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When different entanglement witnesses detect the same entangled states
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The question of under what conditions different witnesses (e.g., W1,W2) may detect some common entangled
states [i.e., there exists some state ρ so that Tr(W1ρ) < 0 and Tr(W2ρ) < 0] is answered for both finite-dimensional
and infinite-dimensional bipartite systems. Finitely many different witnesses W1,W2, . . . ,Wn can detect some
common entangled states if and only if

∑n

i=1 diWi is still a witness for any nonnegative numbers d1,d2, . . . ,dn

with
∑n

i=1 di = 1; they cannot detect any common entangled state if and only if
∑n

i=1 ciWi is a positive operator
for some nonnegative numbers c1,c2, . . . ,cn with

∑n

i=1 ci = 1. For two witnesses W1 and W2 more can be said.
First, W1 and W2 can detect the same set of entangled states if and only if W1 = aW2 for some number a > 0.
Second, W2 can detect more entangled states than W1 can if and only if W1 = aW2 + D for some number a > 0
and a positive operator D. As an application, some characterizations of the optimal witnesses are given and some
structural properties of the decomposable optimal witnesses are presented.
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I. INTRODUCTION

Entanglement plays a crucial role in quantum theory
since it can be used as an essential resource in quantum
information processing [1]. The detection of entanglement has
attracted much attention in recent years. However, despite the
remarkable progress in this field, there is no general qualitative
or quantitative characterizing of entanglement [2–12].

Recall that the quantum states of a quantum system are
described by density operators which are trace-one positive
operators acting on the associated separable complex Hilbert
space. A bipartite composite quantum system is associated
with a tensor product of two separable complex Hilbert spaces
Hi (i.e., H = H1 ⊗ H2). By S (1) = S(H1), S (2) = S(H2), and
S = S(H1 ⊗ H2) we denote the sets of all states on H1,
H2, and H1 ⊗ H2, respectively. A state ρ ∈ S is said to be
separable if it is a trace-norm limit of the states of the
form

ρ =
∑

i

piρ
(1)
i ⊗ ρ

(2)
i ,

∑
i

pi = 1, pi � 0,

where ρ
(1)
i and ρ

(2)
i are states in S (1) and S (2), respectively

[13,14]. Otherwise ρ is said to be entangled. The set of all
separable states will be denoted by Ssep(H1 ⊗ H2).

Among the multitudinous criteria for deciding whether a
given state is entangled or not, the well-known one is the
entanglement witness criterion [6]. This criterion provides a
sufficient and necessary condition for the separability of a
given state in a bipartite quantum system. In Ref. [6], it was
shown that a given state is entangled if and only if there exists at
least one entanglement witness detecting it. An entanglement
witness (or witness for short) W is a self-adjoint operator (also
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called a Hermitian operator) acting on H1 ⊗ H2 that satisfies
Tr(Wσ ) � 0 for all separable states σ ∈ Ssep and Tr(Wρ) < 0
for at least one entangled state ρ (in this case, we say that ρ is
detected by W , or equivalently, W is a witness for ρ).

Although any entangled state can be detected by some
specific choice of witness, there is no universal witness (i.e.,
there is no witness which can detect all entangled states).
From the entanglement witness criterion, the task is reduced
to find out all witnesses. However, constructing the witnesses
for an entangled state is a hard task, and the determination
of witnesses for all entangled states is a nondeterministic
polynomial-time (NP) hard problem [15].

Witnesses cannot only be used to detect any entangled
states, but also are directly measurable quantities. This makes
the entanglement witnesses one of the main methods of de-
tecting entanglement experimentally and a very useful tool for
analyzing entanglement in the experiment. So it is important to
know more about the features of the witnesses. Concerning this
topic, much work has been done for finite-dimensional systems
(for example, Refs. [16,17]). However, few results are known
for infinite-dimensional systems. Generally, the structure of
witnesses for infinite-dimensional systems are complicated.
However, it was proved in Ref. [14] that for any entangled
state a witness can be chosen so that it has a simple form
of “nonnegative constant times the identity + a self-adjoint
operator of finite rank.” These kinds of witnesses are special
Fredholm operators that are easily handled in mathematics.
For example, such witnesses W have the spectrum consisting
of finitely many eigenvalues. The goal of the present paper
is to solve the question of when different witnesses can
detect some common entangled states for mainly infinite-
dimensional systems. Particularly, we deduce a sufficient and
necessary condition that different witnesses can detect the
same entangled states.

For simplicity, we introduce some notations. Let H1,H2 be
complex Hilbert spaces and let W = W(H1 ⊗ H2) be the set
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of all entanglement witnesses of the system H1 ⊗ H2

W = W(H1 ⊗ H2) = {W : W ∈ B(H1 ⊗ H2),W † = W,

Tr(Wσ ) � 0 for all σ ∈ Ssep and W is not positive}.
For W ∈ W and � ⊂ W define

DW = {ρ : ρ ∈ S(H1 ⊗ H2),Tr(Wρ) < 0},
and D� = ⋂

W∈� DW . Then DW and D� are convex sets. Thus
the witnesses in � can detect some common entangled states
if and only if D� �= ∅.

For W1,W2 ∈ W , we say that W1 is finer than W2 if DW2 ⊂
DW1 , denoted by

W2 ≺ W1,

which means that W1 can recognize more entangled states than
W2 can. Thus, W1 and W2 can detect the same set of entangled
states if and only if W1 is finer than W2 and W2 is also finer
than W1, or equivalently, DW2 = DW1 . While a witness W is an
optimal witness if there exists no other witness finer than W .

