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Nonlinear thermodynamic quantum master equation: Properties and examples
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The quantum master equation obtained from two different thermodynamic arguments is seriously nonlinear. We
argue that, for quantum systems, nonlinearity occurs naturally in the step from reversible to irreversible equations
and we analyze the nature and consequences of the nonlinear contribution. The thermodynamic nonlinearity
naturally leads to canonical equilibrium solutions and extends the range of validity to lower temperatures. We
discuss the Markovian character of the thermodynamic quantum master equation and introduce a solution strategy
based on coupled evolution equations for the eigenstates and eigenvalues of the density matrix. The general ideas
are illustrated for the two-level system and for the damped harmonic oscillator. Several conceptual implications
of the nonlinearity of the thermodynamic quantum master equation are pointed out, including the absence of a
Heisenberg picture and the resulting difficulties with defining multitime correlations.
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I. INTRODUCTION

Quantum master equations provide a useful tool for describ-
ing dissipative quantum systems [1,2]. Most popular are the
linear master equations of the Lindblad form [3]. However,
it has been known for some 30 years that these equations
have a fundamental problem because they invoke an incorrect
“quantum regression hypothesis” [4–6]. For quantum systems
in contact with a heat bath, this problem has been overcome
by introducing a nonlinear master equation associated with a
“modified quantum regression hypothesis” [4]. This modified
master equation has been obtained by means of the projection-
operator method. The resulting nonlinear master equation is
not limited to high temperatures for which quantum effects are
unavoidably small. It has actually been shown that the quantum
master equation can be applied down to arbitrarily low tem-
peratures provided that the frictional coupling to the heat bath
becomes sufficiently weak [7]. Once the thermodynamically
consistent nonlinear master equation has been formulated, one
can look for special situations in which exact or approximate
linear master equations can be derived. This has been done
in [8], with the conclusion that the resulting master equations
are not of the popular Lindblad form.

The formulation of a nonlinear master equation in [4]
was triggered by a problem with the “quantum regression
hypothesis,” that is, by a thermodynamic argument. The field
of quantum dissipation has recently been approached from
an entirely different perspective, which is also rooted in
thermodynamics and leads to a more general nonlinear quan-
tum master equation [9]. Starting from a modern geometric
formulation of nonequilibrium thermodynamics for classical
systems [10–12], Dirac’s method of classical analogy (see
Chap. IV of [13]) has been employed for a generalization to
quantum systems. For reversible systems, the recognition of
the deep correspondence between classical Poisson brackets
and quantum commutators is the key to establishing the
quantum-classical correspondence. Poisson brackets provide
one of the important structures used in nonequilibrium
thermodynamics, namely to formulate reversible dynamics.
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Irreversible dynamics is formulated in terms of dissipative
brackets, for which a quantum generalization in terms of
canonical correlations has been proposed in [9]. The resulting
evolution equations may be considered as a generalization
of the nonlinear quantum master equation proposed in [4]:
Rather than being restricted to heat baths, the formulation
of [9] is applicable to arbitrary thermodynamic environments,
including time-dependent ones, where also the influence of
the quantum subsystem on the evolution of the classical
environment is predicted.

Whereas linearity seems natural in a quantum mechanical
setting, it should not be taken for granted in thermodynam-
ics. This is a consequence of the appearance of entropy,
which typically involves logarithmic terms. Going beyond
reversibility, in general, requires to go beyond linearity.
For classical systems, there occurs a fortuitous cancellation
that leads to the linearity of the Fokker-Planck equation
(on the level of distribution functions f , the key identity
is f d(δSf /δf ) = −kBf d ln f = −kBdf , where Sf is the
entropy and kB is Boltzmann’s constant; see Sec. III B of
[10]). The noncommutativity of quantum observables prevents
such a cancellation. As thermodynamics is the language for
formulating healthy equations with well-behaved solutions,
the nonlinearity, which we have recognized as a quantum
effect required by the principles of thermodynamics, should
not at all be considered as a drawback. The purpose of the
present paper is to elaborate the advantages of the nonlinear
thermodynamic master equation originally proposed in [4] and
recently recovered as a special case of [9] for a heat bath in a
detailed comparison with the popular linear master equation.
We consider the two-level system and the damped quantum
harmonic oscillator as concrete examples.

We first summarize the equations obtained from thermo-
dynamics for quantum systems interacting with a classical
environment and discuss some of their key features, most
importantly, nonlinearity (Sec. II). After a short description of
possible solution strategies for the nonlinear master equations
resulting from thermodynamics (Sec. III), we study the
examples of the relaxation behavior of the two-level system
(Sec. IV) and the damped harmonic oscillator (Sec. V) in
detail. We end with a brief summary and offer some concluding
remarks (Sec. VI).
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HANS CHRISTIAN ÖTTINGER PHYSICAL REVIEW A 82, 052119 (2010)

II. THERMODYNAMIC APPROACH
TO QUANTUM DISSIPATION

As a first step, we discuss different motivations for
considering quantum-classical systems. We then discuss the
“quantum regression hypothesis” and compile the essential
results of the thermodynamic approach to quantum dissipation.
In particular, we give the evolution equations for the quantum
subsystem and its environment, and we discuss some basic
features of these equations.

A. Quantum-classical systems

There exist different reasons for coupling quantum and
classical systems. We begin with the discussion of the
two extremes illustrated in the bottom and top of Fig. 1:
(i) The reversible coupling of a quantum system to classical
phase space (“atomistic”) variables, and (ii) the irreversible
coupling of a quantum system to a classical thermodynamic
system, usually a heat bath. The motivation behind the
approach (i) is to make “atomistic” simulations feasible by
treating some of their degrees of freedom classically, typically
because they are associated with the heavier particles in
the system. The combined system (i) is described by a
purely reversible quantum-classical Liouville equation (see,
for example, Eq. (6) of [14]). The approach (ii) is based on
the elimination of degrees of freedom from the environment,
which typically requires a weak coupling so that the quantum
subsystem feels the influence of the environment only on
long time scales and rapidly fluctuating variables can hence
be eliminated from the environment. Of course, some kind
of approximation or limit is always needed to justify the
treatment of certain degrees of freedom by classical mechanics
or thermodynamics. Typical applications are quantum rate
processes (such as proton or electron transport) depending
on the presence of characteristic groups of atoms for (i), and
nuclear spin relaxation in a surrounding medium for (ii).

