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Adiabatic quantum algorithms are characterized by their run time and accuracy. The relation between the two is
essential for quantifying adiabatic algorithmic performance yet is often poorly understood. We study the dynamics
of a continuous time, adiabatic quantum search algorithm and find rigorous results relating the accuracy and the
run time. Proceeding with estimates, we show that under fairly general circumstances the adiabatic algorithmic
error exhibits a behavior with two discernible regimes: The error decreases exponentially for short times and then
decreases polynomially for longer times. We show that the well-known quadratic speedup over classical search is
associated only with the exponential error regime. We illustrate the results through examples of evolution paths
derived by minimization of the adiabatic error. We also discuss specific strategies for controlling the adiabatic
error and run time.
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I. INTRODUCTION

In adiabatic quantum computation (AQC) [1–3] quantum
algorithms are implemented by initializing a system in an
easily prepared ground state, followed by adiabatic evolution
subject to a Hamiltonian whose final ground state represents
the solution to a computational problem. It is known that this
model is computationally equivalent to the standard circuit
model of quantum computation in the sense that each model
can simulate the other with polynomial resource overhead
[4–6]. While error correction methods have been proposed
for AQC [7,8], and arguments have been put forth that AQC is
inherently insensitive to certain types of errors [9–11], unlike
the circuit model it is still an open question whether AQC
can be made fault tolerant subject to realistic noise models
pertaining to AQC in an open system setting. Indeed, even
what constitutes a consistent picture of adiabatic evolution
in open systems is still the subject of some debate [12,13].
Nevertheless, experiments in AQC using superconducting
qubits have made great strides recently [14].

The performance of adiabatic quantum algorithms is char-
acterized by the “adiabatic error,” i.e., the fidelity loss between
the actual time-evolved state (the solution of the Schrödinger
equation) and the instantaneous ground state, calculated at the
final time T . Since the adiabatic theorem [15–18] guarantees
that in the limit of arbitrarily slow evolution the error
approaches zero, one expects that a more slowly varying
Hamiltonian and/or a longer evolution time should result in
higher fidelity or accuracy. This is the accuracy-time trade-
off in quantum adiabatic algorithms. This trade-off is often
formalized by the adiabatic condition, which states (roughly)
that the variation rate of the Hamiltonian should be � the
adiabatic error times the gap squared. A clear disadvantage of
this condition is the inherent vagueness of “�,” which makes
it difficult to reliably quantify the evolution time vs. the desired
accuracy. Moreover, violations of the traditional adiabatic
condition have been reported [19–21] in the sense that the
condition is neither necessary nor sufficient for adiabatic
evolution. While these violations have been explained as being

either due to inconsistent manipulations [22] or due to resonant
transitions [23], it appears that there is no single “adiabatic
theorem.” Rather, a number of different rigorous conditions
have been derived, which apply under various mathematical
assumptions [24–31]. A rigorous condition which holds for
analytic Hamiltonians and exhibits the explicit scaling with
system size, needed for AQC resource quantification, was
derived in Ref. [32].

In this work we perform a comprehensive analysis of the
adiabatic error for the case of an adiabatic quantum search
algorithm, in a closed system setting. We focus on quantum
search not only because it is an important example of a quan-
tum speedup [33] but also because it is amenable to an exact
analytical treatment. Indeed, rather than relying on a particular
form of the adiabatic theorem, our approach is based on an
exact treatment of the underlying dynamics. We calculate the
adiabatic error as an explicit function of the evolution time. We
work out the formal 1/T expansion of the error—often used in
rigorous treatments of the adiabatic theorem—through which
we provide a large-T polynomial upper bound for the adiabatic
error. We shall argue that a leading order truncation of this se-
ries expansion can result in misleading estimates for the scaling
of the evolution time vs. system size. We draw this conclusion
on the basis of a careful study of the adiabatic error, showing
that it may exhibit a short-T exponential decay, which is
hidden in the formal polynomial expansion. We show that this
short-time exponential decay heralds the correct scaling for the
evolution time vs. system size (a quadratic speedup over clas-
sical search), avoiding the overestimation that results from the
long-time polynomial decay, and which leads to a loss of the
quantum speedup. Additionally, we propose specific adiabatic
evolution paths (“interpolations”)—inspired by a procedure
for minimization of time functionals for adiabatic evolution
[34]—and use these to illustrate our results. We also examine
the applicability of the traditional measure of the evolution
time and contrast this to what we obtain from our analysis.
This careful analysis enables us to show explicitly how one can
reduce the adiabatic error as a function of the evolution time.
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TABLE I. Summary of the notations.

Notation Definition Eq. (#)

T ,τ,τrun Total, normalized, run time (1),(26)
HT ,VT ,|ψT 〉 Actual Hamiltonian, evolution, state (2),(13),(4)
Ei,|�i〉 Eigenvalues, eigenstates (2)
(�)D (Dimensionless) Ground-state gap (42) (3)
HA,A Adiabatic Hamiltonian, evolution (12),(10)
hA Adiabatic coupling (67)
δad,δ

′
ad Adiabatic error (16),(17) [(18),(19)]

ε Bound over the adiabatic error (20)
r Fraction of marked (M) to all (N ) items (36)
HI Initial Hamiltonian (all items) (28)
HM Final Hamiltonian (marked items) (29)
x Adiabatic interpolation (30)
J An energy scale (27)
|ψ̃〉,H̃ 2D (unnormalized) state, (non-Hermitian) effective Hamiltonian (34),(35)
|ψ̂〉,Ĥ 2D (normalized) state, (Hermitian) effective Hamiltonian (51),(46)̂ Identifies functions, states, operators in the 2D reduced representation (except �) (50),(51)∫ τ

g Shorthand for
∫ τ

0 g(τ ′) dτ ′ (70)
Il Dyson matrix elements [Eq. (81)] (82)
z0 Pole(s) of � in the complex τ plane (104)
ϕθ Identifies a general family of optimal adiabatic interpolations (117)–(119)

The structure of this article is as follows. We start with some
general background in Sec. II by delineating the framework of
adiabatic quantum computation, the definition of the adiabatic
error, and the adiabatic theorem. Here, Table I summarizes
the main notations used throughout the article. In Sec. III,
we specialize to the specific problem of quantum search.
There we introduce a general Hamiltonian interpolation for
the search problem and analytically solve the corresponding
Schrödinger equation. Section IV contains the core of our
results. We first derive an exact expression for the adiabatic
error in Sec. IV A. Next, in Sec. IV B, we approximate this
expression and show how the polynomial and exponential
behaviors emerge. Since estimation of the adiabatic error
requires specific interpolation paths, we derive a general
interpolation for the search Hamiltonian in Sec. IV C and
investigate in detail three special cases. The adiabatic error
for the general interpolation together with the special cases is
estimated in Sec. IV D. In Sec. IV E, we discuss a strategy for
controllably reducing the adiabatic error. There we show how
one can employ a freedom in the interpolation to manipulate
the adiabatic error. This accounts for the performance-resource
trade-off. We conclude with a summary of the results and an
outlook in Sec. V.

II. FRAMEWORK OF ADIABATIC QUANTUM
COMPUTATION

We begin by defining the adiabatic error as it arises in
the context of AQC. We also provide a brief review of some
pertinent facts concerning the “traditional” adiabatic theorem,
also in the context of AQC. However, we note that in the sequel
we shall not use the adiabatic theorem; rather, we shall treat
the dynamics directly by solving the Schrödinger equation and
later enforce adiabaticity by means of a 1/T expansion.

A. Adiabatic error

Let us treat the total evolution time T as a parameter and
define the the scaled (dimensionless) time

τ = t/T ∈ [0,1]. (1)

Assume that we have an N -dimensional quantum system that
evolves for a total time T under the Hamiltonian HT (τ ) with
spectral decomposition

HT (τ ) =
N−1∑
i=0

Ei(τ )|�i(τ )〉〈�i(τ )|,τ ∈ [0,1] (2)

where Ei(τ ) � Ej (τ ) for i < j , except that the ground-state
energy is separated from the rest of the spectrum by a
nonvanishing gap

D(τ ) ≡ E1(τ ) − E0(τ ) > 0. (3)

Possible level crossing among excited eigenstates {|�i(τ )〉}i>0

shall not concern us here because in the following we shall only
focus on the ground state |�0(τ )〉. We assume that the system
is closed, i.e., the evolution is governed by the Schrödinger
equation

i|ψ̇T (τ )〉 = T HT (τ )|ψT (τ )〉, (4)

where from now on dot denotes d/dτ , and we set h̄ ≡ 1. The
initial state is assumed to be the ground state, i.e.,

|ψT (0)〉 = |�0(0)〉. (5)

Remark. We shall use the subscript T to indicate the
parametric dependence on T . When symbols already have
a subscript we shall avoid the additional T subscript so as not
to clutter the notation.
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A central quantity of interest to us is the “adiabatic error”
δad(τ ), which quantifies the distance between the instantaneous
ground state and the actual state:

δad(τ ) ≡
√

1 − |〈�0(τ )|ψT (τ )〉|2. (6)

Note that δad(τ ) is a distance and (in-)fidelity measure in their
rigorous sense. Indeed, the trace distance D and fidelity F
between two arbitrary density operators 	1 and 	2 are defined
as [35]

D(	1,	2) ≡ 1
2‖	1 − 	2‖1, (7)

F(	1,	2) ≡ ‖√	1
√

	2‖1, (8)

where ‖X‖1 ≡ Tr
√

X†X is the trace norm (sum of singular
values of X). For pure states 	i = |ψi〉〈ψi | it is not hard to
show that D(	1,	2) =

√
1 − |〈ψ1|ψ2〉|2 ≡ D(|ψ1〉,|ψ2〉) and

F(	1,	2) = |〈ψ1|ψ2〉| ≡ F(|ψ1〉,|ψ2〉). Thus

δad(τ ) = D(|ψT (τ )〉,|�0(τ )〉)
=

√
1 − F(|ψT (τ )〉,|�0(τ )〉)2. (9)

An equivalent and useful formulation of δad(τ ) is the
following. Let P (τ ) ≡ |�0(τ )〉〈�0(τ )| denote the ground-
state eigenprojection. The connection between the ini-
tial preparation P (0) and the time evolved state P (τ ) is
given by

P (τ ) = A(τ )P (0)A†(τ ), (10)

where the unitary operator A(τ )—called the adiabatic inter-
twiner [24]—determines the evolution in the eigenspace P (τ )
and its orthogonal complement 1 − P (τ ):

A(τ ) ≡
N−1∑
i=0

|�i(τ )〉〈�i(0)|. (11)

One can assign a (dimensionless) “adiabatic Hamiltonian,”
HA(τ ), to this evolution defined via

iȦ(τ ) = HA(τ )A(τ ). (12)

On the other hand, the evolution operator, generated as

iV̇T (τ ) = T H (τ )VT (τ ), (13)

dictates the actual dynamics:

|ψT (τ )〉〈ψT (τ )| = VT (τ )P (0)V †
T (τ ). (14)

Thus the error δad(τ ) in fact measures the difference between
VT (τ ) and A(τ ) or, equivalently, how far the unitary operator


T (τ ) ≡ A†(τ )VT (τ ) (15)

is from 1 (identity). Indeed, we have

δad(τ ) =
√

1 − |〈�0(0)|
T (τ )|�0(0)〉|2, (16)

which vanishes if and only if 
T (τ ) = 1.
The above formulations have presumed that the degeneracy

of the ground-state eigensubspace does not change in time.
Nonetheless, there may be situations in which this degeneracy
preservation assumption does not hold. In fact, as we shall
see later, the quantum search problem we study in this
article falls into this category. Let us assume that the initial

state is pure, |ψT (0)〉 = |�0(0)〉, but the instantaneous
ground-state eigenprojection P (τ ) is not necessarily rank 1,
accounting for the possibility of degeneracy. Intuitively, if
the actual state |ψT (τ )〉 only has components in the support
of P (τ ) the algorithm has achieved its goal at the instant
τ , whereas a less than full overlap denotes lack of success
at this instant. The overlap of |ψT (τ )〉 and the support of
P (τ ) can be quantified, e.g., with 〈ψT (τ )|P (τ )|ψT (τ )〉,
whence we define the following performance
error:

δ′
ad(τ ) ≡

√
1 − 〈ψT (τ )|P (τ )|ψT (τ )〉. (17)

It is evident that 0 � δ′
ad(τ ) � 1, with δ′

ad = 1 if and only if
the actual state has vanishing overlap with the support of the
instantaneous ground-state eigenprojection, while δ′

ad = 0 if
and only if the actual state resides anywhere in the support.

