (13)

B
[+ 1

2

] = |1〉u〈1|d , (14)

B
[− 1

2

] = −|0〉u〈0|d . (15)

Measurement-based quantum computation on such a resource
state can be understood as follows (see [12,13,17–19] for
details): The logical information is carried by the virtual qubit,
and the measurement in a certain basis on the physical particle
will induce either unitary or readout operators on the virtual
qubits according to the tensor matrices in Eqs. (8)–(15).

Each logical virtual qubit can be initialized to |0〉 or |1〉 by
measuring the left end spin- 1

2 particle in the ẑ basis {| ± 1
2 〉}.

Quantum computation then proceeds gradually from left to
right by measuring each computational block (Au, Ad , and B);
see Figs. 2 and 3.

Before performing computational measurements on each
block, we need to introduce a prenormalization step as follows
to equalize the different coefficients (1 versus 1/

√
3) in the

tensor matrices Au (Ad ). We first apply the local filter operation
{L,L̄} on sites Au and Ad with

L = diag {1/
√

3,1,1,1/
√

3}, (16)

L̄ = diag {
√

2/3,0,0,
√

2/3}. (17)

An outcome L̄ corresponds to an unsuccessful filter attempt
and leads, after suitable measurements on sites B,Au, and Ad ,
to the transport of quantum information to the next block up to
a local Pauli operation X or ZX. The procedure can hence be
repeated until it succeeds (i.e., the outcome L occurs). We find
that l ∼ O(log 1

ε
) trials lead to an overall success probability

of ps = 1 − (1/3)l � 1 − ε, i.e., the process is efficient. The
required measurements are given by

{|β〉} = 1/
√

2{|µ0〉 ± |ν0〉,|µ1〉 ± |ν1〉} (18)

for site B, where

|µs〉 = 1/
√

2
[∣∣− 3

2

〉 + (−1)s
∣∣+ 1

2

〉]
, (19)

|νs〉 = 1/
√

2
[∣∣− 1

2

〉 + (−1)s
∣∣+ 3

2

〉]
, (20)

and

{|α〉} = {∣∣+ 3
2

〉 + ∣∣− 3
2

〉
,
∣∣+ 3

2

〉 − ∣∣− 3
2

〉
,
∣∣+ 1

2

〉
,
∣∣− 1

2

〉}
(21)

for sites Au and Ad .
In the following, we will assume that the filter operation

was successful (i.e., the result L was obtained). We show that
a suitable choice of the measurement in B allows us either
to decouple 1D chains and obtain single-qubit operations
or readout or, alternatively, to couple two chains directly
and obtain a two-qubit gate. Two chains are decoupled by
a measurement of site B in the ẑ basis {| ± 1

2 〉,| ± 3
2 〉}, leading

to vertical virtual qubits d and u, corresponding to sites Au

and Ad , respectively (see Fig. 3), to be prepared into either
|0〉 or |1〉. For example, if the vertical virtual qubit is |0〉, the
effective tensor matrices for Au are given by

A
[+ 3

2

] = 0,A
[+ 1

2

] = −|1〉r〈0|l ,
A

[− 1
2

] = Z,A
[− 3

2

] = |0〉r〈1|l .

For other outcomes and the tensor Ad , the reduced tensor
matrices are equivalent up to a local basis change. Without
loss of generality, we use the effective 1D tensor matrices
A to show how to implement arbitrary single-qubit rotations
following a similar protocol as in [11] (note that the effective
tensor matrices are not equivalent to the 1D AKLT spin-1
chain) and read out logical quantum information.

A. Readout

The readout is realized by simply measuring site A in the
ẑ basis {| ± 1

2 〉,| ± 3
2 〉}. Once we get the outcome | + 1

2 〉
(| − 3

2 〉), one can infer that the logical qubit is |0〉(|1〉).
Otherwise, the logical qubit gets a Z by-product operator,
and we repeat the above procedure.

B. Single-qubit gates

An arbitrary single-qubit operation can be decomposed into
three rotations around the Z and X axes with three Euler
angles. In order to implement a Z-rotation Rz(θ ) = |0〉〈0| +
eiθ |1〉〈1|, we measure site A in the basis

{|αz(θ )〉} = { ∣∣+ 3
2

〉
,1/

√
2

(
e−iθ

∣∣− 3
2

〉 − ∣∣+ 1
2

〉)
,

− 1/
√

2
(
e−iθ

∣∣− 3
2

〉 + ∣∣+ 1
2

〉)
,
∣∣− 1

2

〉 }
. (22)

The first outcome is not possible, while the fourth induces a
by-product operator Z. If, however, the outcome is the second
or third one, we implement the rotation Rz(θ ) with a Pauli by-
product operator X or XZ. An X-rotation Rx(θ ) = |+〉〈+| +
eiθ |−〉〈−| is implemented in a similar way. We apply the local
filter operation {L,L̄} at the initial prenormalization step in the
Sx basis {| 3

2 ,Sx = m〉,m = ± 3
2 , ± 1

2 }. X rotations can then
be realized by the same protocol as the Z rotations, except
with the exchange of Sz and Sx basis, where the measurement
basis on site B at the prenormalization and decoupling steps
correspondingly changes as {|β〉} ↔ {| ± 1

2 〉,| ± 3
2 〉}.
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C. Two-qubit gate