Quantum-classical Liouville equations are usually simpli-
fied by means of the momentum-jump approximation for
nonadiabatic transitions and the corresponding changes of
the bath momentum [14]. For the proper description of
decoherence, it is necessary to include further classical degrees
of freedom which typically serve as a heat bath for the classical
atoms as illustrated in the middle of Fig. 1. One then arrives at

FIG. 1. Different couplings between quantum mechanical sys-
tems (QMS), classical mechanical systems (CMS), and classical
thermodynamic systems (CTS); continuous lines between systems
indicate a reversible coupling, whereas dashed lines represent an
irreversible coupling.

the dissipative quantum-classical Liouville equation involving
a Fokker-Planck-like operator (see, for example, Eq. (15)
of [14]). The irreversible coupling between the two classical
subsystems may contain an additional reversible contribution,
such as an effective force. As an alternative to the dissipative
quantum-classical Liouville equation, a Markovian quantum-
classical master equation for the three coupled systems in the
middle of Fig. 1 has been derived on the full phase space,
including a typical molecule of a heat bath as the classical
thermodynamic system (see Eq. (27) of [15] and Eq. (20)
of [16]).

In the present work, we are interested in the approach
(ii), that is, in the irreversible coupling of a quantum system
to a classical thermodynamic environment. As discussed in
the Introduction, thermodynamic consistency arguments have
been discussed and implemented in the context of the quantum
master equation. Also for other approaches to dissipative quan-
tum systems, such as operator Langevin equations, stochastic
dynamics in Hilbert space, or path integrals [1,2,17–19],
thermodynamic consistency should be established.

The nonlinear thermodynamic master equation of [9] de-
scribes a quantum system interacting with a classical thermo-
dynamic system where, in general, the classical environment
is a nonequilibrium system with its own thermodynamic
evolution that has to be determined together with the evolution
of the quantum system. The coupling between the quantum
subsystem and its classical environment is entirely of the
irreversible type; the postulated Markovian description implies
restrictions on the separation of time scales and the weakness
of the interaction [7]. For the special case of an equilibrium
environment, that is, a heat bath with a fixed temperature, the
nonlinear thermodynamic master equation was already derived
30 years ago by means of the projection-operator method
[4]. As thermodynamically consistent master equations have
hardly ever been used in the literature, our goal is to consider
the properties of these nonlinear master equations in some
detail.

B. Quantum regression hypothesis

Quantum master equations for the evolution of the density
matrix or statistical operator ρ on a suitable Hilbert space are
usually assumed to be of the linear form [1,2]

dρ

dt
= −iLρ, (1)

where L is a suitable superoperator, say of the Lindblad form
[3]. According to the Schrödinger picture, the time-dependent
density matrix ρ can be used to calculate the evolving average
〈A〉ρ = tr(Aρ) of an observable that is represented by a
time-independent self-adjoint operator A. The next goal is
to calculate multitime correlation functions. To do so, one
usually switches to the Heisenberg picture based on evolving
observables to be averaged with a time-independent density
matrix. When two-time correlations are evaluated by means
of the Heisenberg picture, one finds that the decay of two-
time correlations is governed by exactly the same evolution
equation as the decay of averages, which is known as the
“quantum regression hypothesis” (see, for example, Sec. 3.2.4
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of [1]). More precisely, we have for example the following
two-time correlation of two observables A and B

〈[A(t),B]〉ρ = tr(Ae−iLt [B,ρ]), (2)

which nicely shows the occurrence of the evolution superop-
erator in this expression for two-time correlations.

An alternative possibility to calculate two-time correlations
is based on the fluctuation-dissipation theorem of the first kind
(see Eq. (4.2.18) of [20] or Eqs. (6.7), (6.11), and (6.14) of [4])

〈[A(t),B]〉ρ = h̄

kBTe

tr(Ae−iLtLBρ), (3)

where h̄ and kB are Planck’s constant divided by 2π and
Boltzmann’s constant, respectively, and Te is the temperature
parameter of the canonical density matrix ρ assumed in Eq. (3).
For a given operator A and density matrix ρ, the operator Aρ

is basically the product of A and ρ, but with a compromise
between placing ρ to the left or the right of A

Aρ =
∫ 1

0
ρλAρ1−λ dλ. (4)

If A is self-adjoint, this property is inherited by Aρ . Note that
Aρ has the useful property

[A,ρ] = [Aρ, ln ρ], (5)

which follows from looking at arbitrary matrix elements
formed with the eigenstates of the density matrix and per-
forming the elementary integration over λ in Eq. (4).

The fluctuation-dissipation theorem can be derived by
multiplying Eq. (5) with another observable and taking the
trace

〈[A,B]〉ρ = tr(A[Bρ, ln ρ]). (6)

If ρ is a canonical density matrix, H = −kBTe ln ρ describes
the Hamiltonian time evolution, and A is the Heisenberg
operator A(t), then Eq. (6) yields the fluctuation-dissipation
theorem (3). If the operator identity (5) is used in Eq. (2) one
realizes that the “quantum regression hypothesis” can only
be consistent with the fluctuation-dissipation theorem (3) if
L is of the Hamiltonian form, but not for dissipative master
equations. This observation is the well known failure of the
“quantum regression hypothesis.”

This failure of the “quantum regression hypothesis” and
the nonlinear dependence of Bρ on ρ in Eq. (3) motivated
Grabert to revisit the standard projection-operator derivation
of quantum master equations [21] with a relevant density
matrix of the exponential form, where the deviation from
the Hamiltonian in the exponent can be interpreted as the
thermodynamic force operator conjugate to the density matrix.
In the Markovian limit, the resulting equation is of the
nonlinear form (see Eq. (5.22) of [4])

dρ

dt
= i

h̄
[ρ,H ] − M

kBTe

[Q,[Q,H ]ρ] − M [Q,[Q,ρ]], (7)

with a suitable parameter M describing the strength of the
dissipation and an observable Q describing the interaction
between the quantum subsystem and its quantum environment.
Note that the temperature Te is the only parameter charac-
terizing the state of the environment, which hence acts as a
heat bath. Equation (7) may be addressed as a thermodynamic

master equation because it has been derived with a relevant
density matrix characterized in terms of a thermodynamic
force operator and because, as a consequence, it is consistent
with the fluctuation-dissipation theorem.