We can write 〈�0(0)|
T (τ )|�0(0)〉 = Tr[P (0)
T (τ )]
and 〈ψT (τ )|P (τ )|ψT (τ )〉 = Tr[P (τ )VT (τ )P (0)V †

T (τ )] =
Tr[P (0)
T (τ )P (0)
†

T (τ )]. Using this, note the difference
between

δad(τ ) =
√

1 − |Tr[P (0)
T (τ )]|2 (18)

and

δ′
ad(τ ) =

√
1 − Tr[P (0)
T (τ )P (0)
†

T (τ )]. (19)

Namely, in the nondegenerate case δad(τ ) = 0 if and only
if 
T (τ ) = 1, indicating that the evolution was perfectly
adiabatic. In the degenerate case, on the other hand, al-
gorithmic success does not require the evolution to be
perfectly adiabatic since only nonvanishing overlap with
the ground-state eigensubspace is required, i.e., δ′

ad = 0 if
and only if VT (τ )P (0)V †

T (τ ) ∈ supp[P (τ )], whereas complete
failure requires the dynamics to remove any overlap with
the ground-state eigensubspace, i.e., δ′

ad = 1 if and only if
VT (τ )P (0)V †

T (τ ) /∈ supp[P (τ )].
While the error as defined in Eq. (17) is not necessarily a

distance in the strict sense, it is adequate for quantifying the
adiabatic error. Note also that δ′

ad(τ ) reduces to δad(τ ) when the
ground state is nondegenerate. From now on we shall be using
these various expressions for the adiabatic error as appropriate
in the rest of this article.

B. The adiabatic theorem

One variant of the “traditional” adiabatic theorem [17]
states that given an 0 < ε � 1 and a time-dependent Hamil-
tonian H (τ ) with a nondegenerate ground state, the adiabatic
error satisfies δad(1) � ε, provided that

maxτ ‖Ḣ (τ )‖
minτ D2(τ )

� εT , (20)

in which ‖ · ‖ is the standard operator norm, defined as the
maximum singular value, i.e.,

‖X‖ ≡ sup
|v〉,‖v‖=1

|〈v|
√

X†X|v〉|, (21)

which reduces to sup|v〉,‖v‖=1 |〈v|X|v〉| for normal operators.
As remarked in the introduction, this condition is hardly
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quantitative due to the intrinsic vagueness of “�,” and has
been the subject of critique (consistent with its lack of rigor)
[19–21], justifications [22,23], and rigorous improvements
[24–32]. Nevertheless, it remains a useful rule of thumb, as
long as it is applied with appropriate care.

An immediate implication of the adiabatic theorem is that,
assuming it is initialized in the ground state, the system remains
close to the final ground state at t = T . Thus, by choosing the
Hamiltonian such that H (0) corresponds to a simple ground
state |�0(0)〉 (simple in the sense that it is easily preparable),
and H (1) represents a Hamiltonian whose ground state |�0(1)〉
identifies the solution to a computationally hard problem,
one can devise an adiabatic version for the corresponding
algorithmic or computational task. This is precisely the insight
that led to the advent of AQC [2,3].

A simple “annealing schedule,” or “path,” between H (0)
and H (1) is the following linear interpolation in τ :

H (τ ) = (1 − τ )H (0) + τH (1). (22)

In physical situations, however, one often realizes the dy-
namics by tuning some time-dependent control knobs or
couplings x(τ ) = (x1(τ ), . . . ,xK (τ )) of the Hamiltonian. This
suggests that a generalization of Eq. (22) can be introduced
by assuming access to a controllable set of noncommuting,
linearly independent, primitive Hamiltonians {Hi}K�N

i=1 com-
bined, e.g., as H [x(τ )] = ∑K

i=1 xi(τ )Hi . Further generaliza-
tions can be introduced as well [2,34,36,37]. However, for our
purposes in this article we shall consider the parametrization
[34,36]

H [x(τ )] = x1(τ )H (0) + x2(τ )H (1), (23)

with the boundary conditions

(x1(0),x2(0)) = (1,0), (24)

(x1(1),x2(1)) = (0,1). (25)

Two remarks are in order regarding AQC. (i) A primary
goal in AQC is to make δad(1) decrease more rapidly for a
given T and problem size or, alternatively, to make T smaller
for a given ε and problem size. Often the problem size is given
by N , the dimension of the Hilbert space. However, in the
context of many-body quantum systems, where the Hilbert
space is a tensor product of subsystems (e.g., qubits), log N is
the correct measure of problem size, coinciding with system
size. (ii) The “run time” complexity of a quantum algorithm
should be defined as

τrun ≡ T max
τ

‖H (τ )‖, (26)

not T [4]. This regularization is required because of the
energy-time trade-off in quantum mechanics in the sense that
multiplication of H (τ ) in Eq. (20) by some positive factor α

manifests itself as dividing T by the same factor, making it
possible to decrease T arbitrarily by choosing α sufficiently
large. This trade-off can also be understood via the Schrödinger
equation (4), in which the final state of a system evolving
under Hamiltonian H (τ ) for T is the same as that of a system
evolving under αH (τ ) for T/α. This ambiguity is fixed by the
definition of τrun as in Eq. (26). Scaling of τrun with system size,

for a given upper bound on the error δad(1) � ε, determines
the run time complexity of the corresponding quantum
algorithm.

III. QUANTUM SEARCH HAMILTONIAN

Grover’s quantum search algorithm [33] performs a search
for M “marked” items among N items of an unsorted database,
presuming that there is an “oracle” for distinguishing the
marked from the unmarked items. The algorithm in its original
form (M = 1) comprises the following steps: (i) assign
orthonormal quantum states (i.e., labels) {|0〉, . . . ,|N − 1〉}
to the items, (ii) prepare the quantum system in the equal
superposition state

∑N−1
i=0 |i〉/√N , and (iii) apply the “Grover

operator”—encompassing the oracle—repeatedly [33,35]. The
algorithm finds a marked item after τrun = O(

√
N/M) calls

of the oracle—a quadratic speedup over the best classical
algorithm—and is provably optimal for any N (not necessarily
very large) [38]. Various generalization of the algorithm have
been introduced (e.g., Refs. [39–44]), and it has also been
implemented experimentally in a number of physical settings
(e.g., Refs. [45–49]).

An adiabatic Hamiltonian version of the search algorithm
was first introduced in Ref. [2] but failed to display the ex-
pected quadratic speedup as it relied on the linear interpolation
of Eq. (22). This was fixed in Ref. [36] by using a nonlinear but
one-dimensional interpolation with x2(τ ) = 1 − x1(τ ) [recall
Eq. (23)], which moves fast when away from the minimum
gap but slows down near it. As shown in Ref. [34], this result
can be further improved, in the sense of a smaller adiabatic
error, by adopting a two-dimensional interpolation as in
Eq. (23),

H (τ )/J = x1(τ )HI + x2(τ )HM, (27)

with the two projective Hamiltonians

HI = 1 − |φ〉〈φ|, (28)

HM = 1 − PM, (29)

where |φ〉 ≡ ∑N−1
i=0 |i〉/√N is the equal superposition of

all of the “label” states (items), PM ≡ ∑
m∈M |m〉〈m| is

the projection over the subspace M of the marked items
(|M| = M), and J is a dimensional constant which sets the
energy scale. In other words, the initial state |φ〉 is the ground
state of the initial Hamiltonian HI , while any state supported
fully on M is a ground state of the final (oracle) Hamiltonian
HM. Note that unlike previous treatments of adiabatic quantum
search [2,34,36], the Hamiltonian HM has a degenerate ground
eigenspace spanned by {|m〉}m∈M.

We remark that the search Hamiltonian (27) is a member
of the following class of projective Hamiltonians [34,50,51]:

H [x(τ )] = x1(τ )P ⊥
a + x2(τ )P ⊥

{b}, (30)

where P ⊥
a ≡ 1 − |a〉〈a|, P ⊥

{b} ≡ 1 − ∑
b |b〉〈b|, with |a〉 and

{|b〉} fixed (normalized) vectors in the system Hilbert space,
for which 〈a|P ⊥

{b}|a〉 is a given function of N . In the case of
the search problem, we have |a〉 = |φ〉, |b〉 = |m〉, whence
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|〈a|b〉| = 1/
√

N . The results of this article can be generalized
to other members of the class of projective Hamiltonians.

A. Two-dimensional reduction

In the computational basis, in which |ψT (τ )〉 =∑N−1
i=0 ψi(τ )|i〉, the Schrödinger equation (4) becomes

iψ̇i = T

⎡⎣(
x1 + x2 − x2

∑
m∈M

δmi

)
ψi − x1

N

N∑
j=1

ψj

⎤⎦ ,

(31)

with the initial value ψi(0) = 1/
√

N . It can be seen from this
expression that the marked components all behave similarly,
as do the unmarked components. Hence we can rewrite the
state |ψT (τ )〉 as

|ψT (τ )〉 = ψu(τ )
∑
i /∈M

|i〉 + ψm(τ )
∑
i∈M

|i〉, (32)

where the subscripts u and m denote “unmarked” and
“marked,” respectively. The normalization condition now
reads

(N − M)|ψu(τ )|2 + M|ψm(τ )|2 = 1. (33)

By defining the (unnormalized) two-dimensional vector

|ψ̃〉 = (ψu,ψm)T , (34)

and the (non-Hermitian) effective Hamiltonian matrix

H̃ /J =
(

rx1 + x2 −rx1

(r − 1)x1 (1 − r)x1

)
, (35)

in which

r = M/N (36)

is the fraction of the marked items, the Schrödinger equation
reduces to

i|
.

ψ̃T (τ )〉 = T H̃ (τ )|ψ̃T (τ )〉, (37)

with the initial condition |ψ̃(0)〉 = (1/
√

N,1/
√

N ). There-
fore, not only is the parameter space of the problem two
dimensional, it is described by an effectively two-dimensional
Hamiltonian (in the m-u representation). This reduction
from the real Hamiltonian H [Eq. (27)] to the effective
Hamiltonian H̃ [Eq. (35)] will prove useful in our analysis
below.

Later in the article we shall need the norm of the Hamilto-
nian as well. This can be calculated easily from Eqs. (21) and
(35) and yields:

‖H (τ )‖ =
{

J |x1(τ ) + x2(τ )| : x1(τ ) + x2(τ ) 
= 0,

J
√

1 − r|x1(τ )| : otherwise,
(38)

and similarly,

‖Ḣ (τ )‖ =
{

J |ẋ1(τ ) + ẋ2(τ )| : ẋ1(τ ) + ẋ2(τ ) 
= 0,

J
√

1 − r|ẋ1(τ )| : otherwise.
(39)

B. Diagonalization and unitary interpolation

The Hamiltonian H/J (27) has three distinct dimensionless
eigenvalues E− � E+ � E>, where

E∓ = (x1 + x2 ∓ �)/2, (40)

E> = x1 + x2, (41)

where

� ≡
√

(x1 − x2)2 + 4rx1x2, (42)

is the dimensionless gap (hence D ≡ J�) and E> is (N − 2)-
fold degenerate.

