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Entanglement-based signature of nonlocal dispersion cancellation
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We derive an inequality bounding the strength of temporal correlations for a pair of light beams prepared in a
separable state and propagating through dispersive media with opposite signs of group-velocity dispersion. The
presented inequality can be violated by entangled states of light, such as photon pairs produced in spontaneous
parametric down-conversion. Because the class of separable states covers the entire category of classical fields
as a particular case, this result provides an unambiguously quantum feature of nonlocal dispersion cancellation
that cannot be reproduced within the classical theory of electromagnetic radiation.
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I. INTRODUCTION

The quantum theory of electromagnetic radiation allows
for correlations substantially stronger than those permitted
in classical models. Such correlations, resulting from the
uniquely quantum phenomenon of entanglement, lead to
striking effects in different degrees of freedom of light
including polarization [1], wave vector [2], and frequency. In
the last case, one intriguing effect is the preservation of strong
temporal correlations for fields traveling through dispersive
media with opposite signs of group-velocity dispersion. This
effect, known as nonlocal dispersion cancellation, has been
described theoretically by Franson [3] and demonstrated in a
recent experiment by Baek and co-workers [4].

The actual role of quantum correlations in nonlocal
dispersion cancellation has been the subject of a vexatious
debate. Various classical models have been presented to
illustrate the gap between predictions of the classical and
the quantum theories [3–5]. On the other hand, analogies
between these two theories allow one to reproduce the effect
of nonlocal dispersion cancellation using classical chaotic
light up to certain features, such as the appearance of a
constant background in the detected signals [6–8]. In this
paper we present an inequality which bounds the strength of
temporal correlations attainable when the fields are prepared
in a separable state, that is, when no quantum entanglement
between the two light beams is present. This inequality, based
on a separability condition for continuous-variable systems
[9,10], shows that quantum entanglement is necessary to
preserve all the properties of temporal correlations in nonlocal
dispersion cancellation. At the same time, the presented result
defines limits on how well classical fields can reproduce the
effect of nonlocal dispersion cancellation. This is because
the separability condition is satisfied by the entire category
of classical fields, which correspond in the quantum theory
to statistical mixtures of coherent states [11], that is, are
represented by non-negative P representations permitting
only correlations of a separable character. Furthermore, the
photodetection theory gives exactly the same predictions of
photocount probabilities for classical fields and their quantum
mechanical counterparts [12]. Consequently, the derived in-
equality identifies a quantum feature of nonlocal dispersion
cancellation that cannot be mimicked by the classical theory
of optical radiation.

This paper is organized as follows. In Sec. II we derive
the transformation of the propagating fields using the Wigner
phase-space representation. The results are used to obtain
the inequality in Sec. III. Its application to a class of time-
stationary Gaussian states is analyzed in Sec. IV. Section V
discusses experimental aspects of testing the proposed inequal-
ity. Finally, Sec. VI concludes the paper.

II. PROPAGATION

The physical system under consideration shown in Fig. 1
comprises two spatially separated light beams. We describe the
fields using annihilation parts of frequency-domain electric-
field operators Êj (ω) parameterized with the detunings ω from
the central frequency ω0 and satisfying commutation relations,

[Êi(ω),Ê †
j (ω′)] = 2πδij δ(ω − ω′), (1)

where i,j = 1,2. We will assume that the fields under
consideration have restricted bandwidth so that the slowly
varying envelope of the positive-frequency part of the electric
field operator can be written in the temporal domain as

Ê
(+)
j (t) = 1

2π

∫
dω Êj (ω)e−iωt . (2)

A transparent way to analyze the evolution of the system
is to use the chronocyclic Wigner function [13] extended to a
pair of optical beams:

W (t1,ω1; t2,ω2) = 1

(2π )2

∫
dτ1

∫
dτ2 eiω1τ1+iω2τ2

× Tr

[
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(+)
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(
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)]
, (3)

where �̂ is the density matrix characterizing the fields and
Ê

(−)
j (t) = [Ê(+)

j (t)]†. In the regime of low light intensities,
the integration of the Wigner function over frequencies ω1

and ω2 yields the joint probability of detecting photocounts
at times t1 and t2, proportional to the expectation value
Tr[�̂Ê

(−)
1 (t1)Ê(−)

2 (t2)Ê(+)
2 (t2)Ê(+)