C. Thermodynamic quantum master equation

The thermodynamic quantum master equation (7) holds
for an environment acting as a heat bath. This nonlinear
master equation can be generalized to more complicated
classical nonequilibrium systems as environments. Based on
purely thermodynamic considerations and a generalization
from classical to quantum systems inspired by a geometric
formulation of nonequilibrium thermodynamics, the following
master equation for the evolution of the density matrix or
statistical operator ρ has been proposed to characterize a
quantum subsystem in contact with an arbitrary classical
nonequilibrium system acting as its environment

dρ

dt
= i

h̄
[ρ,H ] − 1

kB
[He,Se]Qx [Q,[Q,H ]ρ]

− [He,He]Qx [Q,[Q,ρ]]. (8)

The first term describes the reversible contribution to the
evolution generated by the Hamiltonian H via the commutator.
All other terms are of irreversible nature and result from
a coupling of the quantum subsystem to its environment.
They are expressed through double commutators involving
the self-adjoint coupling operator Q so that the normalization
condition, tr ρ = 1, is automatically preserved in time. As
a consequence of the occurrence of commutators with the
coupling operator Q, the evolution of the average 〈Q〉ρ
performed with the time-dependent density matrix ρ is not
explicitly affected by the dissipative terms.

Whereas the type of the coupling is given by the observable
Q, the strength of the coupling is expressed in a dissipative
bracket [,] defined as a binary operation on the space of ob-
servables for the classical environment (throughout this work,
boldface bracket symbols are used to distinguish classical
dissipative and Poisson brackets from quantum commutators
and anticommutators, respectively). If the equilibrium or
nonequilibrium states of the environment are characterized
by state variables x, classical observables are functions or
functionals of x, and their evaluation at a particular point of
the state space is indicated by the subscript x. The classical
observables He and Se in Eq. (8) are the energy and the
entropy of the environment, respectively. Dissipative brackets
are commonly used to characterize the entropy production
rate in nonequilibrium thermodynamics [12,22]. They are
characterized by the following properties: [Ae,Be] is bilinear
in Ae and Be, is symmetric

[Ae,Be] = [Be,Ae], (9)

as well as nonnegative

[Ae,Ae] � 0, (10)

and satisfies the Leibniz or product rule

[AeBe,Ce] = Ae[Be,Ce] + Be[Ae,Ce], (11)
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for arbitrary environmental variables Ae, Be, and Ce. As a
straightforward generalization of Eq. (8), several coupling
operators Qj can be incorporated easily [4,9].

D. Nonlinearity

A most striking feature of the thermodynamic quantum
master equation is its nonlinearity in ρ. In view of the definition
(4) of Aρ , the second term in Eq. (8) will, in general, be
nonlinear in ρ. This definition can be rewritten in a form that
brings out the relationship to another possible compromise in
placing ρ and extracts the nonlinearity

Aρ = 1
2 (Aρ + ρA + A′

ρ), (12)

with the nonlinear term

A′
ρ = −

∫ 1

0
[ρλ,[ρ1−λ,A]] dλ. (13)

Setting A′
ρ = 0 corresponds to a linearization of the master

equation (8) which has been proposed, but not recommended,
in [9]. We hence may think of A′

ρ as the origin of nonlinearity
in the full thermodynamically consistent quantum master
equation. The occurrence of Aρ is a consequence of employing
canonical correlations 〈 ; 〉ρ (see Eq. (4.1.12) of [20]) as the key
structural element in the generalization of dissipative brackets
from classical to quantum systems

〈A; B〉ρ =
∫ 1

0
tr(ρλAρ1−λB) dλ = tr(AρB). (14)

The canonical correlation is symmetric, 〈A; B〉ρ = 〈B; A〉ρ ,
and positive, 〈A; A〉ρ � 0. Moreover, averages can be obtained
as special cases of canonical correlations, 〈A〉ρ = tr(Aρ) =
tr(Aρ) = 〈A; 1〉ρ .

The evaluation of Aρ involves the calculation of the powers
ρλ. To handle the nonlinear quantum master equation it
is hence natural to determine the eigenstates |πn〉 and the
eigenvalues pn of the density matrix ρ and to make use of
the representation

ρ =
∑

n

pn|πn〉〈πn|. (15)

In terms of the eigenstates of ρ, the evaluation of the matrix
elements of the modified operator Aρ is straightforward
because the integration over λ can be carried out. We obtain
the useful identity

〈πm|Aρ |πn〉 = pm − pn

ln pm − ln pn

〈πm|A|πn〉, (16)

which is equivalent to Eq. (5). For the factor occurring between
the matrix elements of Aρ and A in Eq. (16), we have the
inequalities

0 � pm − pn

ln pm − ln pn

� pm + pn

2
� 1, (17)

where the central inequality becomes an equality if, and only
if, pm and pn are equal. If we use the approximation

pm − pn

ln pm − ln pn

≈ pm + pn

2
, (18)

which corresponds to setting A′
ρ = 0 in Eq. (12), we arrive at

the previously mentioned linearized master equation

dρ

dt
= i

h̄
[ρ,H ] − 1

2kB
[He,Se]Qx [Q,{[Q,H ],ρ}]

− [He,He]Qx [Q,[Q,ρ]], (19)

where { , } is the anticommutator.
The linearization obtained by turning the inequality (17)

into the approximation (18) may look somewhat ambiguous.
It is clearly different from a systematic linearization around
a given reference state, but with the attractive advantages of
simplicity and generality. This linearization corresponds to
replacing Aρ by (Aρ + ρA)/2, which looks like a reasonable
alternative to solve the problem of placing ρ in the product of
A and ρ. Whereas Eq. (19) is a convenient linearization of the
thermodynamic master equation (8), we do not recommend
its use because it destroys the thermodynamic structure of
the original master equation. The thermodynamic structure is
important for the qualitative properties of the solutions, for
example, for the existence of canonical equilibrium solutions,
as discussed in the following section.

