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Tilted phase-space measurements in the eight-port homodyne detection scheme
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We show that the phase shift of π

2 is crucial for the phase-space translation covariance of the measured
high-amplitude limit observable in eight-port homodyne detection. However, for an arbitrary phase shift θ we
construct explicitly a different nonequivalent projective representation of R2 such that the observable is covariant
with respect to this representation. As a result we are able to determine the measured observable for an arbitrary
parameter field and phase shift. Geometrically the change in the phase shift corresponds to the tilting of one axis
in the phase space of the system.
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I. INTRODUCTION

Covariant phase-space observables are an invaluable tool
when studying many fundamental questions within quantum
theory. On one hand, the measurement of such an observable
constitutes an approximate joint measurement of the position
and momentum of a quantum system, thus allowing us to gain
deeper insight into the full content of Heisenberg’s uncertainty
principle. These joint measurements are even optimal in some
sense, since to any approximate joint observable for position
and momentum there exists a covariant one that serves as a
better approximation [1]. On the other hand, these observables
can be used for the purpose of continuous variable quantum
tomography. Indeed, a large class of covariant phase-space
observables are such that the measurement outcome statistics
determine the state of the system uniquely [2]. This is a
fact whose significance increases alongside the development
of quantum information technology, where the possibility of
determining the quantum state of a system is often of great
significance.

The measurement of any covariant phase-space observable
can be realized experimentally via eight-port homodyne
detection provided that a suitable parameter field is fed into
one of the four input ports [3]. Therefore the detailed study of
this particular scheme has a strong physical motivation. The
crucial ingredient responsible for the covariance is the phase
shifter, which is always assumed to provide a phase shift of π

2 .
In fact, we show that any deviation from this presumed value
destroys the covariance of the observable. Since the structure
of the observable depends so strongly on the covariance, it is
not justified to make any a priori assumptions on its properties
when the phase shift is arbitrary.

In this article we give an explicit and rigorous construction
of the measured observable for an arbitrary phase shift. We
show that for each phase shift there is a corresponding projec-
tive representation of R2 such that the observable is covariant
with respect to it. In this way, we obtain explicit forms for
a large class of nonequivalent representations and show that
they have clear physical meanings, since the corresponding
observables serve as approximate joint observables for pairs
of rotated quadratures. The change of representations can also
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be interpreted geometrically; it corresponds to a tilting of one
axis in the phase space of the system (see Fig. 1).

Let us briefly recall the mathematical framework of our
study. Let H be the Hilbert space associated with a quantum
system, and let L(H) denote the set of bounded operators
acting on H. The states of the system are represented
by positive operators with unit trace, and the observables
are represented by normalized positive operator measures
E : B(Rn) → L(H), where B(Rn) stands for the Borel σ -
algebra of subsets of the measurement-outcome space Rn.
For a system in a state ρ, the measurement-outcome statistics
of an observable E is given by the probability measure
Eρ : B(Rn) → [0,1], Eρ(X) = tr [ρE(X)]. Any two observ-
ables E and F are said to be informationally equivalent if
they distinguish exactly the same states, that is, if Eρ1 = Eρ2 if
and only if Fρ1 = Fρ2 . If the measurement outcome statistics
of E determine the state uniquely, then E is informationally
complete [4].

II. EIGHT-PORT HOMODYNE DETECTION

The eight-port homodyne detector consists of four input
modes with Hilbert spaces Hj , j = 1,2,3,4, four lossless
50 : 50 beam splitters, a phase shifter, and four photon detectors
(see Fig. 2) . We fix the number basis {|n〉|n = 0,1,2, . . .} for
each mode so that, in particular, the coherent states {|z〉|z ∈ C}
are defined by the expression

|z〉 = e− |z|2
2

∞∑
n=0

zn

√
n!

|n〉.

The beam splitters are modeled by the unitary operators Uij ,
determined by their action on the coherent states:

Uij |z〉 ⊗ |w〉 =
∣∣∣∣ 1√

2
(z − w)

〉
⊗

∣∣∣∣ 1√
2

(z + w)

〉
.

Here the subscripts refer to the primary and secondary modes,
that is, the first and second components in the tensor product.
In Fig. 2 the dashed side of the beam splitter represents the
primary input mode. The phase shifter with phase shift θ is
modeled by the unitary operator R(θ ) = eiθN , where N is the
number operator.