1 (t1)].
Propagation through a dispersive medium of length L

results in multiplying the operators Êj (ω) by phase factors
eikj (ω0+ω)L, where kj (ω0 + ω) is the wave vector at the
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FIG. 1. The measurement scheme. Two light beams characterized
by positive-frequency field operators Ê

(+)
1 (t1) and Ê

(+)
2 (t2) propagate

through dispersive media of equal lengths L but opposite group-
velocity dispersions β and −β. The quantity of interest is the time
difference τ = t1 − t2 between detection events.

frequency ω0 + ω for the j th beam. We apply the standard
expansion up to the second order:

kj (ω0 + ω) ≈ kj (ω0) + ω

vj

+ βjω
2, j = 1,2, (4)

where vj are group velocities and βj are parameters char-
acterizing the group-velocity dispersion. A straightforward
calculation shows that in the Wigner representation the
effect of dispersive propagation is given by the following
transformation of the temporal variables,

t ′j = tj + L

vj

+ 2βjLωj , (5)

while the frequencies ωj are unaffected. We use prime signs
to denote the chronocyclic variables after propagation. It is
worthwhile to note that the preceding result is analogous to
the quantum mechanical evolution of a free particle [14].

III. INEQUALITY

With Eq. (5) at hand, the remaining analysis is elementary.
Let us consider the time difference between the detection
events τ = t1 − t2, depicted schematically in Fig. 2(a). The

statistical properties of this quantity are obtained by averaging
with the normalized Wigner function, which we will denote by
angular brackets 〈· · ·〉. For group-velocity dispersion param-
eters of equal magnitude but opposite signs, β1 = −β2 = β,
one immediately obtains that the time-difference variance after
propagation 〈(�τ ′)2〉 is given by the following combination of
the covariance matrix elements for the initial state of light:

〈(�τ ′)2〉 = 〈(�τ )2〉 + 4βL〈�τ��〉 + (2βL)2〈(��)2〉, (6)

where � = ω1 + ω2 is the sum frequency for both the photons.
It is seen that the variance of the time difference is modified by
two contributions. The first one comes from the mixed time-
frequency covariance 〈�τ��〉. It can be eliminated by an
assumption that the quantum statistical properties of the beams
are invariant with respect to their physical interchange, which
flips the sign of τ . Alternatively, suppose that we perform two
separate experiments with swapped positions of the dispersive
media and take an arithmetic average 〈(�τ ′)2〉sym of the two
variances measured after propagation. As the parameter β

has opposite signs in both the cases, this also removes the
contribution from the mixed covariance term. Thus, in the
symmetric scenario, the time difference variance is simply
enhanced by the variance of �:

〈(�τ ′)2〉sym = 〈(�τ )2〉 + (2βL)2〈(��)2〉. (7)

The question about the role of entanglement in nonlocal
dispersion cancellation now boils down to limitations that
need to be satisfied by the variances 〈(�τ )2〉 and 〈(��)2〉.
From the formal point of view, our problem is analogous to
that of a pair of continuous-variable systems, such as particles
in one spatial dimension or single light modes [10]. The
analogs of τ and � are, up to scaling factors, the difference
of positions and the sum of momenta of the two particles. It
is well known that in general the quantum theory allows one
to define these two observables arbitrarily precisely, which
is best illustrated by the celebrated Einstein-Podolsky-Rosen
paradox [15]. However, if the composite state is separable;
that is, it is a statistical mixture of well-defined quantum

FIG. 2. Joint time statistics of detection events. Each dot (t1,t2) represents the registration of two photons at times t1 and t2. The object of
interest is the marginal distribution of the time difference τ = t1 − t2. In the quantum case (a) all the events are temporally correlated, giving a
finite value of the variance (�τ )2. Classically (b), the constant background makes the variance divergent.
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states for individual subsystems, then the product of these two
uncertainties has a lower bound derived by Tan [9]. Expressed
in terms of time and frequency variables, this bound takes
the form

〈(�τ )2〉〈(��)2〉 � 1. (8)

Inserting this result into Eq. (7) yields

〈(�τ ′)2〉sym � 〈(�τ )2〉 + (2βL)2

〈(�τ )2〉 . (9)

The preceding inequality is the central result of this paper.
It defines the minimum broadening of temporal correlations
between two light beams during propagation through disper-
sive media with opposite dispersion signs if no entanglement
is present. A violation of this inequality is an unambiguous
signature that the two beams have been initially prepared in
an entangled state and it cannot be obtained within classical
theory of optical radiation.