E. Heat bath

The thermodynamic approach to quantum dissipation is
valid for arbitrary environments, as long as they may be treated
as classical nonequilibrium systems. We here consider the
simple and important special case of a heat bath which can
be described by a single independent state variable x, say the
total energy He. The complete thermodynamic information
about this system is contained in the functional form of the
entropy Se(He). In particular, we can assign a temperature Te

to the heat bath

1

Te

= ∂Se(He)

∂He

. (20)

The most general form of a dissipative bracket for a heat
bath is given by

[Ae,Be]Q = dAe

dHe

M(Te)
dBe

dHe

, (21)

where M(Te) is a positive function. Such a bracket is
bilinear, symmetric, positive, and satisfies the Leibniz rule,
as postulated in Eqs. (9)–(11). Any dissipative bracket for
the heat bath at temperature Te hence satisfies the additional
condition

Te[He,Se]Q = [He,He]Q, (22)

which is exactly the condition required to obtain the canonical
equilibrium solution to the quantum master equation (8)
expected for weak coupling between the quantum and classical
subsystems

ρeq ∝ exp

{
− H

kBTe

}
. (23)

To verify this equilibrium solution, one can make use of the
identity (5) in the last term of the master equation (8) for
A = Q. The guaranteed existence of the canonical equilibrium
solution is a convenient advantage of the thermodynamic
quantum master equation. It is deeply linked to the nonlinearity
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of the master equation and hence to the formulation of the
dissipative bracket in terms of canonical correlations.

The general thermodynamic approach also provides an
equation for the entropy production. The average S̄ of the
total entropy of the quantum subsystem and its classical
environment evolves according the equation

dS̄

dt
= −kBtr

(
ln ρ

dρ

dt

)
+ dSe,x

dt
. (24)

For a pure heat bath at temperature Te, by construction of the
dissipative bracket the entropy production can be expressed in
terms of the canonical correlation [9]

dS̄

dt
= M(Te)

kBT 2
e

〈i[Q,F ]; i[Q,F ]〉ρ, (25)

where

F = H + kBTe ln ρ, (26)

is the Helmholtz free energy operator.

F. Reaction on environment

The master equation (8) describes the influence of a
classical environment on a quantum subsystem. Of course,
in response, the quantum system also has an influence on
its environment. In general, the state x of the environment
hence varies in time and the strength of the coupling in the
thermodynamic quantum master equation (8) becomes time
dependent. By neglecting the evolution of Te for a heat bath
we implicitly assume an infinitely large heat capacity of the
bath.

The thermodynamic approach actually provides a cor-
responding equation for the evolution of environmental
observables

dAe,x

dt
= {Ae,He}x + [Ae,Se]x

− 1

kB
[Ae,Se]Qx 〈[Q,H ]; [Q,H ]〉ρ

+ [Ae,He]Qx 〈[Q,[Q,H ]]〉ρ. (27)

In this equation, { , } and [ , ] are the Poisson and dissipative
brackets of the classical system, respectively [10–12]. In
addition to the properties (9)–(11) of dissipative brackets,
energy conservation in the environment (except for the
balanced exchange of energy with the quantum subsystem)
is guaranteed by the degeneracy requirement [Ae,He] = 0
for all classical observables Ae. The Poisson bracket { , }
is bilinear, antisymmetric, and satisfies the Leibniz rule as
well as the Jacobi identity, where the latter expresses the
time-structure invariance of the Poisson bracket [12,23–25].
All these properties of classical Poisson brackets are shared
by their famous quantum counterparts, the commutators [13].

If one looks only at the master equation (8), the occurrence
of time-dependent coefficients suggests non-Markovian be-
havior. If one considers the coupled evolution of the quantum
subsystem and the classical environment according to the
thermodynamically coupled set of Eqs. (8) and (27), however,
the Markovian character of the description is restored, pro-
vided that the total system is closed. By comparing Eqs. (8)

and (27) one notes obvious exchange terms between the two
subsystems.

The nonlinear quantum master equation (8) for the special
case of a heat bath with dissipative bracket (21) and constant
Te has previously been given in Eq. (5.22) of [4]. This result
for the special case of relaxation to equilibrium was derived by
means of projection-operator techniques. The thermodynamic
approach of [9] allows us to consider arbitrary thermodynamic
systems as environments and provides the fully consistent
description of the mutual influence of classical environments
on quantum subsystems and vice versa. A simple example of a
generalization of temperature control by a heat bath would
be pressure control by the environment. More interesting
generalizations are obtained for anisotropic environments or
when the environment itself is an open system controlled from
the outside. The treatment of classical open thermodynamic
systems within the geometric approach to nonequilibrium
thermodynamics has been developed in [26–30].

III. SOLUTION STRATEGIES

As already elaborated, the quantum master equation (8) is
nonlinear in ρ through the modified operator [Q,H ]ρ defined
in Eq. (4). For that reason, it is important to diagonalize the
density matrix ρ. Instead of carrying out the diagonalization
of the density matrix in every time step, we propose to write
evolution equations directly for the eigenvectors |πn〉 and
the eigenvalues pn in the representation (15) of ρ, or for
the projectors �n = |πn〉〈πn| which may sometimes be more
convenient to work with. For simplicity, we assume that all
eigenvalues pn are pairwise different from each other.

For a master equation of the general form

dρ

dt
= i

h̄
[ρ,H ] + R, (28)

with a traceless self-adjoint operator R representing the
irreversible contribution to the time evolution of ρ, we have

d�n

dt
= i

h̄
[�n,H ] +

∑
m

m�=n

1

pn − pm

(�nR�m + �mR�n),

(29)

for the projectors and

dpn

dt
= 〈πn|R|πn〉 = tr(�nR�n), (30)

for the eigenvalues. It is straightforward to verify that the
separate evolution Eqs. (29) and (30) imply the master
equation (28) by using the representation (15) of the density
matrix and the product rule.