Let σz = diag(1, − 1) and σy = ( 0 −i

i 0 ) denote the Pauli
matrices. Let us define the similarity matrix

S ≡
(

r/
√

1 − r
√

r

−√
1 − r

√
r

)
, (43)

and the unitary

Â ≡ e−iσy arccos{[x1−(1−2r)x2]/�}/2. (44)

Then the effective Hamiltonian H̃ (τ ) [Eq. (35)] satisfies

H̃ /J = SĤ (τ )S−1, (45)

where

Ĥ (τ ) ≡ Âdiag(E+,E−)Â † (46)

is the Hermitian core of H̃ /J , and we easily find that

Ĥ (τ ) = 1
2 {[x1(τ ) + x2(τ )]1 + �(τ )Â(τ )σzÂ

†(τ )}. (47)

This last result is remarkable: it states that, up to an overall
(time-dependent) shift [x1(τ ) + x2(τ )]1 and a conformal factor
�(τ ), the reduced Hamiltonian Ĥ (τ ) is a unitary interpolation
Â(τ )σzÂ

†(τ ) [52]. We will exploit this observation below.
The non-Hermitian reduced Hamiltonian H̃ (τ ) and its

Hermitian core Ĥ (τ ) have the same set of eigenvalues Ê∓ ≡
E∓, and we have the spectral resolution

Ĥ /J = Ê−|�̂−〉〈�̂−| + Ê+|�̂+〉〈�̂+|, (48)

where

|�̂∓(τ )〉 ≡ Â(τ )|z,∓〉, (49)

and |�̂∓(0)〉 = |z,∓〉 are the eigenvectors of σz, corresponding
to the eigenvalues ∓1. The unitary operator Â(τ ) acts as a
reduced adiabatic intertwiner [Eq. (10)], in the sense that for
the reduced projection P̂∓(τ ) ≡ |�̂∓(τ )〉〈�̂∓(τ )| we have

P̂∓(τ ) = Â(τ )P̂∓(0)Â †(τ ). (50)

Remark. We emphasize that throughout the article the
hat and tilde denote states or operators in the reduced
representation; the only exception is �.

C. Solving the Schrödinger equation

In solving the Schrödinger equation and calculating the
adiabatic error δad(1), it is more convenient to work with the
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normalized state

|ψ̂T (τ )〉 ≡
√

MS−1|ψ̃T (τ )〉. (51)

Equation (37) now becomes

i|
.

ψ̂T (τ )〉 = T Ĥ (τ )|ψ̂T (τ )〉, (52)

with |ψ̂T (0)〉 = |z,−〉. Solving this equation results in

|ψ̂T (τ )〉 = V̂T (τ )|ψ̂T (0)〉, (53)

in which

V̂T (τ ) ≡ T exp

[
−iT

∫ τ

0
Ĥ (τ ′) dτ ′

]
(54)

is the time-ordered reduced evolution operator.

1. General setup: Adiabatic interaction picture and Dyson series

Having observed that the Grover search problem can be
cast as a conformal unitary interpolation, we outline a general,
systematic approach for solving the corresponding class of
Schrödinger equations using the Dyson series expansion [53].
Consider as a specialization of the general time-dependent
Hamiltonian of Eq. (2) the “conformal unitary interpolation
Hamiltonian”

HT (τ ) = �(τ )A(τ )HT (0)A†(τ ), (55)

in which

HT (0) =
N−1∑
i=0

Ei(0)Pi(0), (56)

is the spectral decomposition of the (traceless) initial
Hamiltonian H (0), the unitary operator A(τ ) satisfies the
adiabatic Schrödinger equation (12) generated by the adiabatic
Hamiltonian HA(τ ) [24,50], and (the dimensionless gap)
�(τ ) > 0 is a smooth function with the initial value �(0) = 1.
It is also useful to think of the time-dependent Hamiltonian
HT (τ ) [Eq. (55)] as the “adiabatic interaction picture Hamil-
tonian,”though normally an interaction picture transformation
does not involve a time-dependent prefactor such as �(τ ).
It is evident that the eigenvalues and eigenprojections of
HT (τ ) satisfy

Ei(τ ) = �(τ )Ei(0), (57)

Pi(τ ) = A(τ )Pi(0)A†(τ ). (58)

Equation (57) implies that the spectrum of HT (τ ) evolves
conformally with �(τ ), i.e., all the eigenvalues are multiplied
by the same factor, while Eq. (58) implies that the eigen-
projections are unitarily connected, and the degeneracy is
constant in time. Comparison of Eqs. (10) and (58) reveals
that P (τ ) = P0(τ ) and here too, A(τ ) plays the role of the
adiabatic intertwiner.

Rather than solving the Schrödinger equation

V̇T (τ ) = T HT (τ )VT (τ ), (59)

we solve the equation of motion for the “adiabatic interaction
picture propagator” [cf. Eq. (15)]


T (τ ) ≡ A†(τ )VT (τ ). (60)

This provides a more direct tool for the calculation of the
adiabatic error [Eq. (6)]. Let us define

H0(τ ) ≡ A†(τ )HT (τ )A(τ ) = �(τ )HT (0), (61)

H1(τ ) ≡ A†(τ )HA(τ )A(τ ). (62)

Note that H0(τ ) has dimensions of energy while H1(τ )
is dimensionless. In the adiabatic interaction picture the
(dimensionless) “perturbation” is T H0(τ ) − H1(τ ), i.e., it
follows from Eqs. (12) and (59) that

i
̇T (τ ) = [T H0(τ ) − H1(τ )]
T (τ ). (63)

We also define the two unitaries V0(τ ) and V1(τ ) through the
following equations:

iV̇0 = T H0V0, (64)

iV̇1 = −V
†

0 H1V0V1. (65)

It is easily seen that V0V1 also satisfies Eq. (63), so


T (τ ) = V0(τ )V1(τ ). (66)

To simplify the analysis, we only consider Hamiltonians
for which

HA(τ ) = hA(τ )�, (67)

in which hA is an integrable function and � is a constant
(τ independent) and traceless operator belonging to the space
of linear operators acting on the system Hilbert space. Thus
from Eq. (62) we obtain

H1 = HA. (68)

Note that, from Eqs. (61) and (64),

V0(τ ) = e−iT HT (0)
∫ τ

�, (69)

where
∫ τ

� is shorthand for
∫ τ

0 �(τ ′) dτ ′—we shall use the
similar shorthand ∫ τ

g ≡
∫ τ

0
g(τ ′) dτ ′ (70)

wherever convenient. Inserting V0 into Eq. (65) yields

V̇1 = KT V1, (71)

in which the kernel KT is defined as

KT (τ ) ≡ ihA(τ )eiT HT (0)
∫ τ

��e−iT HT (0)
∫ τ

�. (72)

Equation (71) or, equivalently, the Volterra equation,

V1(τ ) = 1 +
∫ τ

0
KT (τ ′)V1(τ ′) dτ ′, (73)

can be solved iteratively, yielding the Dyson series

V1(τ ) = 1 +
∞∑
l=1

∫ τ

0
KT (τ1)dτ1 . . .

∫ τl−1

0
KT (τl) dτl. (74)

2. Quantum search

Now we apply the method described above to the adiabatic
quantum search problem. Recall that we are working with the
reduced states and operators (hence the hat over all reduced
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quantities, except the gap � [Eq. (42)]). Comparing Eq. (46)
with Eq. (55) implies that

Ĥ (0)/J = 1
2σz, (75)

after excluding the trivial term ∝ 1 from Ĥ . Similarly,
Eqs. (44) and (67) yield

ĥA = d

dτ

[
1

2
arccos[(x1 − (1 − 2r)x2)/�]

]
(42)=

√
r(1 − r)

x1ẋ2 − ẋ1x2

�2
, (76)

�̂ = σy. (77)

As a result, from Eqs. (69) and (72) we obtain

V̂0 = e−iχ̂diag
(
e− i

2 JT
∫ τ

�,e
i
2 JT

∫ τ
�
)
, (78)

K̂T = ĥA

(
0 eiJT

∫ τ
�

−e−iJT
∫ τ

� 0

)
, (79)

where the phase factor

χ̂(τ ) = 1

2
JT

∫ τ

0
[x1(τ ′) + x2(τ ′)]dτ ′ (80)

compensates for the removal of the trivial term from ĤT (0).
Some simple algebra then yields

V̂1(τ ) =
∞∑
l=0

(−1)l
[

I2l(τ ) I∗
2l+1(τ )

−I2l+1(τ ) I∗
2l(τ )

]
, (81)

where, for l � 1, the Dyson series terms are

Il(τ ) ≡
∫ τ

0
ĥA(τ ′)Il−1(τ ′)ei(−1)l J T

∫ τ ′
�dτ ′, (82)

and I0(τ ) ≡ 1. This completes the derivation of


̂T = Â †V̂ = V̂0V̂1. (83)

IV. ADIABATIC ERROR IN THE SEARCH ALGORITHM

In the previous section, we worked out the solution to
the Schrödinger equation in the quantum search problem.
Having collected the pertinent ingredients, we now return to
calculating our main object of interest, δad(τ ).

After deriving an exact formula for the error, we proceed
with approximating it in the large system-size limit, identi-
fied with r � 1. We start with the well-known polynomial
expansion of δad(1) in terms of T , which works well for
large times. In refining this result, we show that in fact two
regimes are discernible in the behavior of δad(1) vs. T : (i) the
onset of exponential decrease, followed by (ii) a polynomial
tail. This dichotomy will appear to be crucial in a correct
characterization of the scaling of the run time of the algorithm
with system size.

The exact behavior of the error in the algorithm depends
strongly on the form of the interpolation one chooses for
the Hamiltonian. Inspired by our earlier study aiming at
minimizing the adiabatic error in quantum algorithms [50], we
shall suggest a general class of interpolations, which includes
three specific cases already studied in the literature. Next, we

investigate the specific behavior of the adiabatic error for each
interpolation, separately. Finally, we shall suggest methods for
suppressing the adiabatic error even further.

A. Exact relation

Recall that the adiabatic quantum search Hamiltonian (27)
has a nondegenerate ground state |φ〉 at the initial time τ = 0,
whereas the ground-state eigenprojection at the final time
τ = 1 is PM, which is M-fold degenerate. Here, any full
superposition of the form |ψT (1)〉 = ∑

i∈M ψi |i〉 will work
equally well, whereas if |ψT (1)〉 does not have complete
support over PM then this indicates that the algorithm has
partially failed. Hence, following the discussion in Sec. II
[Eq. (17)], the adiabatic error at the final time is determined
by

δ′
ad(1) =

√
1 − 〈ψT (1)|PM|ψT (1)〉

=
√

1 − M|ψm(1)|2
33=

√
N

√
1 − r|ψu(1)|. (84)

An equivalent formulation can be obtained for the two-
dimensional reduction we discussed in Sec. III. In this
representation |ψT (1)〉 is replaced by |ψ̂T (1)〉 = V̂T (1)|�̂−(0)〉
[Eq. (53)]; similarly, the instantaneous ground state is rep-
resented by the nondegenerate state |�̂−(1) = Â(1)|�̂−(0)〉
[Eq. (49)]. Thus we can employ the error formula appropriate
for the nondegenerate case [Eq. (16)], whereby

δad(1) =
√

1 − |〈�̂−(1)|ψ̂T (1)〉|2

=
√

1 − |〈z, − |
̂T (1)|z,−〉|2
= |〈z, + |
̂T (1)|z,−〉| = |〈�̂+(1)|ψ̂T (1)〉|, (85)

in which 
̂T (1) is given by Eq. (83), and in the last line we
used the unitarity of 
̂T (1). The equality of Eqs. (84) and (85)
is immediately seen from

|〈�̂+(1)|ψ̂T (1)〉| (51)=
√

M

∣∣∣∣∣(1 0)Â †(1)S−1

(
ψu(1)

ψm(1)

)∣∣∣∣∣
(43),(44)=

√
N

√
1 − r|ψu(1)|. (86)

Inserting 
̂T (1)—noting Eqs. (78) and (81)—into Eq. (85)
yields the following exact expression for the adiabatic error at
the final time:

δad(1) =
∣∣∣∣∣

∞∑
l=0

(−1)lI2l+1(1)

∣∣∣∣∣ , (87)

which is upperbounded by

δad(1) �
∞∑
l=0

∣∣I2l+1(1)
∣∣. (88)

From the above equations we can in principle calculate the
adiabatic error or its bound given that we know all Iodd(1)’s.

Remark. The value of δad(T = 0) will be important later.
In this case, we have |ψ̂T =0(1)〉 = |�−(0)〉, thence Eq. (85)
yields

δad(0) = √
1 − r, (89)
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in which we used the boundary conditions (25) in Â(1). This
relation is valid for any interpolation that satisfies the boundary
conditions.

B. Approximation of the adiabatic error

An exact calculation of the adiabatic error from Eq. (87)
can be challenging because of the infinite number of terms in
the summand and the fact that each term contains a multiple
integral. To alleviate this difficulty, in this subsection we
approximate the upper bound on δad(1) from Eq. (88) from
the first few Il ’s and argue that this suffices for most
algorithmic purposes. We start from an expansion in powers of
1/T , based on integration by parts, and explain its limitations.
We then provide more careful analyses, based on the residue
theorem and on the stationary phase method, both of which
lead to an exponential error estimate.