The finer relation “≺” above is a partial order and W
becomes a partially ordered set (poset) with respect to “≺”.
If W1 ≺ W2 or W2 ≺ W1, we say that W1 and W2 are
comparable. Otherwise, they are not comparable. Particularly,
we say that W1 and W2 are equivalent if W1 ≺ W2 and
W2 ≺ W1 hold simultaneously. Generally speaking, for two
given witnesses W1 and W2 there are three different situations
that may occur. (i) W1 ≺ W2 or W2 ≺ W1, and in particular,
DW1 = DW2 ; (ii)DW1 ∩ DW2 �= ∅ andDWi

DWj
, i, j = 1,2; and

(iii) DW1 ∩ DW2 = ∅.
Case (i) means that W1 and W2 are comparable, that is, W2

(or W1) can detect more entangled states than W1 (or W2) can,
and in particular, W1 and W2 detect exactly the same entangled
states if they are equivalent (DW1 = DW2 ). Case (ii) means that
W1 and W2 are not comparable, but there exists some entangled
state so that both W1 and W2 can recognize it. While case (iii)
says that W1, W2 are not comparable, and there is no entangled
state so that W1 and W2 can be detected simultaneously. Thus
W1 and W2 can detect a common entangled state, that is, there
exists a state ρ such that both Tr(W1ρ) < 0 and Tr(W2ρ) < 0,
if and only if case (i) or (ii) holds.

For the finite-dimensional case, case (i) above was
studied in Ref. [16] and cases (ii) and (iii) were studied
in Ref. [17]. Suppose that Tr(W1) = Tr(W2), then the
following conclusions are true. (1) DW1 ⊆ DW2 if and only
if W1 = (1 − ε)W2 + εD for some D � 0 and 0 � ε < 1;
in particular, DW1 = DW2 if and only if W1 = W2 [16]. (2)
If there are no inclusion relations between DW1 and DW2 ,
then DW1 ∩ DW2 �= ∅ if and only if W = εW1 + (1 − ε)W2

is not positive for any 0 � ε � 1 [17]. However, we remark
that, though the result (2) above is true as we will show,
there are some mistakes in the proof of it in Ref. [17]. Then
an interesting and natural question arises: What can we say
for the infinite-dimensional case? The main purpose of the
present paper is to show that the similar results hold for the
infinite-dimensional systems. Note that one of the difficulties
of extending the above results to the infinite-dimensional
systems is that the condition Tr(W1) = Tr(W2) makes no
sense, in general, for the infinite-dimensional case. So, we have
to discuss the question without the trace-equal assumption.

This paper is organized as follows. In Sec. II, we propose
a sufficient and necessary condition for any two given general
witnesses W1 and W2 to be comparable. Let H1, H2 be complex
Hilbert spaces. Assume that W1,W2 ∈ W(H1 ⊗ H2). We show
that (1) W1 ≺ W2 if and only if W1 = aW2 + D for some
operator D � 0 and some real number a > 0; (2) DW1 = DW2

if and only if there exists a positive number a > 0 such
that W1 = aW2. Then these results are applied in Sec. III
to obtain a sufficient and necessary condition for a witness
to be optimal. We show that W ∈ W(H1 ⊗ H2) is optimal if
and only if W ′ = aW − D /∈ W(H1 ⊗ H2) for any nonzero
operator D � 0 and scalar a > 0. Some structural properties
of the optimal decomposable witnesses are also presented.
In Sec. IV, we discuss the question of when two witnesses
that are not comparable can detect a common entangled state.
Combining with the results in Sec. II, the question of when
finitely many witnesses can detect a common entangled state
is answered. We show that ∩n

k=1DWk
�= ∅ if and only if every

convex combination of W1, . . . ,Wn, that is,
∑n

i=1 diWi with
di � 0 and

∑n
i=1 di = 1, is still a witness; ∩n

k=1DWk
= ∅ if

and only if there exists at least one convex combination W of
W1, . . . ,Wn such that W � 0.

Throughout this paper we call an operator A ∈ B(H ) as pos-
itive, denoted by A � 0, if 〈x|A|x〉 � 0 for all |x〉 ∈ H . ‖ · ‖Tr

denotes the trace norm and ‖ · ‖2 denotes the Hilbert-Schmidt
norm, that is, ‖A‖Tr = Tr[(A†A)

1
2 ] and ‖A‖2 = [Tr(A†A)]

1
2 .

For an operator A, AT stands for the transpose of A with
respect to some given orthonormal basis. By AT2 , we denote
the partial transpose of A with respect to the second subsystem
H2 if A ∈ B(H1 ⊗ H2) [i.e., AT2 = (I1 ⊗ τ )A] where τ is
the transpose operation. T (H1 ⊗ H2) denotes the set of all
trace class operators (the operators with finite trace norm)
in B(H1 ⊗ H2) while T +(H1 ⊗ H2) stands for the set of all
positive elements in T (H1 ⊗ H2).

II. COMPARABLE WITNESSES, WITNESSES DETECTING
THE SAME ENTANGLED STATES

In this section, we mainly highlight the finer relation
between two given witnesses W1,W2 of an infinite-dimensional
bipartite system. Namely, we study the question of under what
conditions W2 detects more (or the same) entangled states than
(as) W1 does.