IV. GAUSSIAN STATES

The effect of nonlocal dispersion cancellation has been
originally discussed for photon pairs generated through a decay
of pump photons in the process of spontaneous parametric
down-conversion [3]. For a monochromatic pump, energy
conservation means that the frequencies of the twin photons
must sum up to the frequency of the parent pump photon,
implying that indeed 〈(��)2〉 = 0. Consequently, temporal
correlations are preserved. Such photon pairs can be consid-
ered as a postselected ensemble of the complete twin-beam
state produced in spontaneous parametric down-conversion.
In order to expose the limitations of the classical theory, it
is insightful to discuss the Wigner picture of a class of time-
stationary Gaussian states [7,16] that includes the twin-beam
state as a particular case. This class is characterized by two
positive spectra of phase-insensitive autocorrelation functions,

Sj (ω) =
∫

dτ e−iωτ Tr[�̂Ê
(−)
j (t + τ )Ê(+)

j (t)], j = 1,2,

(10)

and the complex spectrum of the phase-sensitive cross-
correlation function

S
(p)
12 (ω) =

∫
dτ eiωτ Tr[�̂Ê

(+)
1 (t + τ )Ê(+)

2 (t)], (11)

while all the field means and other second-order correlation
functions vanish. The functions Sj (ω) can be interpreted as
spectral intensity distributions per unit time for individual
beams [17],

Tr[�̂Ê †
j (ω)Êj (ω′)] = 2πSj (ω)δ(ω − ω′). (12)

For low intensities, S(p)
12 (ω) yields the probability amplitude of

generating a pair of photons with frequencies ω and −ω per
unit time,

Tr[�̂Ê1(ω)Ê2(ω′)] = 2πS
(p)
12 (ω)δ(ω + ω′). (13)

The Wigner function for the Gaussian states under considera-
tion can be easily found with the help of Wick’s theorem [18]
to take the form

W (t1,ω1; t2,ω2) ∝ S1(ω1)S2(ω2) + δ(ω1 + ω2)
∫

dνeiν(t1−t2)

×
[
S

(p)
12

(
1

2
(ω1 − ω2 + ν)

)]∗
S

(p)
12

(
1

2
(ω1 − ω2 − ν)

)
.

(14)

The first term is simply the product of individual spectra,
while the second one, confined to the phase-space region where
ω1 + ω2 = 0, resembles a Wigner function for the two-photon
probability amplitude S

(p)
12 (ω) parameterized with t1 − t2 and

(ω1 − ω2)/2.
The difference between predictions of the classical and the

quantum theories lies in the relative magnitude of the two
terms that form the Wigner function. A simple and general
way to find relevant relations is to define an operator,

F̂(λ)=
∫ ε2

−ε1

dω[Ê1(ω) + λÊ †
2(−ω)], (15)

where ε1,ε2 > 0 and λ is a complex number, and to consider the
necessarily non-negative expectation value Tr[�̂F̂(λ)F̂†(λ)] �
0. Making use of the commutation relations given in Eq. (1)
and performing frequency integrals yields

1 + S1(ω) + 2Re
[
λ∗S(p)

12 (ω)
] + |λ|2S2(−ω) � 0, (16)

which holds for an arbitrary complex λ. This implies that [16]∣∣S(p)
12 (ω)

∣∣2 � [1 + S1(ω)]S2(−ω). (17)

The inequality derived in Eq. (17) shows that in the limit
of low intensities the marginal spectra S1(ω1) and S2(ω2) are
allowed to scale as the square of the two-photon probability
amplitude. In this case the product S1(ω1)S2(ω2) appearing in
the Wigner function calculated in Eq. (14) is fourth order in
S

(p)
12 (ω). It can therefore be neglected compared to the second

term, which exhibits strong time-frequency correlations that
are behind the effect of nonlocal dispersion cancellation and
the violation of the inequality (9).