1. Polynomial expansion

The most common rigorous adiabatic approximation em-
ploys an expansion in powers of 1/T , presuming that T is
“large” [24,29,32]. Let us now show how one can system-
atically expand the adiabatic error as a polynomial in1/T

by extracting powers of 1/T from each term Il(τ ) through
integration by parts.

From the identity e−iT Y (τ ) = i/
(
T Ẏ (τ )

)
d
dτ

e−iT Y (τ ) [valid
for any differentiable function Y (τ )], we obtain the following
relation by integration by parts:∫ τ

0
G(τ ′)e−iT Y (τ ′)dτ ′

= i

T

{
e−iT Y (τ ′) G(τ ′)

Ẏ (τ ′)

∣∣∣∣τ
0

−
∫ τ

0
e−iT y(τ ′) d

dτ ′

[
G(τ ′)
Ẏ (τ ′)

]
dτ ′

}
.

(90)

Notice how this extracted a 1/T in front of the first term.
In the second integral on the right-hand side we can iterate
the same trick of replacing the exponential with its derivative;
which generates 1/T 2 and higher-order terms. This provides
a systematic way for generating poly(1/T ) expansions of
exponential integrals, as we shall see more specifically below
for the Il(τ )’s.

Using Eq. (90), we obtain

I1(τ ) = i

JT

{
e−iJT

∫ τ ′
� ĥA(τ ′)

�(τ ′)

∣∣∣∣∣
τ

0

− e−iJT
∫ τ

�

×
∫ τ

0

d

dτ ′

[
ĥA(τ ′)
�(τ ′)

]
dτ ′

}
. (91)

Applying once more the exponential identity (90) for the
second integral above gives rise to O(1/T 2) terms; whence,

I1(τ ) = i

JT

[
ĥA(τ )

�(τ )
e−iJT

∫ τ
� − ĥA(0)

]
+ O

(
1

T 2

)
,

(92)

i.e., |I1(τ )| = O(1/T ). In analogous fashion, for I2(τ ) we
obtain

I2(τ ) = i

JT

{∫ τ

0

ĥ 2
A(τ ′)

�(τ ′)
dτ ′ − ĥA(0)I∗

1 (τ )

−
∫ τ

0
dτ ′ĥA(τ ′)eiJT

∫ τ ′
�

×
∫ τ ′

0
dτ ′′ d

dτ ′′

[
ĥA(τ ′′)
�(τ ′′)

]
e−iJT

∫ τ ′′
�

}
, (93)

from which

I2(τ ) = i

JT

[∫ τ

0

ĥ 2
A(τ ′)

�(τ ′)
dτ ′

]
− ĥA(0)

(JT )2

×
[
ĥA(τ )e−iJT

∫ τ
�

�(τ )
− ĥA(0)

]
+ O

(
1

T 3

)
, (94)

and |I2(τ )| = O(1/T ). By induction, one can conclude from
Eq. (82) that [24,25]

|I2l−1(τ )| = |I2l(τ )| = O

(
1

T l

)
, (95)

for l ∈ N. Thus, from Eq. (88) the adiabatic error bound
becomes

δad(1) � |I1(1)| + O

(
1

T 2

)
= 1

JT

[
|̂hA(0)| + |̂hA(1)|

]
+ O

(
1

T 2

)
. (96)

This relation can be simplified further. From the
boundary conditions (24) and (25), we obtain �(0) =
�(1) = 1 [Eq. (42)], ĥA(0) = √

r(1 − r)ẋ2(0) and ĥA(1) =
−√

r(1 − r)ẋ1(1) [Eq. (76)]. Thus Eq. (96) reduces to

δad(1) �
√

r(1 − r)

JT
[|ẋ2(0)| + |ẋ1(1)|] + O

(
1

T 2

)
. (97)

Proceeding in a similar manner, one can in principle obtain the
exact form of the coefficient of each 1/T l term, for arbitrary
l ∈ N.

Remarks. Let us make some remarks regarding the polyno-
mial expansion, and in particular Eq. (97).

(i) Note that often the poly(1/T ) series is truncated after
the first- or at most the second-order term, on the basis of the
assumption that for sufficiently large T the first couple of terms
should give a reliable and accurate upper bound. However,
without correctly defining what “large” T means, a truncation
after the first few terms might be unjustifiable. In fact, in
addition to T , the system size log N (introduced here through
r) and the gap �(τ ) are also key players in the estimation
of δad(τ ). The minimum (system-size dependent) gap �min ≡
minτ �(τ ) works in general as a bottleneck for the performance
of quantum algorithms (e.g., Refs. [2,3,34,54,55]). Specifi-
cally, where the gap closes or becomes small, the adiabatic
approximation may not hold, indicative of a “quantum phase
transition” (in the thermodynamic limit) [54,56–59]. This
implies that the coefficients of some high order 1/T l terms
might have a stronger gap dependence than those of lower-
order terms. With this caveat, neglecting those higher-order
terms is not always possible. In fact, it is not difficult to see
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that the coefficient of the 1/T 2 has a �−6 dependence (see also
Ref. [29]) stronger than the �−2 dependence of the coefficient
of the 1/T term in δad(τ ) [Eq. (76)].

(ii) For similar reasons, an estimate of T arising from
δad(1) � ε (for a given ε) along with a truncated poly(1/T )
expansion is not always reliable. We shall see this explicitly
later in this section.

(iii) One might argue that δad(1) = O(1/T ) results from
an energy-time uncertainty relation such as δad(1) × T ≈ 1
[presuming δad(1) is directly related to the uncertainty in
measurement of energy]. However, this argument is not
rigorous and should not be considered as a replacement for the
analysis leading to the poly(1/T ) expansion (unless justified
carefully). A rigorous energy-time uncertainty relation is
given, for example, by the Mandelstam-Tamm inequality

�ψ [H ] × Tψ [K] � 1/2, (98)

in which Tψ [K] ≡ �ψ [K]/|d〈ψ |K|ψ〉/dt |, K is any observ-
able, and �ψ [X] ≡

√
〈ψ |X2|ψ〉 − 〈ψ |X|ψ〉2 [60]. Hence, as

is well known the naive relation �ψ [H ] × T ≈ 1 should be
treated with care. Strictly, a relation between �ψ̂T (1)[Ĥ (1)] and
δad(1) can be constructed as the following. Note that we can
write

|ψ̂T (τ )〉 =
√

1 − δad(τ )|�̂−(τ )〉 + δad(τ )|�̂⊥
−(τ )〉, (99)

where |�̂⊥
−(τ )〉 is orthogonal to |�̂−(τ )〉 [Eq. (85)]. Hence,

after some algebra we obtain

�ψ̂T (1)Ĥ (1) ≈ δad(1)

×
√

2Ê− [̂E−〈�̂⊥−|H 2|�̂⊥−〉 − 〈�̂⊥−|H |�̂⊥−〉]|τ=1

+O
(
δ2

ad

)
. (100)

Despite this relation, connecting T and Tψ̂T (1)[K] is not
straightforward. Although using different versions of the
energy-time uncertainty relation [61–63] may provide addi-
tional insights, we shall not further pursue this here.

2. Exponential estimate

Residue theorem analysis. In the previous subsection we
used integration by parts to arrive at a polynomial expansion.
Let us now show that an alternative, more careful analysis
based on the residue theorem of complex analysis reveals that
the adiabatic error decays exponentially for sufficiently short
times. In some sense, this exponential behavior is reminiscent
of the well-known Landau-Zener formula for two-state quan-
tum systems [64], which—in its simplest form—states that
the tunneling probability pT (1) ≡ |〈ψ(0)|V †

T (1)|�1(1)〉|2 from
|ψ(0)〉 = |�0(0)〉 to |�1(1)〉, for the Hamiltonian H (τ )/J =
(τσz + Dσx)/2, is

pT (1) = e−πJT D2/2. (101)

We note that pT (1) is in fact intimately related to δad(1) in this
simple two-state case, as

pT (1) = 1 − δ2
ad(1). (102)

The exponentiality of the adiabatic error vs. time and (some
power of) the gap has been previously established in generality

in rigorous treatments of the adiabatic theorem [26–28,32] (see
also Ref. [55] in a more restricted setting).

In what follows we focus on I1(τ ); higher-order terms can
be treated similarly. We start from Eq. (88), whence

δad(1) �
∣∣∣∣∫ 1

0
ĥA(τ )eiJT

∫ τ
�dτ

∣∣∣∣ + · · · (103)

Here “...” denotes the higher-order terms |I2l+1(1)| (l � 1),
whose neglect we justify below in the specific examples we
discuss. Note that above we have used the property |I1(1)| =
|I∗

1 (1)| (for τ ∈ R), hence the positive sign for the exponent
within the integral. This permissible change enables—as will
be clear in the following—extraction of an exponentially
decreasing factor for δad(1). More explicitly, an exponential
error term can be obtained, for example, by extending the
integral to the complex time plane and using an appropriate
closed contour for the application of the residue theorem [65].
A precursor to this treatment of the adiabatic error can be
found, e.g., in Ref. [55].

If ĥA(z) (z ∈ C) is not constant it has poles at points z0

where the gap vanishes: �(z0) = 0 [Eq. (76)]. From Eq. (42),
we obtain x1(z0) = x2(z0) = 0 or [assuming x1(z0) 
= 0]

x21(z0±) = 1 − 2r ± 2i
√

r(1 − r), (104)

where x21 ≡ x2/x1. The poles z0 can in principle be obtained
by inverting this relation for a given interpolation x21(τ ). Note,
however, that there might exist other singularities (typically at
infinity) arising from the exponential e−iJT

∫ z
� in Eq. (103).

Therefore, estimating the integral (103) requires finding all
contributing singularities in a suitably chosen contour C in the
complex τ plane.

The value of the integral | ∫ 1
0 ĥA(τ )eiJT

∫ τ
�dτ | can now be

obtained by calculating the residues of the integrand at the
poles enclosed inside the contour,

|I1(1)| =
∣∣∣∣2πi

∑
z0∈inside(C)

Res
[̂
hA(z)eiJT

∫ z
�,z0

]
−

∫
C−[0,1]

ĥA(z)eiJT
∫ z

�dz

∣∣∣∣. (105)

For example, if the poles z0 are simple and arise from �(z0) =
0, calculating the integral becomes straightforward. Recall that
ĥA ∝ 1/�2 [Eq. (76)] and the residue of a rational function
P (z)/Q(z) at a simple pole z� is given by P (z�)/∂zQ(z�) [65].
Thus, in this case we obtain

Res
[̂
hA(z)eiJT

∫ z
�,z0

]
=

√
r(1 − r)ẋ21(z0)eiJT

∫ z0 �

d
dz

[[1 − x21(z)]2 + 4rx21(z)]|z0

≈ 1

4i
eiJT

∫ z0 �, (106)

where in the last line we assumed ẋ21(z0) 
= 0. Note that this
computation of the residues does not necessarily hold when
ĥA = const or when z0 is at infinity.