For the finite-dimensional bipartite quantum system, it
is known that if W1, W2 ∈ W with Tr(W1) = Tr(W2), then
DW1 ⊆ DW2 if and only if W1 = (1 − ε)W2 + εD for some
D � 0 and 0 � ε < 1; DW1 = DW2 if and only if W1 = W2

[16]. Since the condition Tr(W1) = Tr(W2) does not make
sense, in general, for the infinite-dimensional case, we have to
consider the question without the trace-equal assumption.

The following is the main result of this section which
answers the above question for both infinite-dimensional
systems and finite-dimensional cases.

Theorem 2.1. Let H1, H2 be complex Hilbert spaces.
Assume that W1,W2 ∈ W(H1 ⊗ H2). Then (1) W1 ≺ W2 if
and only if W1 = aW2 + D for some operator D � 0 and
some real number a > 0. (2) DW1 = DW2 if and only if there
exists a number a > 0 such that W1 = aW2.

To prove Theorem 2.1, we need several lemmas.
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A useful technical result in Ref. [16] asserts that, for
finite-dimensional systems, every entanglement witness has
a positive trace. This result does not make any sense for the
infinite-dimensional cases. However, we can generalize it to
the infinite-dimensional case by showing that the restriction
of any entanglement witness is nonzero as a linear functional
to the convex set consisting of separable states. This result is
useful for our purpose.

Lemma 2.2. Let H1, H2 be complex Hilbert spaces. For
any W ∈ W(H1 ⊗ H2), there is a separable pure state σ ∈
Ssep(H1 ⊗ H2) such that Tr(Wσ ) > 0.

Proof. Let {|i〉} and {|j 〉} be any orthonormal bases of H1

and H2, respectively. Then, {|i〉|j 〉} is an orthonormal basis of
H1 ⊗ H2. It turns out 〈i|〈j |W |i〉|j 〉 � 0 since 〈i|〈j |W |i〉|j 〉 =
Tr(W |i〉〈i| ⊗ |j 〉〈j |) � 0 for any i, j .

To prove the lemma, it suffices to show that there exist
orthonormal bases {|i〉} and {|j 〉} such that Tr(W |i〉〈i| ⊗
|j 〉〈j |) �= 0 for some i,j . To get a contradiction assume that
this is not true. Then

〈ψ1|〈ψ2|W |ψ1〉|ψ2〉 = 0,

for all product vectors |ψ1〉|ψ2〉 ∈ H1 ⊗ H2. For any pure state
|ψ〉 ∈ H1 ⊗ H2, let |ψ〉 = ∑n

k=1 λk|k〉|k′〉 be the Schmidt de-
composition of |ψ〉, where λk > 0,

∑n
k=1 λ2

k = 1 and {|k〉}nk=1,
{|k′〉}nk′=1 are the orthonormal sets, respectively, in H1,H2; here
n is called the Schmidt number of |ψ〉. Then

ρ = |ψ〉〈ψ | =
(∑

k

λk|k〉|k′〉
)(∑

l

λl〈l|〈l′|
)

=
∑
k,l

λkλl|k〉〈l| ⊗ |k′〉〈l′|

=
∑
k=l

λ2
k|k〉〈k| ⊗ |k′〉〈k′|

+
∑
k<l

λkλl(|k〉〈l| ⊗ |k′〉〈l′| + |l〉〈k| ⊗ |l′〉〈k′|).

For a given pair (k, l) with k �= l, define |ψk,l〉 = 1√
2
(|k〉|k′〉 +

|l〉|l′〉). We have

|k〉〈l| ⊗ |k′〉〈l′| + |l〉〈k| ⊗ |l′〉〈k′|
= 2|ψk,l〉〈ψk,l| − |k〉〈k| ⊗ |k′〉〈k′| − |l〉〈l| ⊗ |l′〉〈l′|.

This indicates that if n < ∞ then 〈ψ |W |ψ〉 = 0. As the
set of all unit vectors with the finite Schmidt number is
dense in the set of all unit vectors in H1 ⊗ H2, we see that
〈ψ |W |ψ〉 = 0 holds for all unit vector |ψ〉 and hence W = 0, a
contradiction. �

Analogous to the finite-dimensional case [16], the following
lemma is obvious.

Lemma 2.3. Let H1, H2 be complex Hilbert spaces. For a
given W ∈ W(H1 ⊗ H2), if ρ ∈ DW and 	W ∈ T +(H1 ⊗ H2)
satisfying Tr(W	W ) = 0, then (ρ + 	W )/Tr(ρ + 	W ) ∈ DW .

The next lemma is crucial to prove Theorem 2.1. Note that
the counterpart lemma in Ref. [16] for the finite-dimensional
case is not valid for the infinite-dimensional case.

Lemma 2.4. Let H1, H2 be complex Hilbert spaces and W1,
W2 ∈ W(H1 ⊗ H2). Assume that W1 ≺ W2 and let

λ := inf
ρ1∈DW1

|Tr(W2ρ1)|
|Tr(W1ρ1)| .