The evolution of the eigenvectors can be expressed as

d|πn〉
dt

= − i

h̄
H |πn〉 +

∑
m

m�=n

1

pn − pm

|πm〉〈πm|R|πn〉, (31)

which reproduces Eq. (29). Addition of iXn|πn〉 to Eq. (31),
with an arbitrary choice of the real phase-shift parameters Xn,
would still be possible. Equation (31) may be considered as
a modification of the Schrödinger equation for the eigenstates
of the density matrix in the presence of dissipation caused by
a perturbation from the environment. It looks very similar

052119-5
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in structure to the result of time-independent first-order
perturbation theory. Note, however, that Eq. (31) describes
the rate of change of |πn〉 rather than a small perturbation
of |πn〉.

For the actual solution of the combined Eqs. (30) and (31),
it is important to be able to evaluate matrix elements of the
form 〈πm|R|πn〉. A comparison of Eqs. (8) and (28) shows
that R contains products of the form Q[Q,H ]ρ , [Q,H ]ρQ,
QQ, and QρQ, which can all be evaluated after introducing
a single partition of unity in terms of the eigenstates of the
statistical operator. In particular, the resulting matrix elements
of [Q,H ]ρ can then be evaluated by means of Eq. (16). The
right-hand side of Eq. (31) then contains terms of first, third,
and fifth order in |πn〉 and irrational but elementary functions
of pn. In comparison, the solution of the linearized master
equation (19) is considerably simpler because there is no need
to diagonalize the density matrix ρ.

IV. EXAMPLE: TWO-LEVEL SYSTEM

As our first example, we consider the two-level system. In
spite of its simplicity, the two-level system has successfully
been used to describe both nuclear magnetic resonance and
spontaneous emission in quantum optics [31].

A. Notation

For a k-state (or k-level) system, the underlying Hilbert
space is a k-dimensional complex vector space which, without
loss of generality, we can take as Ck . The space of observables
is the k2-dimensional real vector space of self-adjoint k × k-
matrices with complex entries. For the two-level system, we
choose the 2 × 2-unit matrix I and the three Pauli matrices

σ1 =
(

0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
, (32)

as the base vectors of the space of observables. More precisely,
we express every self-adjoint complex 2 × 2-matrix A in terms
of a real scalar α and a real three-vector a = (a1,a2,a3),

A = O(α,a) = 1
2 (αI + a1σ1 + a2σ2 + a3σ3). (33)

Note that α is the trace of A. Commutators and anticommuta-
tors can then conveniently be expressed as

[A,B] = iO(0,a × b), (34)

and

{A,B} = O(αβ + a · b,βa + αb). (35)

From Eq. (34), we obtain an identity for the frequently
occurring double commutators

[A,[A,B]] = O(0,[a21 − aa] · b), (36)

where a = |a| and 1 is the 3 × 3-unit matrix. From Eq. (35),
we obtain

2 tr(AB) = αβ + a · b. (37)

Arbitrary functions f of an observable A can be calculated
with the formula

f (A) = O(f+ + f−,[f+ − f−] a/a), (38)

with

f+ = f

(
α + a

2

)
, f− = f

(
α − a

2

)
. (39)

Equation (38) can be verified by induction for arbitrary powers
of A and then be generalized by Taylor expansion. From
Eq. (38) we further conclude that (α + a)/2 and (α − a)/2
must be the eigenvalues of A.

As the density matrix has trace unity, it can be written as

ρ = O(1,m). (40)

For the eigenvalues to be nonnegative, we need m = |m| � 1.
This set of admissible choices of m is known as the Bloch
sphere. For m = 1, one of the two eigenvalues of ρ is zero
and we have a pure state. From Eq. (37), we obtain 〈A〉ρ =
(α + a · m)/2, which implies that the j th component of m is
given by the average 〈σj 〉ρ .

By using Eqs. (34) and (38) in Eq. (13), we find the
following explicit form for the nonlinear part of Aρ ,

A′
ρ = −µ(m)O(0,[m2 1 − mm] · a), (41)

with

µ(m) = 1

m2
− 1

m artanh m
. (42)

The function µ(m) is displayed in Fig. 2. The singularities
of the two terms in Eq. (42) at m = 0 cancel so that
µ(m) ≈ 1/3 for small m. According to Eq. (36), the factor
[m2 1 − mm] may be regarded as a double commutator formed
with ρ. The nonlinear contribution to the quantum master
equation associated with µ(m) leads to an improved relaxation
behavior, as we shall see in the following.

B. Bloch equation

To arrive at an evolution equation, we now choose the
Hamiltonian H = O(0,h̄ωq3), where ω is the angular fre-
quency associated with the energy difference between the
two levels of the system and q3 = (0,0,1), as well as the two

0 0.5 1
m

0

1
3

0.5

1

µ
m

FIG. 2. The function µ(m) characterizing the nonlinear contribu-
tion to the thermodynamic quantum master equation for a two-level
system [see Eq. (42)].
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coupling operators Qj = O(0,qj ) with q1 = (1,0,0) and q2 =
(0,1,0) (note that we actually make use of the generalization
mentioned at the end of Sec. II C). Let the environment
be a heat bath, the state of which be characterized by its
energy He. According to Eq. (20), the temperature Te is implied
by the thermodynamic relationship Se(He). This temperature
characterizes the black-body radiation to which our system is
exposed. Both dissipative brackets are assumed to be of the
form (21)

[Ae,Be]j = dAe

dHe

γ0
kBTe

h̄ω

dBe

dHe

, (43)

where γ0 is the spontaneous emission rate.
The quantum master equation (8) can now be recognized

to be equivalent to an evolution equation for m, known as the
Bloch equation [32]

dm
dt

= ω q3 × m − γ0
2kBTe

h̄ω
R · m

− γ0q3 + γ0
µ

2
(m2 1 + mm) · q3, (44)

with

R = 1
2 (1 + q3q3). (45)

Our choice of the coupling operators Qj is motivated by the
two Lindblad operators that have been derived for quantum
optical applications of two-level systems for the case of sponta-
neous emission (see, for example, Eq. (3.219) of [1]). As an al-
ternative, one could include Q3 = O(0,q3) as a third operator
with the same dissipative bracket (43) to achieve an isotropic
frictional coupling. The only effect would be to change the
anisotropic matrix R in Eq. (45) into the unit matrix 1.
This would correspond to the case of strong collisions
that cause energy decay whenever they cause dipole phase
interruption [33]. For nuclear spin relaxation, for which the
Bloch equation had originally been proposed, the situation
with R = 1 can also be realized, namely in isotropic molecular
environments, both in gases and in low-viscosity liquids [34]. It
is well known, however, that longitudinal relaxation rates that
are by orders of magnitude smaller than the transverse ones
are much more typical for nuclear spin relaxation [32]. This
situation can be achieved by enhancing the coupling strength
associated with q3 to become the dominating one.