The basic idea for the implementation of an entangling
gate is to prepare the vertical virtual qubits d and u, which
correspond to sites Au and Ad , into an entangled state by a
suitable measurement of B. In order to determine the kind of
two-qubit gate that is implemented for different measurement
outcomes, we first rewrite the tensor matrices Au and Ad in
the aforementioned basis of |µs〉 and |νs〉. We further define
another basis for site B as

|µ′
s〉 = 1/

√
2

[∣∣− 1
2

〉 + i(−1)s
∣∣+ 1

2

〉]
, (23)

|ν ′
s〉 = 1/

√
2

[∣∣− 3
2

〉 + i(−1)s
∣∣+ 3

2

〉]
. (24)

The contracted tensor from Au[µs,νs], Ad [µs,νs], and
B[µ′

s ,ν
′
s] results in one of the two-qubit entangling gates,

Vm,n = I ⊗ I + iσm ⊗ σn, (25)

where σm,n = X or Y . Moreover, any Pauli by-product
operator can propagate through the above entangling gates
as Vm,n(π1 ⊗ π2) = (π ′

1 ⊗ π ′
2)Vm,n, where both πi and π ′

i are
Pauli operators.

The explicit procedure to implement a specific entangling
gate is as follows: we first measure sites Au and Ad in the
basis {|µs〉,|νs〉}; if the outcomes correspond to the desired
entangling gate out of Vm,n, we proceed to measure site B in
the basis {|µ′

s〉,|ν ′
s〉}. Otherwise, if we do not obtain the desired

outcomes from the measurements on sites Au and Ad , we
measure site B in the ẑ basis {| ± 1

2 〉,| ± 3
2 〉}, which decouples

the chains and leads to transport of quantum information to
the next block up to a by-product Pauli operator. In that case,
we have to repeat the above procedure in order to obtain the
target two-qubit gate, but an arbitrary high-success probability
is achievable efficiently as well. The present protocol offers
the flexibility to choose a two-qubit gate on demand from a set
of entangling gates.

V. GROUND-CODE QUANTUM COMPUTATION

If the bulk Hamiltonian is maintained during the measure-
ment-based computation as proposed in the ground-code
scheme [11], the spectral gap appears to provide certain pro-
tection against local noises, so that it may make the computer
more robust and easier to meet a stringent fault-tolerant error
threshold for quantum error correction. However, potential
advantages of the gap in protecting quantum information are
currently intensively being studied in the context of topological
memory [21]. The general question as to what extent the
passive Hamiltonian protection is helpful in measurement-
based computation, which is far from the equilibrium, is more
involved and is addressed elsewhere. Here, we describe the
complete scheme with the Hamiltonian present.

We first look at the residual Hamiltonian of 1D AKLT
quasichain after measuring the first j particles,

H (j ) = J

⎛
⎝N−1∑

i=j

P 3
Ai,Ai+1

+
N∑

i=j

P 2
Ai,bi

+ P 2
AN,bN+1

⎞
⎠. (26)

It is gapped and twofold degenerate, which can encode one
logical qubit. We can show that the operators


σ =
N⊗

i=j

{ [
iσ

(
+3

2
, − 3

2

)
⊕ σ

(
−1

2
, + 1

2

)](Ai )

⊗ σ (bi )

}

⊗ σ (bN+1), (27)

with σ = X,Z, form the representation of su(2), and the
degenerate ground states are connected only by these nonlocal
operators. The computation on the 2D resource equips similar
robustness, as the Hamiltonian of the 2D model is locally
unitary equivalent to N independent chains. To utilize the gap
protection, we need to turn off the interactions that couple the
computational block (see Fig. 3) to the bulk together with those
inside the block, prior to any measurement for this block. As
the Hamiltonian H2d is frustration-free, this can be done in a
constant time. Also, particles already measured need to stay
decoupled from the remaining bulk.

In a potential implementation of H2d with trapped polar
molecules in an optical lattice [22], nearest-neighbor interac-
tions can be turned off by changing the potential depth of local
wells, which, in turn, suppresses the tunneling rate between
two neighboring wells. An alternative method without turning
off interactions is to apply fast measurements and remove the
particle from the system after the measurement or drive it
to a dark state (which no longer interacts with neighboring
particles).

VI. EXTENSION TO 2D LATTICES

Our approach can be extended from the octagonal lattice
to the 2D square lattice, for instance. The corresponding 1D
AKLT quasichain consists of spin-2 particles, each of which is
connected with two spin- 1

2 particles. In a similar way, we can
show that the energy gap is lower bounded by �E � Jγ εp =
0.0418J with γ = 0.241 and εp � 0.1735. We can merge a
number of such 1D AKLT quasichains into a 2D resource state
as well, and the computational protocol is similar.

VII. SUMMARY

We have proposed a translational-invariant gapped Hamil-
tonian of spin- 3

2 particles with nearest-neighbor two-body
AKLT- and exchange-type interactions. Its unique ground state
is proved to be universal for measurement-based quantum
computation. The Hamiltonian inherits important properties
from the original AKLT model, while at the same time,
it has distinct features, e.g., a strictly proved energy gap.
Further study on such a Hamiltonian and its order parameter
might reveal new aspects of many-body physics regarding
computational capability.
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