Then the following statements are true:
1. If ρ ∈ S(H1 ⊗ H2) satisfies Tr(W1ρ) = 0, then

Tr(W2ρ) � 0.
2. λ > 0.
3. If ρ ∈ S(H1 ⊗ H2) satisfies Tr(W1ρ) > 0, then

Tr(W2ρ) � λTr(W1ρ).
Proof. (1) Let us assume, to reach a contradiction, that

Tr(W2ρ) > 0. Then, for any ρ1 ∈ DW1 and a � 0, we have
ρ(a) = (ρ1 + aρ)/(1 + a) ∈ DW1 . On the other hand, there
exists a positive number a0 such that Tr[W2ρ(a)] > 0 holds for
all a � a0, which is impossible since it leads to ρ(a) /∈ DW2 .

(2) Assume that, on the contrary, λ = 0. Then there exists
a sequence {ρn} ⊂ DW1 such that

εn = Tr(W2ρn)

Tr(W1ρn)
→ 0 as n → ∞. (2.1)

Note that there exists σ ∈ Ssep = Ssep(H1 ⊗ H2) such that
both Tr(W1σ ) and Tr(W2σ ) are nonzero. If not, then for
any σ ∈ Ssep, either Tr(W1σ ) = 0 or Tr(W2σ ) = 0. Thus, by
Lemma 2.2, there exist σ1,σ2 ∈ Ssep so that Tr(W1σ1) = t > 0,
Tr(W1σ2) = 0, Tr(W2σ1) = 0 and Tr(W2σ2) = s > 0. Let σ =

s
t+s

σ1 + t
t+s

σ2 ∈ Ssep. Then Tr(W1σ ) = Tr(W2σ ) = ts
t+s

�= 0,
contradicting to the assumption.

Now we can take σ ∈ Ssep so that both Tr(W1σ ) and
Tr(W2σ ) are nonzero. Let

ρ̃n = 1

1 − Tr(W1ρn)
Tr(W1σ )

[
ρn − Tr(W1ρn)

Tr(W1σ )
σ

]
∈ S,

with ρn satisfying Eq. (2.1). Then Tr(W1ρ̃n) = 0 and by (1),
we have Tr(W2ρ̃n) � 0 for every n. However,

Tr(W2ρ̃n) = 1

1 − Tr(W1ρn)
Tr(W1σ )

[
Tr(W2ρn) − Tr(W1ρn)

Tr(W1σ )
Tr(W2σ )

]

= 1

1 − Tr(W1ρn)
Tr(W1σ )

[
εn − Tr(W2σ )

Tr(W1σ )

]
Tr(W1ρn),

and εn → 0, which implies that for sufficiently large n, we have
εn − Tr(W2σ )

Tr(W1σ ) < 0 and hence Tr(W2ρ̃n) > 0, a contradiction.
This completes the proof of (2).

(3) Assume that Tr(W1ρ) > 0. Take ρ1 ∈ DW1 and let
ρ̃ = 1

Tr(W1ρ)−Tr(W1ρ1) [Tr(W1ρ)ρ1 − Tr(W1ρ1)ρ]. Then we have
Tr(W1ρ̃) = 0. By (1), we obtain that Tr(W2ρ̃) � 0. Thus we
have Tr(W1ρ)Tr(W2ρ1) � Tr(W1ρ1)Tr(W2ρ). It follows that

Tr(W2ρ)

Tr(W1ρ)
� |Tr(W2ρ1)|

|Tr(W1ρ1)| .

Taking the infimum with respect to ρ1 ∈ DW1 on the right side
of the above equation, we get Tr(W2ρ) � λTr(W1ρ). �

Now we are in a position to give our proof of Theorem 2.1.
Note that the proof of statement (2) is also different from that
of the counterpart result in Ref. [16] for the finite-dimensional
case. The approach in Ref. [16] does not work for the infinite-
dimensional case.
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Proof of Theorem 2.1. (1) If W1 = aW2 + D for some
positive operator D and some scalar a > 0, then for any ρ ∈
DW1 , we have aTr(W2ρ) + Tr(Dρ) = Tr(W1ρ) < 0, which
implies that Tr(W2ρ) < 0. Hence DW1 ⊆ DW2 . Conversely,
assume that DW1 ⊆ DW2 . Then, by Lemma 2.4,

Tr(W2ρ) � λTr(W1ρ), (2.2)

holds for all ρ ∈ S, where λ = infρ1∈DW1

|Tr(W2ρ1)|
|Tr(W1ρ1)| > 0. This

implies that D1 = λW1 − W2 � 0 and hence, with D =
λ−1D1, W1 = λ−1W2 + D, as desired.

(2) We only need to prove the “only if” part. Assume that
DW1 = DW2 . Then, by the statement (1) just proved above,
there exist operators Di � 0 and scalars ai > 0, i = 1,2,
such that W1 = a1W2 + D1 and W2 = a2W1 + D2. It follows
that W1 = a1(a2W1 + D2) + D1 = a1a2W1 + a1D2 + D1.
Thus (1 − a1a2)W1 = a1D2 + D1 � 0. Since W1 ∈ W , we
must have a1a2 = 1. Hence D1 = D2 = 0 and W2 = a2W1,
completing the proof. �

III. OPTIMIZATION OF ENTANGLEMENT WITNESSES

In this section we discuss the optimization of entanglement
witnesses, especially for infinite-dimensional systems by
applying Theorem 2.1.

The following result states that a witness is optimal if and
only if any negative permutation will break the witness. For
the finite-dimensional case, a similar result was obtained in
Ref. [16].