Let ρ and σ be the states of modes 1 and 2, and let the local
oscillator in mode 4 be in the coherent state |√2z〉. Mode 3
is assumed to be in the vacuum state |0〉. We detect the
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FIG. 1. Tilting of the phase space caused by a change in the phase
shift.

scaled number differences 1√
2|z|N

−
13 and 1√

2|z|N
−
24, where, for

example [5],

1√
2|z|N

−
13 = 1√

2|z| (I1 ⊗ N3 − N1 ⊗ I3),

and Nj is the number operator related to the j th mode. The
joint detection statistics are now described by the mapping [6]

(X,Y ) �→ E(
√

2|z|)−1N−
13 (X) ⊗ E(

√
2|z|)−1N−

24 (Y ),

where E(
√

2|z|)−1N−
ij stands for the spectral measure of 1√

2|z|N
−
ij .

The high-amplitude limit |z| → ∞ has been analyzed in
detail in Ref. [3]. The signal observable Eθ,σ measured in the
high-amplitude limit is determined by the condition

tr[ρEθ,σ (X × Y )] = tr

[
U12(ρ ⊗ σ )U ∗

12Q
(

1√
2
X

)

⊗ Qθ

(
1√
2
Y

)]
, (1)

where Qθ is the spectral measure of the quadrature operator [5]
Qθ = 1√

2
(eiθa∗ + e−iθ a) and Q = Q0. With the choice θ = π

2 ,
this observable is covariant in the sense that

W (q,p)Eπ
2 ,σ (Z)W (q,p)∗ = Eπ

2 ,σ (Z + (q,p)), (2)

where W (q,p) = ei
qp

2 e−iqP eipQ is the Weyl operator. The
general structure of covariant phase-space observables is well

FIG. 2. Eight-port homodyne detector.

known; any observable satisfying (2) is of the form [7,8]
(for recent alternative proofs, see Refs. [9,10])

GS(Z) = 1

2π

∫
Z

W (q,p)SW (q,p)∗ dq dp (3)

for some unique positive trace one operator S, called the
generating operator of GS . For θ = π

2 the observable (1) is
generated by the operator CσC−1, where C is the conjugation
map (Cψ)(x) = ψ(x), that is, Eπ

2 ,σ = GCσC−1
. However, for

an arbitrary phase shift, it is straightforward to verify that the
observable Eθ,σ is not in general covariant. Indeed, we may
use the coordinate representation

(U12�)(x,y) = �

[
1√
2

(x + y),
1√
2

(−x + y)

]

for the beam splitter to calculate

tr[ρW (q,p)Eθ,σ (X × Y )W (q,p)∗]

= tr[ρEθ,σ (X × Y + (q,q cos θ + p sin θ ))],

which shows that Eθ,σ is covariant if and only if θ = π
2 .

This means that for θ 	= π
2 the measured observable is no

longer of the form (3). However, we can solve the structure
of the observable by considering covariance with respect to a
different representation that we now construct explicitly.

III. TILTED CASE

For each θ ∈ (−π,0) ∪ (0,π ) define a linear bijection fθ :
R2 → R2 via

fθ (q,p) = (q,q cos θ + p sin θ )

and define the tilted Weyl operators by Wθ (q,p) =
W (f −1

θ (q,p)). By operating on finite linear combinations
of coherent states, we can verify the explicit form of these
operators:

Wθ (q,p) = e
i
2

qp

sin θ e− iq

sin θ
Qθ e

ip

sin θ
Q. (4)

It is straightforward to check that the mapping (q,p) �→
Wθ (q,p) is in fact an irreducible projective unitary represen-
tation of R2. In particular, the equality

Wθ (q + q ′,p + p′) = e
i
2

(qp′−pq′)
sin θ Wθ (q,p)Wθ (q ′,p′)

holds for all (q,p),(q ′,p′) ∈ R2. Note that this representation
is not unitarily equivalent to W unless θ = π

2 . Indeed, since[
1

sin θ
Q,

1

sin θ
Qθ

]
= i

sin θ
I,

the generators 1
sin θ

Q and 1
sin θ

Qθ do not form a Weyl pair and
thus are not unitarily equivalent to Q and P , unless θ = π

2 .
Similar to the case of (2), we may consider the covariance

of an observable with respect to this representation. We say
that an observable E is a θ -covariant phase-space observable
if

Wθ (q,p)E(Z)Wθ (q,p)∗ = E(Z + (q,p))
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FIG. 3. (Color online) Distributions corresponding to θ = π