Now we substitute
∫ z0 � = Re[

∫ z0 �] + iIm[
∫ z0 �]. Cal-

culating the absolute value of the residue [Eq. (103)] annihi-
lates the phase factor resulting from Re[

∫ z0 �], and an expo-
nentially decreasing contribution emerges from Im[

∫ z0 �] of
the exponential within the integrand—perhaps in addition to
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a generically non-exponentially-decreasing term. Thus, from
Eq. (106) we find

δad(1) <≈
∑

z0∈inside(C)

RT (z0)e−JT Im[
∫ z0 �] + R′

T (1), (107)

where RT (z0) ∈ R+ results from the nonexponential contri-
bution of the residue at z0 and R′

T (1) ∈ R+ encapsulates
the collective nonvanishing contribution of other segments
of the contour as well as other non-exponentially-decreasing
contributions emerging from the “...” terms in Eq. (103).1

Stationary phase analysis. An alternative and complemen-
tary approach for obtaining the exponential contribution to
the adiabatic error is to use the stationary phase method.
This method is appropriate for obtaining asymptotic value of
complex integrals of the form

∫
γ

F (z)eiT G(z)dz, where T > 0
is a large number and γ is a path for the integration. Assuming
F (z) is a slowly varying function over γ and G(z) is an
analytic function, one can argue that the major contribution
to the integral comes from the point(s) z0 at which G(z) has a
minimum, whence [66]∫

γ

F (z)eiT G(z)dz ≈
√

2π

T G̈(z0)
F (z0)eiπ/4eiT G(z0). (108)

To apply this result to Eq. (103), we replace G(z) and F (z)
with J

∫ z
� and ĥA(z), respectively. Accordingly, z0 is where

Ġ(z0) = �(z0) = 0. The minimum point z0 is often a complex
number. In fact, in quantum many-body situations, the gap � is
a non-negative function, often with a nonvanishing minimum,
which becomes zero in the thermodynamic limit [56]. In such
cases, G(z) does indeed have a minimum. It is also required
that ĥA(z0) be finite (this, of course, is not satisfied when ĥA

has a pole or singularity at z0). If all these conditions are
satisfied, Eqs. (103) and (108) yield

δad(1) <≈
∣∣∣∣∣̂hA(z0)

√
2π

JT �̇(z0)

∣∣∣∣∣ e−JT Im[
∫ z0 �], (109)

as we wished. This relation complements Eq. (106) in that it
may be applicable when Eq. (106) is not.

Discussion. The emergence of the exponential dependence
of δad on T [Eqs. (107) and (109)] in contrast to the polynomial
dependence [Eq. (97)] is remarkable, as it indicates a much
faster decay of the adiabatic error than what is suggested
by the standard 1/T expansion. In the exponential regime
it suffices that T be large compared to 1/Im[

∫ z0 �] or
roughly [55]:

T � 1

J�
. (110)

This is a less stringent condition than the standard condition
(20) or its more rigorous counterparts [24–32], involving
higher powers of the gap. The crossover point T � between

1In the case of Eq. (106), and from Eq. (105), we obtain: RT = π/2.
This is in good agreement with Eq. (89) when T = 0 and r � 1.

the exponential and the polynomial regimes can be estimated
by solving

RT � (r)e−JT �Im[
∫ z0 �] ≈

√
r

JT �
(|ẋ1(1)| + |ẋ2(0)|), (111)

in which RT (r) is a nonexponential prefactor given by
Eq. (107) or (109). If T � T � (T � T �) the exponential
(polynomial) behavior prevails. Later in this section, we show
explicitly that the expected run time for the quantum search
algorithm is often given by the exponential contribution; the
polynomial regime may overestimate the minimum run time
required for reasonable accuracy.

Since the scaling of the run time depends on which
interpolation we choose for the Hamiltonian, in the following
we shall obtain specific interpolations by employing some
recently developed results for (partial) minimization of the
adiabatic error [34,50].

C. Hamiltonian interpolation

The set of available control knobs (x), as well as the way one
varies them, determine the specific Hamiltonian interpolation
implemented in a laboratory setting. Theoretically, though,
there are various ways by which one can obtain families of
Hamiltonians for an adiabatic quantum algorithm. One natural
choice is interpolations which minimize “physical” cost. For
example, in the setting of Refs. [34,36], time functionals were
constructed from a local version of the adiabatic condition
(20), whose minimization resulted in a set of Euler-Lagrange
equations for the underlying interpolations. A different method
was suggested in Ref. [50], where it was shown that in the
standard poly(1/T ) expansion of the adiabatic error δad(τ )
[general counterpart of Eq. (96) or (97)], the coefficient of
the 1/T term has a geometric part, in a differential geometric
sense. Specifically, this geometric coefficient, in terms of the
ground-state eigenprojection, P (τ ), is∫ τ

0
‖[Ṗ [x(τ ′)],P [x(τ ′)]]‖dτ ′. (112)

Minimizing this coefficient yields adiabatic “geodesic” inter-
polations, which partially decrease δad(τ ) for a given T . It
follows from standard variational calculus [65,67] that the
geodesic interpolations satisfy the following equation

‖[Ṗ [x(τ )],P [x(τ )]]‖|xgeo(τ ) = const, (113)

where the constant is chosen to satisfy boundary conditions.
We adopt this method in the following and derive geodesic
interpolations for the adiabatic quantum search.

1. General case

In the reduced two-dimensional representation, P is re-
placed with P̂− = |�̂−〉〈�̂−|. Thus we have

[
.

P̂ −,P̂−] = |�̂−〉〈
.

�̂−| − |
.

�̂−〉〈�̂−| + |�̂−〉〈�̂−|
× (〈

.

�̂−|�̂−〉 − 〈�̂−|
.

�̂−〉). (114)

Noting, with the help of Eqs. (44), (49), and (76), that

〈�̂−|
.

�̂−〉 = iĥA〈z, − |Â †σyÂ|z,−〉 = 0, (115)
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we find

‖[
.

P̂ −,P̂−]‖ =
√

2〈
.

�̂−|
.

�̂−〉
(49)=

√
2|̂hA|. (116)

Hence, according to Eq. (113), a class of adiabatic geodesics
can be obtained from

ĥA[x(τ )] = const ≡ ϕ, (117)

which implies that the adiabatic Hamiltonian ĤA(τ ) is in fact
constant. In other words, from Â(τ ) = e−i

∫ τ
ĤA [Eq. (44)] we

can see that

Â(τ ) = e−iϕτσy . (118)

This equation suggests that a more general choice for the
intertwiner Â can be obtained by ϕτ → ϕθ (τ ), for some
arbitrary differentiable θ ; i.e., Â(τ ) = e−iϕθ(τ )σy . In terms of
ĥA, this translates into choosing ĥA[x(τ )] = ϕθ̇ (τ ). In terms
of the geometric factor (112), this simply means that on the
geodesic, the time is determined by θ (τ ) rather than τ . To see
this, note that∫ τ

0
‖[Ṗ (τ ′),P (τ ′)]‖dτ ′ =

∫ θ(τ )

0
‖[∂θP (θ ),P (θ )]‖dθ, (119)

which, in turn, from variational calculus, gives the following
equation for the geodesics:

‖[∂θP (x[θ (τ )]),P (x[θ (τ )])]‖|xgeo(θ(τ )) = const. (120)

Hence,

‖[∂θ P̂−,P̂−]‖ = 1

θ̇
‖[

.

P̂ −,P̂−]‖

=
√

2
|̂hA|
θ̇

= const, (121)

where we assumed θ̇ (τ ) > 0, θ (0) = 0, and θ (1) = 1. As a
result, we choose the adiabatic geodesic satisfying

ĥA(x[θ (τ )]) = ϕθ̇ (τ ). (122)

We remark that introducing an arbitrary nondecreasing
function θ (τ ) will serve as more than a generalization. In fact,
we show below that θ allows us to substantially enhance the
suppression of the adiabatic error. For example, choosing a
θ such that it is a differentiable function of τ (up to some
controllable order, say, k), with vanishing derivatives (up to
the same order k) at the initial and final times, can suppress the
adiabatic error [up to poly(1/T k+1)]. This property—which
comes at the relatively small price of sufficient control at the
beginning and end of the dynamics—may have immediate
applications in experimental realizations of quantum annealing
and AQC.

The above geodesic equation can be solved analytically.
Recall that x21 = x2/x1, with the boundary values x21(0) = 0
and x21(1) = ∞ [Eqs. (24) and (25)]. Then from Eq. (76) we
find

√
r(1 − r)ẋ21(τ )

[1 − x21(τ )]2 + 4rx21(τ )
= ϕθ̇ (τ ). (123)

The solution to this equation can be written as follows:

x21
[
θ (τ )

] = sin[2θ (τ )ϕ]

sin[2(1 − θ (τ ))ϕ]
, (124)

where we must choose

ϕ = arctan[
√

(1 − r)/r]. (125)

Observe that x21[θ (τ )] has the following symmetry:

x21[1 − θ (τ )] = 1/x21[θ (τ )], (126)

which is satisfied, for example, by requiring

x2[θ (τ )] = x1[1 − θ (τ )]. (127)

Equations (124) and (127) identify a two-dimensional inter-
polation for the quantum search Hamiltonian.

Note that, given Eq. (124), we can also add another relation
(satisfying the boundary conditions) to find other classes of
interpolation. For example, we can choose

x1[θ (τ )] + x2[θ (τ )] = a(τ ), (128)

in which a(τ ) can be a smooth function with the boundary
values a(0) = a(1) = 1; e.g., a(τ ) = 1 + τ (1 − τ ) or a(τ ) =
1 + sin(πτ ). Choosing a form for a(τ ) corresponds to as-
suming a given ‖H (τ )‖ [Eq. (38)], which implies a given
control over the maximum amount of the available energy in
the system. Thus, Eqs. (124) and (128) yield

x1[θ (τ )] = a(τ ) sin{2[1 − θ (τ )]ϕ}
2 sin(ϕ) cos{[1 − 2θ (τ )]ϕ}

= a(τ )

2
(1 + cot(ϕ) tan{[1 − 2θ (τ )]ϕ}), (129)

x2[θ (τ )] = a(τ ) sin[2θ (τ )ϕ]

2 sin(ϕ) cos{[1 − 2θ (τ )]ϕ}
= a(τ )

2
(1 − cot(ϕ) tan{[1 − 2θ (τ )]ϕ}). (130)

Note that this interpolation also satisfies the symmetry (127).
It is clear that one can consider other auxiliary or control

conditions over the Hamiltonian different from Eq. (128).
In the following, we address three special cases: (i) The
Hamiltonian interpolation is linear in time, namely x1(τ ) =
1 − x2(τ ) = 1 − τ ; (ii) Hamiltonians with constant norm,
specifically ‖H (τ )‖/J = 1; and (iii) Hamiltonians with con-
stant gap, specifically �(τ ) = 1.

2. Linear interpolation

If we choose

θ (τ ) = 1

2
− 1

2ϕ
arctan[(1 − 2τ ) tan ϕ], (131)

and assume a(τ ) = 1, from Eqs. (129) and (130) we obtain the
simple linear interpolation

x1(τ ) = 1 − τ, (132)

x2(τ ) = τ. (133)
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3. Constant-norm interpolation

Let us assume 0 � x1,x2 � 1. The constraint ‖H (τ )‖/J =
1 implies that x1 + x2 = 1 [Eq. (38)] or, equivalently, a(τ ) = 1
[Eq. (128)]. Hence, in this case from Eqs. (129) and (130) we
obtain

x1[θ (τ )] = 1

2
+

√
r

2
√

1 − r
tan{[1 − 2θ (τ )]ϕ}, (134)

x2[θ (τ )] = 1

2
−

√
r

2
√

1 − r
tan{[1 − 2θ (τ )]ϕ}. (135)

This interpolation is a generalization of the interpolation
obtained in Refs. [34,36,50] by using a local adiabatic
condition.

4. Constant-gap interpolation

Rather than assuming condition (128), here we consider the
case in which the gap is constant, e.g., �(τ ) = D(τ )/J = 1.
Hence combining the following relation [Eq. (42)]:

(x1[θ (τ )] − x2[θ (τ )])2 + 4rx1[θ (τ )]x2[θ (τ )] = 1 (136)

and Eq. (124) yields

x1[θ (τ )] = 1

2
√

r(1 − r)
sin{2[1 − θ (τ )]ϕ}, (137)

x2[θ (τ )] = 1

2
√

r(1 − r)
sin[2θ (τ )ϕ]. (138)

D. Error estimation for different interpolations

Having given a general recipe for adiabatic interpolations
and having obtained three particular interpolations, we proceed
to compute the adiabatic error for each of these interpolations.
Our main interest here is to analyze how the run time scales
with system size for each of these three interpolations. We
shall also contrast the result for each case with the estimate
obtained from the traditional adiabatic theorem. As a result,
we will demonstrate that the traditional adiabatic condition is
not always reliable for estimation of the minimum run time
(given an error threshold), whereas the time we obtain from
the exponential regime of the adiabatic error is in fact accurate.
A remarkable feature of this result is that the estimated times
(in an appropriate sense) need not be very large.

1. Linear interpolation

In this case, (x1(τ ),x2(τ )) = (1 − τ,τ ), so we have

‖H (τ )‖/J (38)= 1, (139)

‖Ḣ (τ )‖/J (39)= 1, (140)

�min
(42)= √

r. (141)

Hence the traditional adiabatic condition (20) implies that, for
δad(1) � ε, we should have

T � 1

Jεr
, (142)

or, equivalently, from Eq. (26),

τrun = O

(
1

εr

)
. (143)

That is, that the adiabatic quantum search with a linear
interpolation Hamiltonian requires a run time O(N ) [recall
r = M/N], hence performing no better than a classical search
algorithm [36].