Theorem 3.1. Let H1, H2 be complex Hilbert spaces. Then
W ∈ W(H1 ⊗ H2) is optimal if and only if W ′ = aW − D /∈
W(H1 ⊗ H2) for any nonzero operator D � 0 and scalar
a > 0.

Proof. To prove the “if” part assume, on the contrary, that
W is not optimal, then W ≺ W ′ for some W ′ ∈ W(H1 ⊗ H2)
with W and W ′ are linearly independent. It follows from
Theorem 2.1(1) that W = aW ′ + D for some D � 0 and
a > 0, which reveals that W ′ = 1

a
W − 1

a
D.

To prove the “only if” part assume that W is optimal,
but there exists a nonzero operator D � 0, scalar a > 0 so
that W ′ = aW − D ∈ W(H1 ⊗ H2). Then W = 1

a
W ′ + 1

a
D

and W ′ is linearly independent to W . But by Theorem 2.1,
W ≺ W ′, a contradiction. �

In the following, we discuss the condition for an entangle-
ment witness that cannot subtract some positive operators. For
convenience, we define

PW = {|ψ〉|φ〉 ∈ H1 ⊗ H2 : 〈ψ |〈φ|W |ψ〉|φ〉 = 0}. (3.1)

Proposition 3.2. Let H1, H2 be complex Hilbert spaces and
W ∈ W(H1 ⊗ H2). Let PW be as in Eq. (3.1). If D ∈ B(H1 ⊗
H2) is positive and DPW �= {0}, then W − aD /∈ W(H1 ⊗ H2)
for any a > 0.

Proof. If DPW �= {0}, then there exists a product vector
|ψ0〉|φ0〉 ∈ PW such that

〈ψ0|〈φ0|D|ψ0〉|φ0〉 > 0.

Let ρ0 = |ψ0〉〈ψ0| ⊗ |φ0〉〈φ0|. It is clear that ρ0 is separable
and Tr[(W − aD)ρ0] = −aTr(Dρ0) < 0, which leads to W −
aD /∈ W(H1 ⊗ H2) for all a > 0. �

The following corollary is obvious.

Corollary 3.3. Let H1, H2 be complex Hilbert spaces and
W ∈ W(H1 ⊗ H2). Let PW be as in Eq. (3.1). If PW spans
H1 ⊗ H2, then W is optimal.

Next we give some structural properties of optimal de-
composable witnesses. Recall that a self-adjoint operator
A ∈ B(H1 ⊗ H2) is said to be decomposable if

A = P + QT2 ,

for some operators P � 0, Q � 0, where QT2 denotes the
partial transpose of Q with respect to the second subsys-
tem H2. Otherwise, A is said to be indecomposable. For
example, in the n × n system, the Hermitian swap operator
V = ∑n−1

i,j=0 |i〉〈j | ⊗ |j 〉〈i| is a decomposable witness since
(1) Tr(V σ ) � 0 for all separable pure states σ , (2) V has a
negative eigenvalue −1, and (3) V = nQT2 with Q = |ψ〉〈ψ |
with |ψ〉 = 1√

n

∑n−1
i=0 |i〉|i〉 (Ref. [18]). The examples of

indecomposable witnesses can be found in Refs. [14,19,20]. It
is easy to show that the decomposable witnesses cannot detect
any positive partial transpose (PPT) entangled states [21].

By applying Theorem 2.1, one can get a simple structural
property of optimal decomposable entanglement witnesses for
both the finite-dimensional systems and infinite-dimensional
systems.

Theorem 3.4. Let H1, H2 be complex Hilbert spaces and
W ∈ W(H1 ⊗ H2) be a decomposable entanglement witness.
If W is optimal, then W = QT2 for some positive operator Q,
and Q contains no product vectors in its range.

Proof. Since W is decomposable, W = P + QT2 for some
positive operators P , Q. Assume that P �= 0. As Tr(QT2σ ) =
Tr(QσT2 ) � 0 for all σ ∈ Ssep and W ∈ W , we must have
QT2 ∈ W . Thus, by Theorem 2.1 (1), one sees that W ≺ QT2 ,
that is, W is not optimal. Hence, W is optimal implies that
P = 0 and W = QT2 . Moreover, the range of Q contains
no product vectors. In fact, if |ψ〉|φ〉 ∈ R(Q) for some unit
vectors |ψ〉 ∈ H1 and |φ〉 ∈ H2, then there exists a vector
|ω〉 ∈ H1 ⊗ H2 such that Q|ω〉 = |ψ〉 ⊗ |φ〉. Observe that
Q(I − λ|ω〉〈ω|)Q = Q2 − λ|ψ〉〈ψ | ⊗ |φ〉〈φ| � 0 if and only
if I − λ|ω〉〈ω| � 0. It turns out that, for any 0 < λ < ‖|ω〉‖−2

we have [Q − λ|ψ〉〈ψ | ⊗ |φ〉〈φ|]T2 ∈ W , which implies that
[Q − λ|ψ〉〈ψ | ⊗ |φ〉〈φ|]T2 is finer than W , contradicting to
the optimality of W . �

Theorem 3.4 can be strengthened a little.
Theorem 3.5. Let H1, H2 be complex Hilbert spaces and

W ∈ W(H1 ⊗ H2) be a decomposable entanglement witness.
If W is optimal, then W = QT2 for some positive operator Q

and there exists no positive operator A with R(A) ⊆ R(Q)
such that AT2 � 0.