2
(left) and θ = π

4 (right) for a fixed initial state and generating operator.

for all Z and (q,p). The structure of such observables can
be completely determined. In fact, according to Ref. [9],
Theorem 3, these observables are precisely of the form

GS
θ (Z) = 1

2π | sin θ |
∫

Z

Wθ (q,p)SWθ (q,p)∗ dq dp (5)

for some generating operator S. We immediately notice that
even though GS

θ is not covariant in the usual sense, it is
a function of a covariant observable. In fact, the equation
GS

θ (Z) = GS(f −1
θ (Z)) is easily verified for any set Z. In

particular, the statistics of GS
θ can be calculated from the

statistics of GS , and vice versa. As demonstrated in Fig. 3, for
a fixed initial state and generating operator, the difference in
measurement outcome statistics between two different values
of θ can be viewed geometrically as a tilting of one axis in the
phase space. Furthermore, since fθ is a homeomorphism, we
can state that the observables GS and GS

θ are informationally
equivalent, so that in particular, GS

θ is informationally complete
if and only if the support of the function (q,p) �→ tr [SW (q,p)]
is the whole R2 [11].

The Cartesian margins of GS
θ are the smeared quadratures

µS ∗ Q and µS
θ ∗ Qθ where, for instance,

µS ∗ Q(X) =
∫

µS(X − q) dQ(q),

and the convolving measures are given by µS
θ (X) =

tr[�S�∗Qθ (X)] and µS = µS
0 , where � is the parity operator.

The measurement of GS
θ thus constitutes an approximate joint

measurement of the sharp quadratures Q and Qθ . Furthermore,
the proof of Ref. [12], Proposition 7, can be carried out using
the tilted Weyl operators, and we can therefore state that any
two smeared quadratures ν1 ∗ Q and ν2 ∗ Qθ have a joint
observable if and only if they are margins of a θ -covariant
phase-space observable. Finally, Werner’s result [1] also holds
for Q and Qθ : to any approximate joint observable for Q
and Qθ there exists a θ -covariant one that serves as a better
approximation.

In view of the eight-port homodyne detection scheme, it is
easily seen that the observable defined in Eq. (1) is in fact a
θ -covariant observable; that is, Eθ,σ = GS

θ for some S. Thus,
what is left is the determination of the generating operator S

or, more specifically, its dependence on the state of the
parameter field σ . This is done in the following proposition,
which constitutes the main result of this article. We start with
a few definitions.

Define the unitary operator Aθ by its action in the coordinate
representation

(Aθψ)(x) =
√ | sin θ |

1 + cos θ
ψ

(√
1 − cos θ

1 + cos θ
x

)

and the unitary operators Vθ by

Vθ =
{

R
( 1

2 (θ − π )
)
AθR

(
θ
2

)
, if θ ∈ (0,π )

R
( 1

2 (θ + π )
)
AθR

(
θ
2

)
, if θ ∈ (−π,0).

For any state σ , denote

Sθ (σ ) = VθCσC−1V ∗
θ . (6)

Now we are ready to prove the explicit form of the generating
operator.

Proposition 1. For any parameter state σ and phase shift
θ /∈ {0,π}, the measured high-amplitude limit observable is
G

Sθ (σ )
θ .
Proof. First, notice that tr[ρG

Sθ (σ )
θ (Z)] = tr[Sθ (σ )Gρ

θ (−Z)]
for all Z, so that in particular, 〈0|GSθ (σ )

θ (Z)|0〉 =
tr[Sθ (σ )G|0〉

θ (−Z)]. Since the observable G
|0〉
θ is informa-

tionally complete, it follows that the measurement-outcome
statistics corresponding to the vacuum signal state is sufficient
to determine the generating operator.

Let σ = |ψ〉〈ψ |, where ψ is a finite linear combination of
coherent states, ψ = ∑k

n=1 cn|zn〉. A direct calculation shows
that

〈0|GSθ (σ )
θ (X × Y )|0〉

= 1

2π | sin θ |
∫

X×Y

|〈0|Wθ (q,p)VθCψ〉|2 dq dp

= 1

2π | sin θ |
k∑

m,n=1

cmcn

∫
X×Y

〈0|Wθ (q,p)VθC|zm〉

×〈0|Wθ (q,p)VθC|zn〉 dq dp

=
k∑

m,n=1

cmcntr

[
U12(|0〉〈0| ⊗ |zn〉〈zm|)U ∗

12

×Q
(

1√
2
X

)
⊗ Qθ

(
1√
2
Y

)]

= tr

[
U12(|0〉〈0| ⊗ |ψ〉〈ψ |)U ∗

12Q
(

1√
2
X

)

⊗ Qθ

(
1√
2
Y

)]
,

and since the linear combinations of coherent states are dense
in H, it follows that this equation holds for an arbitrary vector
state ψ .