For classical fields, one needs to consider statistical
averages involving stochastic fields E1 and E2 and repeat
steps leading to Eq. (17). However, the commutativity of the
classical fields implies that |S(p)

12 (ω)|2 � S1(ω)S2(−ω). This
means that the product of the marginal spectra S1(ω1)S2(ω2)
scales at least quadratically with S

(p)
12 (ω) and contributes to the

Wigner function with at best the same magnitude as the second
term. As a result, the temporal distribution of detection events
has a constant background shown schematically in Fig. 2(b),
which severely affects the time-difference variance. For time
stationary fields it makes 〈(�τ )2〉 diverge to infinity. If the
source emission time is restricted, for example, with shutters
opened for a finite period, 〈(�τ )2〉 would be entirely dominated
by the constant background. In either case, the inequality (9)
would be satisfied as expected for classical fields. Thus, the
use of time-difference variance as a quantitative measure of
temporal correlations allows one to draw a clear distinction
between quantum and classical models of nonlocal dispersion
cancellation [7,8].
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WASAK, SZAŃKOWSKI, WASILEWSKI, AND BANASZEK PHYSICAL REVIEW A 82, 052120 (2010)

V. EXPERIMENTAL CONSIDERATIONS

The results of the experiment conducted by Baek et al.
[4] on nonlocal dispersion cancellation are inconclusive with
respect to our criterion, as the reduction in the time-difference
variance has been demonstrated only against the case with the
negative-dispersion medium absent in one arm of the setup. To
test the inequality (9), one needs to measure time-difference
variance before and after dispersive propagation, the latter
in a symmetrized scenario, and to determine independently
effective dispersion. A practical issue in an experimental
test may be the jitter of single-photon detectors that limits
the timing resolution. In order to assess its impact, let
us assume that the intrinsic source variance 〈(�τ )2〉source

is enhanced by an additive term 〈(�τ )2〉jitter describing
the temporal uncertainty of the detector response, yielding
the actually observed time-difference variance 〈(�τ )2〉obs =
〈(�τ )2〉source + 〈(�τ )2〉jitter. For down-conversion sources the
intrinsic variance 〈(�τ )2〉source depends primarily on the band-
widths of the spectra of individual beams, and for broadband
down-conversion it can be made well below (100 fs)2 [19]. In
this regime, 〈(�τ )2〉jitter becomes the dominant contribution to
the observed time difference variance, as the timing resolution
of currently available single-photon detectors is of the order
of 50 ps [20].

A prerequisite to observing a signature of entanglement
is to maintain the violation of the separability criterion
given in Eq. (8) even when the temporal correlations are
affected by the jitter. This gives a condition for the sum
� of the frequencies of the down-converted photons in
the form 〈(��)2〉 � [〈(�τ )2〉jitter]−1, which is effectively a
constraint on the spectral linewidth of the cw laser pumping
the nonlinear medium. This regime can be reached using a
narrow linewidth pump laser. Further, in the inequality (9)
both 〈(�τ ′)2〉sym on the left-hand side and 〈(�τ )2〉 are equally
affected by the jitter variance, while the dispersion-induced
term (2βL)2/〈(�τ )2〉 decreases when the denominator is
enhanced by 〈(�τ )2〉jitter. This makes it harder to violate an
inequality calculated for actually observed 〈(�τ ′)2〉sym obs and

〈(�τ )2〉obs compared to that with variances free from jitter
effects. The remaining issue is the magnitude of the dispersion-
induced term compared to the time-difference variance. To
make a statistically significant observation, we would like the
dispersion term to be non-negligible with respect to the initial
time difference, that is, (2βL)2/〈(�τ )2〉obs ≈ 〈(�τ )2〉obs. If
the observed time difference variance is dominated by the
detector jitter, this leads to a condition 2βL ≈ 〈(�τ )2〉jitter.
This condition is more challenging to fulfill, as in the
exemplary experiment of Baek et al. [4] we had 2βL ≈ (8 ps)2,
which is substantially smaller than typical 〈(�τ )2〉jitter. This
relation could be improved by transmitting fields through
engineered highly dispersive optical fibers [21] and by us-
ing detectors based on parametric up-conversion [22] that
enable precise temporal gating by combining the signal
with a short auxiliary pulse. Overall, a careful choice of
the experimental regime should enable a violation of the
inequality (9).

VI. CONCLUSIONS

In conclusion, we presented an inequality that reveals
the role of entanglement in nonlocal dispersion cancellation.
It is worth noting that an analogous discussion can be
carried out for the spatial degree of freedom when two
light beams are subjected to suitably arranged diffractive
propagation [23]. Another interesting question would be to
analyze the time-interval statistics [24], whose variance could
remain finite even in the presence of uniform background
of detection events that occurs in the classical case analyzed
earlier.
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