Proof. By Theorem 3.4, W = QT2 as W is optimal. If
there exists a positive operator A such that R(A) ⊆ R(Q)
and AT2 � 0, then, by a well-known result from operator
theory, there exists an operator T ∈ B(H1 ⊗ H2) such that
A = QT . It follows that A2 = QT T †Q � tQ2, where t =
‖T ‖2. Thus, A �

√
tQ, which implies Q − λA � 0 whenever

0 < λ < 1√
t
. Thus we get (Q − λA)T2 ∈ W . Now it follows

from Theorem 2.1 (1) that (Q − λA)T2 is finer than W , a
contradiction. �

Corollary 3.6. Let H1, H2 be complex Hilbert spaces and
W ∈ W(H1 ⊗ H2) be a decomposable entanglement witness.
If W is optimal, then WT2 /∈ W .
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Proof. By Theorem 3.4, we know that W = QT2 for some
Q � 0. Therefore, WT2 = Q � 0. �

For low-dimensional systems, the optimal witnesses are
easily constructed. For example, the optimal witnesses for two
qubits (i.e., the 2 × 2 system) are of the form

W = |ψ〉〈ψ |T2 ,

where |ψ〉 is an entangled state vector [22]. In fact, an optimal
witness detecting the state ρ can be constructed as W =
|ψ〉〈ψ |T2 from the eigenvector |ψ〉 of ρT2 with negative eigen-
value λ since Tr(|ψ〉〈ψ |T2ρ) = Tr(|ψ〉〈ψ |ρT2 ) = λ < 0 [22].
This method can be generalized to the infinite-dimensional
case, but the resulting witness may be not an optimal one.

IV. INCOMPARABLE WITNESSES THAT
DETECT A COMMON STATE

Now we turn back to the question of when different
entanglement witnesses that are incomparable can detect
some common entangled states. This question was studied
in Ref. [17] for the finite-dimensional cases, there the authors
of Ref. [17, Theorem 4] asserted that in finite-dimensional
systems, under the condition Tr(W1) = Tr(W2), if there exists
no inclusion relation between DW1 and DW2 , then DW1 ∩
DW2 �= ∅ if and only if W = λW1 + (1 − λ)W2 is not a positive
operator for all 0 � λ � 1. We point out, though this result is
true, the proof of it in Ref. [17] is not correct.

Our attention is mainly focused on the infinite-dimensional
cases. We establish a similar result without the assumption
“Tr(W1) = Tr(W2)” and provide a proof that is valid for both
finite-dimensional systems and infinite-dimensional systems.

The following two lemmas are obvious.
Lemma 4.1. Let H1, H2 be complex Hilbert spaces and

let W1, W2 ∈ W(H1 ⊗ H2) with W1 ≺ W2. If W (a,b) =
aW1 + bW2, where a and b are positive numbers, then W1 ≺
W (a,b) ≺ W2.

Particularly, if W1 ≺ W2, then all convex combinations of
them are still witnesses.

Lemma 4.2. Let H1, H2 be complex Hilbert spaces. For W1,
W2 ∈ W(H1 ⊗ H2), let W = aW1 + bW2 �= 0 with a � 0 and
b � 0, then DW ⊂ DW1 ∪ DW2 and DW1 ∩ DW2 ⊂ DW .

The following is our key lemma which is obtained for the
finite-dimensional cases in Ref. [17] with a different and longer
proof.

Lemma 4.3. Let H1, H2 be complex Hilbert spaces. For
W,W1,W2 ∈ W(H1 ⊗ H2), if DW1 ∩ DW2 = ∅ and if DW ⊂
DW1 ∪ DW2 , then either DW ⊂ DW1 or DW ⊂ DW2 .

Proof. Assume, on the contrary, that both DW1 ∩ DW

and DW2 ∩ DW are nonempty. Take ρi ∈ DWi
∩ DW , i = 1,2.

Consider the segment [ρ1,ρ2] = {ρt = (1 − t)ρ1 + tρ2 : 0 �
t � 1}. As DW is convex, we have

[ρ1,ρ2] ⊆ DW ⊆ DW1 ∪ DW2 .

Thus we get

[ρ1,ρ2] = (
DW1 ∩ [ρ1,ρ2]

) ∪ (
DW2 ∩ [ρ1,ρ2]

)
,

that is, [ρ1,ρ2] is divided into two convex parts. It follows
that there is 0 < t0 < 1 such that {ρt : 0 � t < t0} ⊆ DW1 ,
{ρt : t0 < t � 1} ⊆ DW2 , and either ρt0 ∈ DW1 or ρt0 ∈ DW2 .

Assume that ρt0 ∈ DW1 ; then Tr(W1ρt0 ) < 0. Thus, for suffi-
ciently small ε > 0 with t0 + ε � 1, we have

0 � Tr
(
W1ρt0+ε

)
= Tr

(
W1ρt0

) + ε[Tr(W1ρ2) − Tr(W1ρ1)] < 0,

a contradiction. Similarly, ρt0 ∈ DW2 leads to a contradiction
as well. This completes the proof. �

Now we are ready to state and prove the main result in this
section, which asserts that two entanglement witnesses can
detect no common entangled states if and only if at least one
convex combinations of them is positive, that is, breaks the
witness.

Theorem 4.4. Let H1, H2 be complex Hilbert spaces and
W1,W2 ∈ W(H1 ⊗ H2). Then DW1 ∩ DW2 = ∅ if and only if
there exists 0 < λ < 1 such that W = λW1 + (1 − λ)W2 is
positive.