Now let σ be an arbitrary state. By using the convex decom-
position σ = ∑∞

n=0 λnPn, where Pn = |ψn〉〈ψn|, we find that

〈0|GSθ (σ )
θ (X × Y )|0〉 =

∞∑
n=0

λn〈0|GSθ (Pn)
θ (X × Y )|0〉

=
∞∑

n=0

λntr

[
U12(|0〉〈0| ⊗ Pn)U ∗

12Q
(

1√
2
X

)
⊗ Qθ

(
1√
2
Y

)]

= tr

[
U12(|0〉〈0| ⊗ σ )U ∗

12Q
(

1√
2
X

)
⊗ Qθ

(
1√
2
Y

)]
,
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FIG. 4. (Color online) Distributions corresponding to θ = π

2
(left) and θ = π

4 (right) for a fixed initial state and parameter field.
The generating operator changes according to (6).

from which it follows that

tr
[
ρG

Sθ (σ )
θ (X × Y )

] = tr

[
U12(ρ ⊗ σ )U ∗

12Q
(

1√
2
X

)

⊗ Qθ

(
1√
2
Y

)]

for all ρ and σ , which proves our claim. �
Any change in the phase shift thus affects not only

the representation with respect to which the observable is
covariant, but also the generating operator (see Fig. 4).

IV. DETECTOR INEFFICIENCIES

As a final observation, we wish to take into account
the nonunit quantum efficiencies of the photon detectors.
A detailed analysis in the case of θ = π

2 has been done in
Ref. [13]. Suppose that each detector Dj is assigned with a
quantum efficiency εj ∈ (0,1), so that each detector constitutes
a measurement of the approximate number observable

n �→
∞∑

m=n

(
m

n

)
εn
j (1 − εj )m−n|m〉〈m|.

Then the spectral measures Q and Qθ in the defining Eq. (1) are
replaced with their smearings µ13 ∗ Q and µ24 ∗ Qθ , where,

for instance, µ13 is a probability measure having a Gaussian
density √

2ε1ε3

π (ε1 − 2ε1ε3 + ε3)
e
− 2ε1ε3

ε1−2ε1ε3+ε3
x2

.

Then, by defining the phase-space probability measure
µε(X × Y ) = µ13( 1√

2
X)µ24( 1√

2
Y ), we can show that the

measured observable is the smeared θ -covariant phase-space
observable µε ∗ GSθ (σ ). This smearing is also covariant with
respect to the same representation, and thus there exists a
generating operator S ′

θ (σ ) such that µε ∗ GSθ (σ ) = GS ′
θ (σ ). Just

as in the case θ = π
2 treated in Ref. [13], this generating

operator can be expressed as a convolution S ′
θ (σ ) = µε ∗

Sθ (σ ), where [8]

µε ∗ Sθ (σ ) =
∫

Wθ (q,p)Sθ (σ )Wθ (q,p)∗ dµε(q,p).

From the tomographic point of view, the presence of detector
inefficiences is merely an inconvenience since, as shown in
Ref. [13], the smeared observable is informationally equivalent
to the one corresponding to ideal detectors.

V. CONCLUDING REMARKS

We have considered the eight-port homodyne detection
scheme in the case of an arbitrary phase shift θ . We have
shown that to each phase shift there is a corresponding pro-
jective representation such that the measured high-amplitude
limit observable is covariant with respect to it. We have
interpreted this geometrically as a tilting of one axis in the
phase space of the system. Furthermore, we have constructed
explicitly the measured observable and considered some of
its properties. In particular, we have shown that this mea-
surement scheme can be used for quantum tomography and
approximate joint measurements of an arbitrary pair of rotated
quadratures.

ACKNOWLEDGMENT

J.S. was supported by the Finnish Cultural Foundation
during the research leading to this article.

[1] R. Werner, Quantum Inf. Comput. 4, 546 (2004).
[2] S. T. Ali and E. Prugovečki, Physica A 89, 501 (1977).
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