The equilibrium solution of Eq. (44) is given by

meq = −q3 tanh

(
h̄ω

2kBTe

)
, (46)

which is consistent with the canonical equilibrium distribution
(23). The occurrence of tanh in the equilibrium solution (46)
is a direct consequence of the occurrence of artanh in Eq. (42).
Contrary to the steady solution of the linear quantum master
equation obtained from Eq. (44) for µ = 0

dm
dt

= ω q3 × m − γ0
2kBTe

h̄ω
R · m − γ0q3, (47)

which is given by meq = −q3h̄ω/(2kBTe), the steady state (46)
always lies in the Bloch sphere, even for very low temperatures.
The time-dependent solution of the thermodynamic quantum
master equation can actually never leave the Bloch sphere,
which is a nice consequence of thermodynamic consistency.

Note that, for very low temperatures, the solution of the linear
master equation (47) must leave the Bloch sphere because
meq > 1. This problem can be circumvented by the simple
replacement

h̄ω

2kBTe

→ tanh

(
h̄ω

2kBTe

)
, (48)

in Eq. (47). With this replacement, one recovers the equilib-
rium result (46) and actually obtains the well-known master
equation of the Lindblad form (see Eqs. (3.224)–(3.228)
of [1]).

For a small deviation m′ from the steady state solution (46),
we obtain the following result by straightforward linearization
of Eq. (44)

dm′

dt
= ω q3 × m′ − γ0

2kBTe

h̄ω
R · m′

− γ0
meqµ

2
(1 + 3q3q3) · m′ − γ0m

2
eq

dµ

dm
q3q3 · m′,

(49)

where µ(m) and its derivative are to be evaluated at meq.
The nonlinear terms enhance the relaxation in an anisotropic
manner, most dramatically near the boundary of the Bloch
sphere. This result of a systematic linearization of the
thermodynamic master equation around the steady state is
significantly different from the prediction of the usual linear
Bloch equation (47) with the replacement (48). The predicted
strong dependence of the relaxation behavior on the location
of the steady state within the Bloch sphere could be tested
experimentally.

V. EXAMPLE: DAMPED HARMONIC OSCILLATOR

For a detailed comparison of the linearized quantum
master equation (19) with the nonlinear thermodynamic master
equation (8), we study the example of the damped harmonic
oscillator in one dimension. We consider the motion of a
particle of mass m in the potential V (Q) = mω2Q2/2, where ω

is the angular frequency of the undamped harmonic oscillator.
The position and momentum are given by Q and P with
the canonical commutation relation [Q,P ] = ih̄, which leads
us to

[Q,H ] = ih̄

m
P, (50)

for H = P 2/(2m) + V (Q).
For the dissipative coupling of the oscillating particle to

a heat bath, we use the position Q as the coupling operator
in Eq. (8) because friction should explicitly affect only the
momentum P of the particle, not the position Q. As it is
convenient to characterize friction on a particle in terms of
the friction coefficient ζ , we rewrite the dissipative bracket in
Eq. (21) as

[Ae,Be]Q = dAe

dHe

ζkBTe

h̄2

dBe

dHe

. (51)

It should be noted that the coupling of a harmonic oscillator
to a heat bath is not unique. We here have chosen a coupling
for which dissipation directly affects P only. This corresponds
to our intuition for the motion of a particle in a potential.
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However, one could alternatively assume a symmetric coupling
in which both Q and P are explicitly affected by dissipation.
This has actually been done in Eq. (3.307) of [1]. Such an
assumption is natural, for example, for a harmonic oscillator
representing an electromagnetic field mode inside a cavity.

A. Caldeira-Leggett master equation

After inserting Eqs. (50) and (51) into the linear quantum
master equation (19) for a particle moving in a potential and
damped by friction with a heat bath is of the form

dρ

dt
= i

h̄
[ρ,H ] − i

h̄

ζ

2m
[Q,{P,ρ}] − ζkBTe

h̄2 [Q,[Q,ρ]].

(52)

This equation is known as the Caldeira-Leggett master equa-
tion (see, for example, Eq. (3.410) of [1]). It is actually valid
for an arbitrary potential V (Q); the assumption of a harmonic
potential is needed only for the next step. The Caldeira-Leggett
equation cannot be brought into Lindblad form (see p. 178
of [1]).

From second moment Eqs. (3.428)–(3.430) of [1], which
follow from the Caldeira-Leggett master equation (52), we
obtain the following closed linear differential equation for the
second moment of P for a harmonic oscillator[

d3

dt3
+ 3

ζ

m

d2

dt2
+

(
4ω2 + 2

ζ 2

m2

)
d

dt
+ 4ω2 ζ

m

]
〈P 2〉

= 4ω2kBTeζ. (53)

If, for the initial state, the eigenvectors of the density matrix
coincide with those of the Hamiltonian (for example, if we
start from an equilibrium ensemble or an energy eigenstate),
then the initial conditions for the differential Eq. (53) can be
expressed as

〈P 2〉 = 〈P 2〉0,

d〈P 2〉
dt

= −2
ζ

m
(〈P 2〉0 − mkBTe), (54)

d2〈P 2〉
dt2

= 4
ζ 2

m2
(〈P 2〉0 − mkBTe).