By Lemma 4.1, Lemma 4.2, and Theorem 4.4, the following
result is immediate, which states that two witnesses can detect
some common entangled states if and only if their convex
combination does not break the witness.

Theorem 4.5. Let H1, H2 be complex Hilbert spaces and
W1,W2 ∈ W(H1 ⊗ H2). Then DW1 ∩ DW2 �= ∅ if and only if
Wλ = λW1 + (1 − λ)W2 ∈ W(H1 ⊗ H2) for all 0 � λ � 1.

Proof of Theorem 4.4. If W = λW1 + (1 − λ)W2 � 0 for
some λ ∈ (0,1), then, by Lemma 4.2, DW1 ∩ DW2 ⊆ DW = ∅.

Assume that DW1 ∩ DW2 = ∅. Let W (λ) = λW1 +
(1 − λ)W2, 0 � λ � 1. Then, by Lemma 4.3, for all λ ∈ [0,1],
we have

DW (λ) ⊂ DW1 , or DW (λ) ⊂ DW2 .

When λ varies from 0 to 1 continuously,DW (λ) also varies from
DW2 to DW1 continuously. Take λ0 = sup{λ : DW (λ) ⊂ DW2}.

We claim that if DW (λ0) ⊂ DW2 then there exist 0 < ε <

1 − λ0 such that W (λ0 + ε) is a positive operator. Otherwise,
if for all 0 < ε < 1 − λ0, DW (λ0+ε) �= ∅, then we have

DW (λ0) ⊂ DW2 , DW (λ0+ε) ⊂ DW1 ,

and for all ρ ∈ DW (λ0), we have

Tr[W (λ0)ρ] < 0,

Tr[W (λ0)ρ] + ε[Tr(W1ρ) − Tr(W2ρ)] � 0.

Noticing that Tr(W1ρ) � 0 and Tr(W2ρ) < 0, the second part
of the last inequality is positive, and ε is an arbitrarily small
positive number, hence the last inequality is impossible. (We
remark that there is a mistake in the proof found in Ref. [17,
Theorem 4]. In Ref. [17], the argument is “for all ρ ∈ DW (λ0+ε),
we have

Tr[W (λ0)ρ] � 0,

Tr[W (λ0)ρ] + ε[Tr(W1ρ) − Tr(W2ρ)] = Tr[W (λ0 + ε)ρ] < 0.

Noticing that Tr(W1ρ) < 0 and Tr(W2ρ) � 0, the second part
of the last inequality is negative, and ε is an arbitrarily small
positive number, hence the last inequality is impossible.”
However, Tr[W (λ0)ρ] maybe equals 0 for all possible ρ and
the above argument is invalid.)
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On the other hand, if DW (λ0) ⊂ DW1 then there exist 0 <

ε < λ0 such that W (λ0 − ε) is a positive operator. Otherwise,
if for all 0 < ε < λ0, DW (λ0−ε) �= ∅, then we have

DW (λ0) ⊂ DW1 , DW (λ0−ε) ⊂ DW2 ,

and for all ρ ∈ DW (λ0), we have

Tr[W (λ0)ρ] < 0, Tr[W (λ0)ρ] + ε[Tr(W2ρ) − Tr(W1ρ)] � 0.

Noticing that Tr(W2ρ) � 0 and Tr(W1ρ) < 0, the second part
of the last inequality is positive and ε is an arbitrarily small
positive number, hence the last inequality is impossible. (We
remark that there is a mistake similar to that pointed out above
in the proof of Ref. [17, Theorem 4] here as well.)

To sum up the previous discussion, no matterDW (λ0) ⊂ DW1

or DW (λ0) ⊂ DW2 there exists λ ∈ [0, 1] such that W (λ)
is a positive operator, which completes the proof of the
theorem. �

Based on Theorem 4.4 and Theorem 4.5, we can make a
little generalization by the allowing of finitely many witnesses.
The idea of the proof of the statement (1) is similar to that in
Ref. [17] for the finite-dimensional cases, and we provide it
here for the reader’s convenience.

Denote by cov(�) the convex hull of �, that is, cov(�) =
{∑k

i=1 diWi : Wi ∈ �,di � 0,
∑k

i=1 di = 1,k ∈ N}.
Theorem 4.6. Let H1, H2 be complex Hilbert spaces.

Let � = {Wi : 1 � i � n} ⊆ W(H1 ⊗ H2) be a finite set of
entanglement witnesses. Then (1)D� = ∅ if and only if cov(�)
contains some positive operators and (2) D� �= ∅ if and only
if cov(�) ⊆ W(H1 ⊗ H2).

Proof. (1) The sufficient part is clear. In fact, if W =∑n
i=1 diWi � 0 for some numbers di � 0 with

∑
i λi = 1,

then DW = ∅, which implies that D� = ∅ since D� ⊆ DW .
Conversely, if D� = ∅, we assume, without loss of gen-

erality that any subset of � can detect some entangled states
simultaneously. If n = 2, the theorem becomes Theorem 4.4.
Assume that the theorem holds for k � n − 1. By induction,
we have to show that the theorem holds for n. Since the method
is the same, we only need to show it for the case n = 3. By
assumption, we have

DW1 �= ∅, DW1 ∩ DW2 �= ∅, DW1 ∩ DW3 �= ∅,

but
DW1 ∩ DW2 ∩ DW3 = ∅,

namely, (
DW1 ∩ DW2

) ∩ (
DW1 ∩ DW3

) = ∅.