Note, however, that if we truncate the poly (1/T ) expansion
(97) after the first term, in the r � 1 limit we obtain

T >≈
2
√

r

J ε
, (144)

i.e., τrun = O(
√

N ), which is not the right estimate. This
illustrates the caveat we discussed in Sec. IV.

Now we employ the results we developed in Sec. IV for
estimating the exponential regime of δad(1) [Eq. (107)]. It is
obvious that for this case there exist no point at which both
x1(τ ) = 1 − τ and x2 = τ vanish. Thus, the pole z0 (where the
gap vanishes) is obtained simply by inverting Eq. (104), i.e.,

z0± = 1

2
± i

√
r

2
√

1 − r
. (145)

The integral over the gap can be evaluated explicitly as

Im

[∫ z0+

0
�(z) dz

]
= πr

8
√

1 − r
. (146)

For the integral (106), we choose the contour C to be a
rectangle composed of (i) C1, the real line [0,1]; (ii) C2, the line
connecting z = 1 to z = 1 + i∞, (iii) C3, the line connecting
z = 1 + i∞ to z = i∞; and (iv) C4, the line connecting
z = 1 + i∞ to z = 0. From the form of ĥA, we can easily see
that

∫
C3

= 0 [because limz→∞ �(z) → ∞ ] and
∫
C2

= − ∫
C4

[because �(z) = �(1 − z)]. This means that for r � 1 and in
the regime in which |I1(1)| gives the dominant contribution to
δad(1), the error exhibits an exponentially decreasing behavior
as

δad(1)
(106)
<≈

π

2
e−πJT r/8. (147)

In this regime, for δad(1) � ε it is sufficient to have

T >≈
8 ln(1/ε)

πJr
+ 8 ln(π/2)

πJr
, (148)

whereby we can estimate the following run time:

τrun = O

(
1

r
ln(1/ε)

)
. (149)

This result agrees perfectly with the expected O(N ) scaling,
with a logarithmic (rather than inverse) dependence on the er-
ror ε. Figure 1 depicts the adiabatic error vs. time, calculated by
solving the corresponding Schrödinger equation numerically.
It illustrates the exponential and polynomial regimes.

Remark. Here we could not use Eq. (109) because ĥA has
poles z0±.

2. Constant-norm interpolation

Here for simplicity, we assume θ (τ ) = τ . From Eqs. (134)
and (135), the gap (42) is

�(τ ) = √
r sec[(1 − 2τ )ϕ], (150)
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FIG. 1. (Color online) δad(1) for the linear interpolation x(τ ) =
(1 − τ,τ ), obtained by numerically solving the corresponding
Schrödinger equation for r = 0.05. The dashed lines represent the
exponential fits e−πJT r/8 [Eq. (147)] and the polynomial fit 2

√
r/(JT )

[Eq. (144)], from left to right, respectively.

with the minimum value minτ � = √
r at τmin = 1/2, and

Eqs. (38) and (39) yield

‖H (τ )‖/J = 1, (151)

‖Ḣ (τ )‖/J = √
rϕ sec2[(1 − 2τ )ϕ], (152)

the latter with the maximum value maxτ ‖Ḣ (τ )‖ = ϕ/
√

r

at τmax = 0,1. Thus, according to the traditional adiabatic
condition (20), in order to have δad(1) � ε, we should require

T � 1

Jεr
√

r
, (153)

and, in turn,

τrun = O

(
1

εr
√

r

)
, (154)

which is larger than the expected O(
√

N/M) Grover-like
scaling [34,36].

On the other hand, truncation of the corresponding
poly (1/T ) expansion (97) results in

T >≈
2ϕ

Jε
, (155)

in which we used |ẋ1(1)| = |ẋ2(0)| = ϕ/
√

r(1 − r) [Eqs. (134)
and (135)] and ϕ ≈ π/2. Hence,

τrun = O(1), (156)

which of course is incorrect.
Now we show that a careful treatment of I1(τ ), as in

Sec. IV, results in an exponential adiabatic error and gives the
correct scaling for the run time. Here, we note that ĥA(τ ) = ϕ

[Eq. (76)], from which

I1(τ ) = ϕ

∫ τ

0
e−iJT

∫ τ ′
�dτ ′ = ϕe

−i
JT

√
r

ϕ
arctanh

√
1−r

×
∫ τ

0

[
1 − sin(ϕ) + cos(ϕ) tan(ϕτ ′)
1 + sin(ϕ) − cos(ϕ) tan(ϕτ ′)

]−i
JT

√
r

2ϕ

dτ ′,

(157)

where we used the identity arctanh(x) = 1
2 ln

∣∣ 1+x
1−x

∣∣. For r � 1
[sin(ϕ) ≈ 1], this gives rise to

|I1(τ )| <≈ ϕ

∣∣∣∣∫ τ

0
[tan(ϕτ ′)]−i

JT
√

r

2ϕ dτ ′
∣∣∣∣

≈ π

2

∫ 1

0
[tan(πτ ′/2)]−i

JT
√

r

2ϕ dτ ′ + O(
√

r). (158)

Further simplification can be obtained by using the iden-
tity

∫ 1
0 [tan(πτ ′)]−iαdτ ′ = sech(πα/2) (for α � 0) and the

inequality sech(y) � 2e−y (for y � 0); hence,

δad(1) <≈ πe−JT
√

r/2 + O(
√

r). (159)

This is the corresponding exponential behavior for the
constant-norm Hamiltonian interpolation. It implies that for
δad(1) � ε it is sufficient to have

T >≈
2 ln(1/ε)

J
√

r
(160)

or, equivalently,

τrun = O

(
ln(1/ε)√

r

)
, (161)

which is the expected Grover-like O(
√

N/M) scaling [34,36]
but with a logarithmic dependence on the error.

Although Eq. (106) may not be applicable to the case
of constant-norm interpolation (for ĥA does not have any
singularity), we can apply Eq. (109) instead. In fact, Eq. (150)
implies that

z0± = ±i∞. (162)

Hence,

Im

[∫ z0+

0
�(z) dz

]
= π

√
r

4ϕ

r�1≈
√

r

2
, (163)

and in turn [Eq. (109)]

δad(1) <≈ R(1)e−JT
√

r/2, (164)

with some nonexponentially decreasing R(1). This results in
a scaling similar to Eq. (161). Figure 2 contrasts the above
analytical results with numerics.

3. Constant-gap interpolation

In this case [�(τ ) = 1], from Eqs. (38), (39), (137), and
(138) we obtain

‖H (τ )‖/J = | cos[(1 − 2τ )ϕ]|/√r, (165)

‖Ḣ (τ )‖/J = ϕ| sin[(1 − 2τ )ϕ]|/√r. (166)

Hence, according to the traditional adiabatic condition (20), in
order to have δad(1) � ε, it is sufficient to have

T � ϕ

Jε
√

r
, (167)

whereby

τrun = O

(
1

εr

)
, (168)

which is quadratically larger than the Grover-like O(
√

N/M)
scaling.
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FIG. 2. (Color online) δad(1) for the constant-norm interpolation
[Eqs. (134) and (135)], obtained by numerically solving the cor-
responding Schrödinger equation for r = 0.01. The dashed lines
represent the exponential fit e−JT

√
r/2 [Eq. (159)] and the polynomial

fit 2ϕ(r)/(JT ) [Eq. (155)].

On the other hand, noting that |ẋ1(1)| = |ẋ2(0)| =
ϕ/

√
r(1 − r) [Eqs. (137) and (138)], the truncation of the

corresponding poly(1/T ) expansion after the first term yields

T >≈
2ϕ

Jε
(169)

or, equivalently,

τrun = O

(
1

ε
√

r

)
. (170)

Clearly, Eqs. (168) and (170) are not in agreement.
It is interesting to note that here one can in fact solve the

Schrödinger equation exactly. The operator 
̂T (τ ) [Eq. (83)]
satisfies the following equation:

.


̂ = −iŴ 
̂, (171)

in which

Ŵ = T Â †Ĥ Â − Â †ĤAÂ
(172)

(137),(138),(76)= JT

2

{
cos[(1 − 2τ )ϕ]√

r
1 + σz

}
− ϕσy.

Since Ŵ is time independent, integration of Eq. (171) is
straightforward:


̂T (τ ) = e−i
∫ τ

0 Ŵ (1)dτ ′ = e
− iτJT

√
1−r

2ϕ
√

r

× sin
[
τ
√

ϕ2 + (JT )2/4
]√

ϕ2 + (JT )2/4

{√
ϕ2 + (JT )2/4

× cot[τ
√

ϕ2 + (JT )2/4
]
1 + iϕτσy − iJT

2
σz

}
.

(173)

Thus, from Eq. (85) the adiabatic error is exactly

δad(1) = ϕ
| sin

√
ϕ2 + (JT )2/4|√

ϕ2 + (JT )2/4
. (174)

Figure 3 depicts δad(1) for two different values of r . Note
that for large evolution times T � 2ϕ/J , we obtain

δad(1) � 2ϕ

JT
. (175)
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FIG. 3. (Color online) δad(1) for the constant-gap interpolation
[Eqs. (137) and (138)]. Here, r = 0.001,0.5 (blue and green, respec-
tively), and the dashed lines (red) show the 2ϕ(r)/(JT ) envelopes.
The points Tk , where δad(1)|Tk

= 0, are given by Eq. (177).

This implies that, in the r � 1 limit, in order for δad(1) � ε it
is sufficient to have

τrun = O

(
1

ε
√

r

)
, (176)

which is the Grover-like scaling O(
√

N/M). Note that
in this limit the adiabatic error behaves inverse linearly,
δad(1) � 2ϕ/JT , which is in perfect agreement with Eq. (169).
In addition, we observe that there exist T s less than the
above limit in which the adiabatic error can vanish (hence
instantaneous full adiabaticity). According to Eq. (174), we
have δad(1)|Tk

= 0, where

JTk = 2
√

k2π2 − ϕ2
r�1≈ 2π

√
k2 − 1/4, (177)

for k ∈ N. The existence of such Tks is in agreement with
Ref. [64]. Figure 3 shows δad(1) for two different values of r .

Remark. As is evident here the adiabatic error does not
show any exponential behavior. In fact, neither of the methods
we discussed in Sec. IV B 2 is applicable.

4. General interpolation

Here, we discuss the behavior of the exponential
e−JT Im[

∫ z0 �] for the general interpolation we derived in
Sec. IV C 1. Our analysis is based on a formal power series
expansion of x1[θ (τ )] and x2[θ (τ )] in terms of r—recall that
we are interested in the regime r � 1. We further assume that
θ (τ ) does not depend explicitly on r .