The explicit solution of the linear differential Eq. (53) with the
initial conditions (54) is given by

〈P 2〉t = mkBTe + 〈P 2〉0 − mkBTe

4ω2 − ζ 2/m2
e−ζ t/m

×
[

4ω2 − ζ 2

m2
cos

(√
4ω2 − ζ 2

m2
t

)

− ζ

m

√
4ω2 − ζ 2

m2
sin

(√
4ω2 − ζ 2

m2
t

)]
. (55)

The average 〈P 2〉 changes exponentially with superim-
posed oscillations from the initial level to the final one,
where the decay rate ζ/m in the exponential also reduces
the angular frequency of the harmonic oscillator. Results
for other second moments could be obtained just as easily.
Equation (55) contains our reference result for the damped
harmonic oscillator in the usual linear description.

B. Thermodynamic quantum master equation

The thermodynamic quantum master equation for the
damped harmonic oscillator is obtained by inserting Eqs. (50)
and (51) into the quantum master equation (8) to obtain

dρ

dt
= i

h̄
[ρ,H ] − i

h̄

ζ

m
[Q,Pρ] − ζkBTe

h̄2 [Q,[Q,ρ]]. (56)

In contrast to the Caldeira-Leggett master equation (52), the
thermodynamic master equation is seriously nonlinear in ρ,
even for the harmonic oscillator. For a detailed comparison,
we hence need numerical solutions for concrete situations.

We consider the evolution that takes place if we start with a
system equilibrized at kBT0 = (3/2)h̄ω and, at t = 0, quench
the bath temperature to kBTe = (1/2)h̄ω. These initial and
final values of the temperature in energy units correspond to
the first-excited and ground-state energies of the harmonic
oscillator, respectively. Of course, these low temperatures
have been chosen to see pronounced quantum effects. During
relaxation, the probability of the ground state increases from
0.49 to 0.86. According to [7], the validity of the quantum
master equation for such low temperatures can be established
if the friction coefficient is sufficiently small. We here assume
ζ/m = ω/10 to be on the safe side.

For the representation of all operators and the time-
dependent eigenstates |πn〉 of the density matrix, we use a
finite number of energy eigenstates |n〉, n = 0, . . . ,N . The
Hamiltonian is then represented by the diagonal matrix

H = h̄ω

⎛
⎜⎜⎜⎜⎝

1
2 0 0

0 3
2 0

. . .

0 0 N + 1
2

⎞
⎟⎟⎟⎟⎠ , (57)

which is exact on the truncated space. For the truncated
position operator Q, we use the following matrix represen-
tation with nonzero entries only next to the diagonal

Q =
√

h̄

2mω

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

1 0
√

2 0 0

0
√

2 0
√

3 0

0
√

3 0 0

. . .
√

N

0 0 0 0
√

N 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (58)

which is obtained after simply omitting the couplings of
the state |N〉 to |N + 1〉. The operators Q2 and [Q,H ] are
evaluated in the truncated space. For example, one obtains
from Eqs. (57) and (58)

[Q,H ] =
√

h̄3ω

2m

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

−1 0
√

2 0 0

0 −√
2 0

√
3 0

0 −√
3 0 0

. . .
√

N

0 0 0 0 −√
N 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(59)
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FIG. 3. Relaxation of the average square of momentum after
quenching a harmonic oscillator to a very low temperature for
the linear (thin lines) and nonlinear (thick lines) quantum master
equations. The horizontal dashed lines indicate the corresponding
asymptotic values. Only the nonlinear equation leads to the correct
equilibrium value (thick dashed line).

Equation (50) can then be used to introduce the momentum
operator P on the truncated space in terms of this expression
for [Q,H ], and also P 2 is evaluated in the finite-dimensional
Hilbert space.

We first implemented both the direct solution of the
linear Caldeira-Leggett master equation (52) for ρ and
the solution of the corresponding Eqs. (30) and (31) for
the eigenvalues and eigenvectors of ρ in MATHEMATICA R©

(Version 7.0.1.0). As the direct solution for the linear case
does not require any diagonalization, its implementation is
significantly simpler and more efficient compared to solving
the equations for the eigensystem given in Sec. III. Both
implementations give identical results. It turns out that ten
states (N = 9) are sufficient to reproduce the exact results
and this value is hence used for all calculations presented
here. More precisely, for ten states, the truncation error in the
initial value of 〈P 2〉 is 1%, which is the largest error overall
because the energy and hence the importance of the higher
states decreases with time.

The evolution of 〈P 2〉 and its asymptotic value are repre-
sented by the thin lines in Fig. 3. The asymptotic value of 〈P 2〉
for the linear Caldeira-Leggett master equation is given by
mkBTe, as can be seen most easily from the explicit solution
(55) (which is represented by the thin continuous line in Fig. 3).
This value differs from the exact value

〈P 2〉 = 1

2
h̄ωm coth

(
h̄ω

2kBTe

)
, (60)

for a harmonic oscillator in an equilibrium state at tempera-
ture Te, which is indicated by the thick dashed line in Fig. 3.
The linearized master equation does not converge to the proper
equilibrium solution at low temperatures.

For solving the nonlinear thermodynamic master
equation (56), we use the less efficient algorithm based on
the corresponding Eqs. (30) and (31) for the eigenvalues and
eigenvectors of ρ. As only a few eigenstates are involved when
we focus on low temperatures to see the nonlinear quantum
effects, efficiency is is not really an issue (all calculations

0 2 4 6 8 10 12

ωt

0.997

0.998

0.999

1.000

j
π

j
2

FIG. 4. Overlap of the first few eigenstates of the Hamiltonian
(with lowest energies) and the density matrix (with largest probabili-
ties) after quenching a harmonic oscillator to a very low temperature
as a function of time. From top to bottom, the lines correspond to the
states with j = 0, 1, and 2, respectively.

together took less than two minutes on a standard desktop
computer). The big advantage of the algorithm based on
eigensystems is that the passage from the linear to the nonlinear
master equation requires a change in a single line of code only,
namely the replacement described by the approximation (18).

The result for the evolution of 〈P 2〉 obtained from the
thermodynamic quantum master equation is indicated by
the thick continuous line in Fig. 3. The solution converges
to the correct limit (60) and the asymptotic value is approached
faster than for the linearized equation.