Let
W (λ) = λW2 + (1 − λ)W3, λ ∈ [0,1];

then

DW1 ∩ DW (λ) ⊂ (
DW1 ∩ DW2

) ∪ (
DW1 ∩ DW3

)
.

Since DW1 ∩ DW2 and DW1 ∩ DW3 are disjoint and DW1 ∩
DW (λ) is convex, we know that DW1 ∩ DW (λ) varies from

DW1 ∩ DW3 toDW1 ∩ DW2 whenever λ varies from 0 to 1. Using
the similar argument as that in the proof of Theorem 4.4, we
can conclude that there exists 0 < λ0 < 1 such that

DW1 ∩ DW (λ0) = ∅.

Therefore,

W = µW1 + (1 − µ)W (λ0)

= µW1 + (1 − µ)λ0W2 + (1 − µ) (1 − λ0)W3 � 0,

for some µ ∈ (0, 1). By induction on n we complete the proof
of (1).

(2) The “only if” part is obvious. To check the “if”
part assume that cov(�) ⊆ W(H1 ⊗ H2). If, on the contrary,
D� = ∅, then, by the statement (1) just proved above, there

exists W ∈ cov(�) such that W � 0. It follows that W �∈ W ,
a contradiction. �

By Theorem 4.6 it is clear that W1, . . . ,Wn ∈ W(H1 ⊗ H2)
detect some entangled states simultaneously if and only if all
convex combinations of them are witnesses.

V. CONCLUSION

To sum up, in this paper we answer the question under
what conditions different witnesses may detect some common
entangled states. Generally speaking, for bipartite quantum
systems, finitely many different witnesses W1,W2, . . . ,Wn can
detect some common entangled states if and only if their
convex combinations (i.e.,

∑n
i=1 diWi with numbers di � 0

and
∑n

i=1 di = 1) are still witnesses; they cannot detect any
common entangled state if and only if one of their convex
combinations is a positive operator. For two witnesses W1 and
W2, more can be said: W1 and W2 can detect the same set of
entangled states if and only if W1 = αW2 for some positive
number α; W2 can detect more entangled states than W1 can if
and only if W1 = αW2 + D for some number α > 0 and some
positive operator D. As an application of the above results,
we show that a witness is optimal if and only if any negative
permutation of it will break the witness, that is, a witness W is
optimal if and only if W − D is not a witness for any positive
operator D; W is decomposable optimal implies that W is the
partial transpose of some positive operator.

Finally, we would like to stress that our results hold for
both the infinite-dimensional and finite-dimensional cases.
Though some of them are known for finite-dimensional
systems under the additional assumption Tr(W1) = Tr(W2),
the proof of our main results for the infinite-dimensional case
needs new methods.

ACKNOWLEDGMENTS

This work is partially supported by the National Natural
Science Foundation of China (10771157) and Research Fund
of Shanxi for Returned Scholars (2007-38). The authors also
wish to give their thanks to the referees for their comments to
improve the presentation of this paper.

[1] M. A. Nielsen and I. L. Chuang, Quantum Computatation and
Quantum Information (Cambridge University Press, Cambridge,
England, 2000).

[2] L. Clarisse and P. Wocjan, Quantum Inf. Comput. 6, 277 (2006).
[3] O. Gühne, P. Hyllus, O. Gittsovich, and J. Eisert, Phys. Rev.

Lett. 99, 130504 (2007).

052301-6

http://dx.doi.org/10.1103/PhysRevLett.99.130504
http://dx.doi.org/10.1103/PhysRevLett.99.130504


WHEN DIFFERENT ENTANGLEMENT WITNESSES DETECT . . . PHYSICAL REVIEW A 82, 052301 (2010)

[4] O. Gühne, Phys. Rev. Lett. 92, 117903 (2004).
[5] O. Gühne, M. Mechler, G. Tóth, and P. Adam, Phys. Rev. A 74,

010301 (2006).
[6] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A

223, 1 (1996).
[7] M. Horodecki and P. Horodecki, Phys. Rev. A 59, 4206 (1999).
[8] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. Lett.

78, 574 (1997).
[9] P. Horodecki, Phys. Lett. A 232, 333 (1997).

[10] M. Lewenstein, B. Kraus, P. Horodecki, and J. I. Cirac, e-print
arXiv:quant-ph/0005112.

[11] M. A. Nielsen and J. Kempe, Phys. Rev. Lett. 86, 5184 (2001).
[12] A. Peres, Phys. Rev. Lett. 77, 1413 (1996).
[13] R. F. Werner, Phys. Rev. A 40, 4277 (1989).
[14] J. Hou and X. Qi, Phys. Rev. A 81, 062351 (2010).

[15] F. G. S. L. Brandao and R. O. Vianna, Phys. Rev. A 70, 062309
(2004).

[16] M. Lewensetein, B. Kraus, J. I. Cirac, and P. Horodecki, Phys.
Rev. A 62, 052310 (2000).

[17] Y.-C. Wu, Y.-J. Han, and G.-C. Guo, Phys. Lett. A 356, 402
(2006).

[18] R. F. Werner and M. M. Wolf, Phys. Rev. A 64, 032112 (2001).
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