Consider the following formal expansions:

x1[θ (τ )] = f1[θ (τ )] + g1[θ (τ )]rα1 + O(rα1+ε1 ), (178)

x2[θ (τ )] = f2[θ (τ )] + g2[θ (τ )]rα2 + O(rα2+ε2 ), (179)

in which α1 and α2 are some non-negative numbers (to
be determined later), ε1,ε2 > 0, and f1,f2 
= 0. We notice
that the linear and constant-gap interpolations (Secs. IV C 2
and IV C 4) do not admit expansions as in Eqs. (178) and
(179). Equation (42) hence yields

�2 = (f1 − f2)2 + 2(f1 − f2)(g1r
α1 − g2r

α2 ) + 4f1f2r

+(g1r
α1 − g2r

α2 )2 + O(rα1+α2+ε1+ε2 ). (180)
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Similarly, inserting Eqs. (178) and (179) into x21 = x2/x1

gives

x21 = f2

f1
− f2g1

f 2
1

rα1 + g2

f1
rα2 + O(rα1+α2+ε1+ε2 ). (181)

On the other hand, Eq. (124) yields

x21(τ ) = 1 − 2
√

r cot[πθ (τ )] + O(r). (182)

The symmetry x2[θ (τ )] = x1[1 − θ (τ )] [Eq. (127)] requires
that

g1[θ (τ )] = g2[1 − θ (τ )], (183)

which in turn implies α1 = α2 = 1/2. Comparing the terms
with the same powers of r in Eqs. (181) and (182), we conclude
that

f1[θ (τ )] = f2[θ (τ )] ≡ f [θ (τ )] (184)

and
g1[θ (τ )] − g2[θ (τ )]

f [θ (τ )]
= 2 cot[πθ (τ )]. (185)

After inserting the above relations back into Eq. (180) and
using Eq. (185), we obtain

�(τ ) = 2f [θ (τ )] csc[πθ (τ )]
√

r + O(r). (186)

Now we assume that f [θ (τ )] 
= 0 everywhere, or if there exist
points at which f vanishes, their contribution to the integral
Im[

∫ z0 �] is not substantial. Note that the previous condition
is in fact a condition on the norm of the Hamiltonian—because
from Eq. (38)

‖H‖/J = 2f + O(
√

r). (187)

Therefore, provided that for large times the adiabatic error
asymptotically behaves as in Eq. (106) or (109), we obtain

δad(1) <≈ R(1)e−2
√

rJT |Im[
∫ z0

0 f [θ(z)] csc[πθ(z)]dz]|, (188)

where R(1) is a nonexponential function of T (which may also
depend weakly on r). Hence, in the r � 1 limit for δad(1) � ε,
it is sufficient to have

T >≈
ln(1/ε)

2J
√

r

∣∣∣∣∣Im
[ ∫ z0(r)

0
f [θ (z)] csc[πθ (z)] dz

]∣∣∣∣∣. (189)

This in turn implies the following scaling for the run time:

τrun = O

(
ln(1/ε)√

r

∣∣∣∣Im[ ∫ z0(r)

0
f [θ (z)] csc[πθ (z)]dz

]∣∣∣∣).

(190)

The overall r dependence here comes from
√

r and z0(r); e.g.,
we recover the Grover-like O(

√
N/M) scaling if z0 does not

depend on r . This analysis then highlights in a fairly general
way the interplay between r , T , and δad(1) in the quantum
search algorithm.

E. A strategy for reducing the adiabatic error

For most applications it is desirable to make the adiabatic
error as small as possible. We have seen that δad(1) contains
exponential terms, suppressed by the polynomially decaying
terms. Therefore, it is useful to somehow extend the dominance

of the exponential term by reducing the contribution of the
polynomial term, e.g., by prolonging the dominance of the
exponential regime or by enforcing higher-order polynomial
behavior. In the following we shall discuss a control strategy
for reducing the adiabatic error by manipulation of the
boundary conditions (see, e.g., Refs. [28,32]).

1. A general strategy: Control via boundary conditions

Equation (97) demonstrates explicitly how the adiabatic
error depends on the boundary conditions, up to O(1/T ).
Interestingly, if we choose ẋ2(0) = ẋ1(1) = 0, the prefactor
of the 1/T vanishes, whence δad(1) = O(1/T 2). In a similar
fashion, one can see that by enforcing suitable (extra) boundary
conditions on the interpolation x(τ ), the prefactor of the 1/T 2

or even higher-order terms can be made zero. This implies that
by manipulating the boundary conditions of the interpolation,
one may achieve smaller adiabatic errors. This observation
is a manifestation of the following general theorem: If the
Hamiltonian H (τ ) is sufficiently differentiable, forcing all
time derivatives of the Hamiltonian up to some order k to
vanish at the boundaries,

dlH (τ )

dτ l

∣∣∣∣
τ∈{0,1}

= 0 ∀l ∈ {1, . . . ,k}, (191)

is sufficient for δad(1) = O(1/T k+1) [28,29,32,53]. It is in-
teresting to note that the very same condition together with
the assumption of the analyticity of H (τ ) in a small strip
around the real axis in the complex τ plane give rise to
δad(1) = O[e−c(r)JT ], where c(r) ≡ �3

min/ maxτ ‖Ḣ (τ )‖2 [up
to an O(1) prefactor] [32].2

This is a remarkable result in that it guarantees that with
sufficient smoothness at two points one can substantially
suppress the adiabatic error. This is a fairly low price to pay
for higher accuracy. In particular, in experimental realizations,
manipulating Hamiltonian interpolations only at the beginning
and the end (as opposed to from the beginning to the end)
may offer a less demanding control strategy than one seeking
to control the dynamics instantaneously along the entire
evolution.

Now we show that, in the framework we developed earlier,
enforcing the required smoothness properties can be achieved
by choosing an appropriate θ (τ ) function. We recall that
this function was fairly arbitrary; we required that it be a
monotonically increasing differentiable function (θ̇ (τ ) > 0)
satisfying the boundary conditions θ (0) = 0 and θ (1) = 1. We
require further that θ (τ ) ≡ θk(τ ) (for a given k ∈ N) have the
following property:

dlθk(τ )

dτ l

∣∣∣∣
τ∈{0,1}

= 0 ∀l ∈ {1, . . . ,k}, (192)

namely the first k derivatives should vanish at the boundaries.
This property is sufficient for fulfilling Eq. (191) because Ḣ =
θ̇∂θH . An example of such θk(τ ) is the regularized incomplete

2Note that the conditions ẋ2(0) = ẋ1(1) = 0 we obtained above are
in fact weaker than requiring ẋ1({0,1}) = ẋ2({0,1}) = 0 [sufficient
for Ḣ (τ )|τ∈{0,1} = 0].
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β function,

θk(τ ) = Bτ (1 + k,1 + k)

B1(1 + k,1 + k)
, (193)

in which Bτ (a,b) ≡ ∫ τ

0 ya−1(1 − y)b−1dy, with Re(a),
Re(b) > 0, and |τ | � 1 [65,66].

2. Polynomial reduction

To demonstrate explicitly how the conditions (191) af-
fect the adiabatic error, we employ the method developed
in Refs. [28,32] for approximating the coefficients in the
poly(1/T ) expansion of δad(1). One can construct an approxi-
mate (unnormalized) ansatz for the solution to the Schrödinger
equation (4) in the powers of 1/T as follows:

|�n(τ )〉

= e−iJT
∫ τ

E0

[
|�0(τ )〉 +

n∑
l=1

1

(JT )l
|ψl(τ )〉 + |ψ⊥

n+1(τ )〉
(JT )n+1

]
,

(194)

with the error

‖|ψT (1)〉 − |�n(1)〉‖ �
maxτ ‖|ψ̇⊥

n+1(τ )〉‖
(JT )n+1

. (195)

Here, {|ψl(τ )〉} and {|ψ⊥
l (τ )〉} are given as follows [32]:

|ψl〉 = al|�0〉 + |ψ⊥
l 〉, (196)

|ψ⊥
l 〉 = Gr (fl−1|�̇0〉 + |ψ̇⊥

l−1〉), (197)

al = −
∫ 1

τ

〈�0|ψ̇⊥
l 〉dτ ′, a0 ≡ 1, (198)

Gr = i(H − E0)−1(1 − |�0〉〈�0|). (199)

It is evident that |ψT (τ )〉 = |�∞(τ )〉/‖�∞(τ )‖.
Provided that all n derivatives of H (τ ) vanish at the

boundaries, Eq. (191), all the terms except |�0(1)〉 and
|ψ⊥

n+1(1)〉/(JT )n+1 will vanish [53] (see also Ref. [32], where
with a condition differing from Eq. (198) all the terms except
|�0〉 vanish).

Let us define

δ1(1) ≡
√

1 − |〈ψ̂T (1)|�̂n(1)〉|2/‖�̂n(1)‖2, (200)

δ2(1) ≡
√

1 − |〈�̂n(1)|�̂−(1)〉|2/‖�̂n(1)‖2, (201)

in which the normalized state |ψ̂T (τ )〉 has been defined as
[Eq. (51)]

|ψ̂T (τ )〉 ≡
√

MS−1|ψ̃T (τ )〉. (202)

Since δ(a,b) ≡
√

1 − |〈a|b〉|2 (for normalized |a〉 and |b〉) is
a distance [Eq. (9)], from the triangle inequality δ(a,b) �
δ(a,c) + δ(b,c) we have:

δad(1) � δ1(1) + δ2(1). (203)

Notice that δ1(1) can also be written as follows:

δ1(1) =
√

1 − |〈�̂n(1)|�̂∞(1)〉|2
‖�̂n(1)‖2‖�̂∞(1)‖2

=
√

1 − |〈�̂n(1)|(|�̂n(1)〉 + |R̂n(1)〉)|2
[1 + O(1/T )]2[1 + O(1/T )]2

≈
√

1 − (1 + 2Re[〈�̂n(1)|R̂n(1)〉])

= O

(
1

T n+2

)
, (204)

where

|R̂n(1)〉 ≡ |�̂∞(1)〉 − |�̂n(1)〉. (205)

On the other hand, a straightforward calculation (supple-
mented with induction) shows that

δ2(1) =
√

1 − |〈�̂n(1)|�̂−(1)〉|2/‖�̂n(1)‖2

=
√

r(1 − r)|1 − 2r|
(JT )n+1

(∣∣ẋ2(0)θ (n+1)
n (0)

∣∣
+ ∣∣ẋ1(1)θ (n+1)

n (1)
∣∣) + O

(
1

T n+2

)
. (206)

This bound holds true for any interpolating paths x(τ ) for
which x1(1 − τ ) = x2(τ ). As can be seen, δ1(1) is negligible
in comparison to δ2(1), hence we obtain

δad(1) �
√

r(1 − r)|1 − 2r|
(JT )n+1

(∣∣ẋ1(1)θ (n+1)
n (1)

∣∣
+∣∣ẋ2(0)θ (n+1)

n (0)
∣∣) + O

(
1

T n+2

)
. (207)

This result is a generalization of Eq. (97). For example, in the
case of the constant-gap interpolation (Sec. IV C 4), this error
reduces to

δad(1) <≈
2ϕ

∣∣θ (n+1)
n (1)

∣∣
(JT )n+1

, (208)

in comparison with Eq. (175). Figure 4 depicts δad(1) for the
constant-norm interpolation [Eqs. (134) and (135)]. It can be
seen that by increasing k the exponential regime dominates
longer, while the polynomial regime is pushed farther away to
the region of large evolution times. However, this improvement
comes at a price. The rate of exponentiality decreases with
increasing k; that is, if k1 < k2 and δad(1) � ε for an ε in the
exponential regime for the larger k, then T1(ε) > T2(ε) (see the
inset of Fig. 4). In other words, for some values of ε, increasing
k might give rise to an increased run time. Of course, if ε is
such that the polynomial regimes dominate for both values of
k1 and k2, the interpolation with the larger k (k2) results in a
smaller run time.

3. Exponential reduction

Since choosing a θk(τ ) with a larger k benefits the accuracy
of the adiabatic evolution, it is natural to investigate cases with
k = ∞. An example of such θ∞(τ ) is

θ∞(τ ) =
∫ τ

0 bαβ(τ ′)dτ ′∫ 1
0 bαβ(τ ′)dτ ′

, (209)
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FIG. 4. (Color online) δad(1) obtained by numerically solving the
Schrödinger equation corresponding to the constant-norm interpola-
tion with θk(τ ) the regularized β function [Eq. (193)], for k ∈ {0,1,2}
(here r = 2−8). The dashed (red) lines represent e−πJT

√
r/(8ϕ) and

2ϕ|θ (2)
1 (1)|/(JT )2 [Eq. (208)].

where

bαβ(τ ) = e−β/[τα (1−τ )α ] 0 < α, β � 1, (210)

is a symmetric “bump function.” We notice that bαβ(τ ) is
compactly supported and infinitely differentiable in τ ∈ [0,1]
(the “Schwartz class” [68]); in particular,

dlbαβ(τ )

dτ l

∣∣∣∣
τ∈{0,1}

= 0 ∀l ∈ N. (211)

However, it is not an analytic function of τ , which implies
that H [x[θ∞(τ )]] is not analytic either. Despite this infinite
smoothness, the very lack of analyticity in fact prevents the
adiabatic error from being identically zero [28,29].

Nevertheless, θ∞(τ ) helps remove the polynomial terms
arbitrarily, hence extending the exponential regime farther.
Additionally, the exponent of the exponential term is con-
trollable through varying the parameters α and β. In this
case, asymptotic evaluation of the integral (82) with the
stationary phase method results in a faster-than-polynomial
convergence to zero. For example, with α = 1 and β � 1
for the constant-norm interpolation, we can approach an
exponential convergence similarly to the case with k = 0.
The achievement of an exponentially small δad(1) for such
functions may be understood as an instance of rigorously
derived exponentially small errors for a general class of
functions called the Gevrey class [26,27].