The eigenstates of the initial and final equilibrium density
matrices coincide with the energy eigenstates. To detect
intermediate deviations from an equilibrium state with time-
dependent temperature, we consider the matrix elements
〈j |πj 〉 characterizing the overlap between corresponding
eigenstates of the Hamiltonian and the density matrix. The
results for j = 0, 1, and 2, that is, for the states with the
lowest energies and the highest probabilities, are shown in
Fig. 4. The overlap turns out to be very close to unity at all
intermediate times, in particular for the ground state. This
is a consequence of the small value of the friction coefficient.
Doubling the friction coefficient enhances the largest deviation
from unity by a factor of four. For small friction, the system
approximately evolves through a sequence of equilibrium
states with time-dependent temperature and can hence be fully
characterized by the decay of the energy, which is almost
purely exponential. Note, however, that the small deviations
of the overlap from unity in Fig. 4 are important as they cause
the oscillations of the average 〈P 2〉 in Fig. 3.

VI. SUMMARY AND CONCLUSION

Nonlinearity is the most striking feature of the thermo-
dynamic quantum master equation. This is a fundamental
difference compared to the linear Liouville and Schrödinger
equations describing reversible classical and quantum systems,
and also to the Fokker-Planck equations for irreversible classi-
cal systems. It is the combination of irreversible thermodynam-
ics and quantum mechanics that causes the nonlinearity. Even
the master equation for the harmonic oscillator is seriously
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nonlinear. This fundamental nonlinearity is missed in the
popular Caldeira-Leggett and Lindblad-type master equations.
Just like for the linear Lindblad equations, the solutions of
thermodynamic master equations stay in the physical domain
for all times, which is known to be a subtle issue for nonlinear
equations [35]. For the two-level system, the present work
shows that the nonlinearity can be handled very elegantly.
In general, however, the nonlinearity necessitates numerical
investigations.

We have shown how the damped harmonic oscillator can
be handled numerically. A coupled set of equations for the
eigenvalues and eigenvectors of the density matrix is appealing
because the nonlinearity can then be treated in a simple way.
As the nonlinearity is a pure quantum effect, its consequences
are felt only at low temperatures where only a few states
are involved so that practical calculations remain feasible.
Our results for the relaxation of a harmonic oscillator after
a quench to a very low temperature show that the solution
behavior is improved by the nonlinearity. In particular, the
canonical equilibrium density matrix is approached when the
nonlinearity is taken into account.

The thermodynamic quantum master equation (8) describes
the influence of any classical environment on a quantum
subsystem under the assumption of weak coupling. More-
over, it is supplemented by Eq. (27) describing the reverse
influence of the quantum subsystem on the environment.
If the total system is closed, we obtain a Markovian de-
scription of the coupled subsystems even if the coefficients
in the quantum master equation change with a changing
environment.

As quantum master equations are nowadays employed in
many applications involving dissipative quantum systems, the
nonlinear thermodynamic quantum master equation offers a
new perspective on many problems. Problems that involve
more complicated environments than simple heat baths can be
approached in a thermodynamically consistent way. It is even
possible to study situations in which the classical environment
itself is an open system controlled from the outside. The
treatment of classical open thermodynamic systems within
the geometric approach to nonequilibrium thermodynamics
has been developed in [26–30]. If the quantum nature of
the environment plays a role, one might want to consider
three subsystems: the quantum system of interest, a quantum
environment, and the classical environment. A coupling of
either quantum system, or both quantum systems, to the
classical environment would be possible.

One might ask why the thermodynamic master equation
for a quantum system coupled to a heat bath proposed
in [4] has not been used more frequently during the past
three decades. Maybe concerns about the tractability of this
seriously nonlinear equation have limited its impact. The
examples of the present paper should demonstrate that simple

low-temperature applications can be handled quite efficiently.
More complicated problems can readily be solved by well-
established stochastic simulation techniques [1,36–39] for
which the nonlinearity of the thermodynamic master equation
does not cause any serious difficulties [40].

The nonlinearity of the thermodynamic master equation
for dissipative quantum systems has a number of impor-
tant conceptual implications. First, as has been pointed out
in the Introduction and discussed in Sec. II B, the usual
“quantum regression hypothesis” becomes invalid and needs
to be modified [4–6]. Second, it is no longer possible to
pass from the Schrödinger picture to the Heisenberg picture
because, both for reversible quantum mechanics and for linear
quantum master equations, this change of pictures relies on
the formal solution of the linear evolution equations in terms
of exponentials (see, for example, Sec. 3.2.3 of [1]). For
dissipative quantum systems, the Schrödinger picture appears
to be more fundamental than the Heisenberg picture. Third, as
a direct consequence of the absence of a Heisenberg picture,
the usual procedure for introducing two-time or multitime
correlation functions fails (see, for example, Sec. 3.2.4 of [1]).
The quantum master equation describes the time evolution
of the density matrix and hence also the evolution of all
averages of observables for a given initial density matrix, but
no two-time or multitime correlations. A natural possibility
to define multitime correlations would be to incorporate a
given (positive) observable A at a certain time into the density
matrix ρ by switching to the conditional density matrix Aρ

and to continue the evolution of the master equation with Aρ

instead of ρ. This process can be iterated several times. If the
nonlinear master equation is linearized around equilibrium, the
proposed procedure has actually been established to be correct
for two-time correlations [4].

One of the most fascinating applications of the thermody-
namic master equation, which crucially relies on its validity in
the limit of low temperatures and small dissipation rates, is in
quantum field theory [41]. A friction mechanism can be used
to smoothen quantum fields on short length scales by well-
structured dynamic equations with well-behaved solutions.
The physical origin of irreversibility in quantum field theory
lies in the field idealization which requires renormalization and
hence the elimination of degrees of freedom and the loss of
complete control. The thermodynamic approach solves many
problems of the usual renormalization program in quantum
field theory which are caused by a fixed cutoff procedure that
spoils the structure of the underlying reversible equations in
an uncontrolled manner [41].
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[10] M. Grmela and H. C. Öttinger, Phys. Rev. E 56, 6620 (1997).
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