It is evident that manipulating the θ (τ ) function may also
affect the exponent Im[

∫ z0

0 �(θ (τ ′))dτ ′]. This can be observed
in Fig. 4 (the inset) through the change of the slope of the expo-
nential lines in the log plot. A side consequence of using a θ (τ )
with the desired boundary conditions (192) is that increasing
k may adversely increase the value of T for which δad(1) � ε

(in the exponential regime). To quantify how choosing a θk(τ )
for the Hamiltonian interpolation affects the performance of
the algorithm, we propose the following measure:

ηk(1) ≡ 1

T

∫ T

0
δad(1)|x[θk(τ )] dT , (212)

namely the average adiabatic error up to time T for a given
k. A larger average error may be interpreted as less efficient
performance.

The above problem with the effect of k on exponentiality
may be partially alleviated in some cases. Recall that in
Sec. IV C 1 we found a fairly general interpolation, which
resulted in the parametrization x12(τ ) [Eq. (124)]—it was
later that we added further conditions so as to find x1(τ ) and
x2(τ ) separately. Rather than assuming the condition (128),
let us impose

2f [θ (τ )] = 1 + ζ θ̇ (τ ), (213)

for some ζ 
= 0. We should be mindful of the fact that, from
Eq. (187), modifying f leads to a modification of the norm
of the Hamiltonian or, equivalently, the maximum energy of
the system; this is a cost which should be taken care of in
the correct estimation of τrun [Eq. (26)]. Additionally, from
Eq. (186) it is seen that—since we assumed f 
= 0 (up
to the leading order in r)—the gap � vanishes where
sin[θ (z0)] ∝ ∞; i.e., θ (z0±) = ±i∞. In this case, the
exponent Im[

∫ z0 �[θ (τ ′)]dτ ′] [Eq. (107)] becomes

Im

{∫ z0+

0
[1 + ζ θ̇(τ ′)] csc[πθ (τ ′)]dτ ′

}
= Im

[∫ z0+

0
csc[πθ (τ ′)] dτ ′

]
+ ζ

2
. (214)

Therefore, by appropriately choosing ζ—subject to the
condition 1 + ζ θ̇ > 0—we can tune the exponent of the
exponential term in δad(1). This in turn gives us control over
the run time in the exponential regime. Furthermore, as we
argued earlier, replacing θ (τ ) → θk(τ ) causes the polynomial
terms of δad(1) to be O(1/T k+1). Thus, we are now in
possession of two control parameters k [more precisely θk(τ )]
and ζ with which we can manipulate how the adiabatic error
behaves in either of the exponential and polynomial regimes.
This type of control may have applications in experiments in
which adiabaticity plays a role.

As an example, let θk(τ ) be the regularized β function
[Eq. (193)]. For k � 1 and after employing Stirling’s approx-
imation for the factorial function (k! ≈ √

2πk(k/e)k [65]), we
obtain

max
τ

θ̇ (τ ) = θ̇ (1/2) ≈ 2(2 + k)−
5
2 −k

(
5
2 + k

)3+k

√
πe

≈
√

k,

(215)

whereby

max
τ

‖H (τ )‖/J ≈ 1 +
√

k|ζk|. (216)

As a result, for example, in order to keep the maximum energy
constant, while having the advantages of θk , we should choose
|ζk| = O(1/

√
k).

V. SUMMARY AND CONCLUSIONS

Adiabatic evolution is characterized by a trade-off between
the total time taken and the error in the final state reached,
relative to the desired adiabatic state. Motivated by a desire
to understand and optimize this trade-off, in this work we
performed a detailed analysis of the adiabatic error for the
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case of an adiabatic quantum search algorithm. Rather than
using the traditional adiabatic condition, with its associated
pitfalls, we chose to calculate the adiabatic error directly by
solving the Schrödinger equation. This enabled us to derive
an exact relation for the adiabatic error. Building on this exact
result, we employed a formal polynomial series expansion in
1/T for calculating the error term by term. This also allowed
us to bound the adiabatic error. We showed that the polynomial
expansion should be truncated carefully if we aim to obtain a
reliable estimate for the run time of the algorithm.

We demonstrated that employing a different technique
based on complex analysis reveals, in fairly general situations,
a regime of exponential time-dependent decay of the adiabatic
error, preceding a polynomial regime. The latter has been
shown to be a general feature of adiabatic Hamiltonians,
whereas the existence of an exponential precursor is not
always guaranteed. We showed how, in case these two regimes
both exist, one can estimate the crossover region—i.e., the
time at which a transition between the two regimes takes place.
Equipped with this, we provided an estimate for the minimum
time required for the algorithm to achieve a given accuracy
threshold. Discerning the exponential regime enabled us
to give an improved total time estimate, circumventing the
overestimate arising from the error bound using only the
polynomial expansion. Indeed, the total time estimated from
the exponential regime always gave the correct scaling with
system size (the well-known quadratic speedup over classical
search), while the estimate resulting from the polynomial
regime resulted in unreliable and even erroneous results.

We also obtained a specific class of Hamiltonian interpo-
lations for the search problem. To this end, we employed a
recently developed theory, based on the geometry of adiabatic
evolutions, for obtaining suitable adiabatic interpolations.
This theory separates the adiabatic error into geometric and
nongeometric parts and minimizes the former. We discussed
three special cases of the resulting class of interpolations in
detail: (i) linear, (ii) constant-norm, and (iii) constant-gap
interpolations.

Finding strategies for minimizing the required total time
as a function of a given resource (system size, for example)
is a desirable goal for many applications and is also of

fundamental importance for the control of quantum systems.
We demonstrated explicitly how by imposing fairly general
controllability assumptions, which should be experimentally
straightforward to realize in certain scenarios, one can achieve
a significant reduction of the adiabatic error and hence improve
algorithmic performance. The method we used relied on a
polynomial expansion of the adiabatic error and resulted in
the suppression of polynomial terms in 1/T by requiring
smoothness for interpolations at the initial and final times.
It is evident that controlling the interpolation in this manner,
at only two points, has a substantial advantage over instanta-
neous control of the Hamiltonian along the entire evolution.
However, we demonstrated that there is an extra price to
pay for this error reduction: the exponential regime (if it
exists) is extended but with a slower rate of decay. This, in
turn, may result in an overestimation of the run time of the
algorithm for some values of the error threshold. We proposed
a measure for quantifying the performance of an adiabatic
interpolation with various controllability properties. In some
cases, we also suggested a remedy for the above problem.
This fix necessitated further control over the Hamiltonian
interpolation, directly related to the amount of accessible
energy in the system. The interplay between the degree of
required control over Hamiltonian interpolations and the run
time needed for achieving a given accuracy was thus clearly
exhibited.

Although we focused on the quantum search problem,
our methods and most of our results are applicable (perhaps
with minor modifications) to a wider class of problems—as
discussed in the text. Since a principal goal in adiabatic
quantum algorithms, adiabatic quantum transport, quantum
annealing, and other applications of the adiabatic theorem is
the design of algorithms with favorable performance-resource
trade-off, we hope that our results will be of use in related
physical applications.
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[57] R. Schützhold and G. Schaller, Phys. Rev. A 74, 060304(R)

(2006).
[58] G. Schaller, Phys. Rev. A 78, 032328 (2008).
[59] M. H. S. Amin and V. Choi, Phys. Rev. A 80, 062326 (2009).
[60] A. Galindo and P. Pascual, Quantum Mechanics I (Springer-

Verlag, Berlin, 1990).
[61] P. Pfeifer, Phys. Rev. Lett. 70, 3365 (1993).
[62] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. A 67,

052109 (2003).
[63] L. B. Levitin and T. Toffoli, Phys. Rev. Lett. 103, 160502 (2009).
[64] J. E. Avron, M. Fraas, G. M. Graf, and P. Grech, e-print

arXiv:0912.4640.
[65] G. B. Arfken and H. J. Weber, Mathematical Methods for

Physicists (Academic Press, San Diego, CA, 2001).
[66] S. I. Hayek, Advanced Mathematical Methods in Science and

Engineering (Marcel Dekker, New York, 2001).
[67] M. Nakahara, Geometry, Topology and Physics (Institute of

Physics, Bristol/Philadelphia, 2003).
[68] I. M. Gel’fand and G. E. Shilov, Generalized Functions:

Properties and Operations (Academic Press, New York, 1964),
Vol. 1.

052305-19

http://dx.doi.org/10.1103/PhysRevLett.95.110407
http://dx.doi.org/10.1103/PhysRevLett.95.110407
http://dx.doi.org/10.1103/PhysRevLett.101.060403
http://dx.doi.org/10.1103/PhysRevLett.101.060403
http://dx.doi.org/10.1007/s11128-004-7712-7
http://dx.doi.org/10.1007/s11128-004-7712-7
http://dx.doi.org/10.1103/PhysRevLett.102.220401
http://dx.doi.org/10.1007/BF01209015
http://dx.doi.org/10.1007/BF01209015
http://dx.doi.org/10.1007/BF02096867
http://dx.doi.org/10.1007/BF02096867
http://dx.doi.org/10.1007/BF02096616
http://dx.doi.org/10.1063/1.530832
http://dx.doi.org/10.1006/jmaa.2001.7765
http://dx.doi.org/10.1006/jmaa.2001.7765
http://dx.doi.org/10.1063/1.2798382
http://dx.doi.org/10.1063/1.2798382
http://dx.doi.org/10.1103/PhysRevA.77.042319
http://dx.doi.org/10.1103/PhysRevA.77.042319
http://dx.doi.org/10.1103/PhysRevA.81.032308
http://dx.doi.org/10.1063/1.3236685
http://dx.doi.org/10.1063/1.3236685
http://dx.doi.org/10.1103/PhysRevLett.79.325
http://dx.doi.org/10.1103/PhysRevLett.103.080502
http://dx.doi.org/10.1103/PhysRevA.65.042308
http://dx.doi.org/10.1142/S0219749904000432
http://dx.doi.org/10.1103/PhysRevA.60.2746
http://dx.doi.org/10.1103/PhysRevLett.80.4329
http://dx.doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
http://dx.doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
http://dx.doi.org/10.1103/PhysRevLett.95.150501
http://dx.doi.org/10.1103/PhysRevA.60.2742
http://dx.doi.org/10.1103/PhysRevA.60.2742
http://dx.doi.org/10.1103/PhysRevA.63.012310
http://arXiv.org/abs/arXiv:quant-ph/0012143
http://dx.doi.org/10.1103/PhysRevLett.80.3408
http://dx.doi.org/10.1103/PhysRevLett.80.3408
http://dx.doi.org/10.1038/30687
http://dx.doi.org/10.1038/30687
http://dx.doi.org/10.1103/PhysRevLett.91.217904
http://dx.doi.org/10.1103/PhysRevLett.91.217904
http://dx.doi.org/10.1103/PhysRevLett.99.170503
http://dx.doi.org/10.1103/PhysRevA.81.042328
http://dx.doi.org/10.1103/PhysRevA.82.012321
http://dx.doi.org/10.1103/PhysRevA.82.012321
http://dx.doi.org/10.1137/060648829
http://dx.doi.org/10.1103/PhysRevA.75.062337
http://dx.doi.org/10.1016/0031-8914(62)90109-X
http://dx.doi.org/10.1103/PhysRevA.69.062302
http://dx.doi.org/10.1103/PhysRevA.73.062307
http://dx.doi.org/10.1103/PhysRevA.73.062307
http://dx.doi.org/10.1103/PhysRevA.74.060304
http://dx.doi.org/10.1103/PhysRevA.74.060304
http://dx.doi.org/10.1103/PhysRevA.78.032328
http://dx.doi.org/10.1103/PhysRevA.80.062326
http://dx.doi.org/10.1103/PhysRevLett.70.3365
http://dx.doi.org/10.1103/PhysRevA.67.052109
http://dx.doi.org/10.1103/PhysRevA.67.052109
http://dx.doi.org/10.1103/PhysRevLett.103.160502
http://arXiv.org/abs/arXiv:0912.4640

