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Long-time coherence in echo spectroscopy with π/2-π-π/2 pulse sequence
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Motivated by atomic optics experiments, we investigate a class of fidelity functions describing the
reconstruction of quantum states by time-reversal operations as MDa(t) = |〈ψ |eiH2t/2eiH1t/2e−iH2t/2e−iH1t/2|ψ〉|2.
We show that the decay of MDa is quartic in time at short times and that it freezes well above the ergodic value
at long times, when H2-H1 is not too large. The long-time saturation value of MDa contains easily extractable
information on the strength of decoherence in these systems.
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I. INTRODUCTION

When subjected to external noisy fields, quantum-
mechanical wave functions lose memory of their phase. As
a fundamentally important consequence of this decoherence
process, pairs of partially scattered waves no longer interfere,
and the dynamics follows the Liouville time evolution of
classical densities [1]. A somehow similar situation occurs
when one evolves an initial superposition φ = ∑

α cαψα of
many eigenmodes ψα of the Hamiltonian H1 governing the
time evolution, with incommensurate eigenfrequencies εα . In
this case, for each pair of components (α,β), the relative
phase (εα − εβ)t becomes pseudorandom, which washes out
partial-wave interferences. This dephasing process, however,
differs from decoherence in a fundamental way in that it can,
in principle, be undone by an appropriate time inversion. As a
matter of fact, echo experiments are able to reverse the sign of
the Hamiltonian, H1 → −H1, by means of effective changes
of coordinate axes induced by electromagnetic pulses [2].
When this operation is performed after an evolution time t ,
one expects the initial wave function to be reconstructed at
2t , regardless of its spread over eigenmodes. Imperfections
in the pulse sequence or unavoidable couplings to external
uncontrolled degrees of freedom result instead in an imperfect
time inversion, H1 → −H2 = −H1 − �, and therefore the
Loschmidt echo [3–7] (we set h̄ ≡ 1),

ML(t) = |mL(t)|2, with (1a)

mL(t) = 〈ψ |eiH2t e−iH1t |ψ〉, (1b)

gives a better description of the fidelity with which the
experiment reconstructs the initial state. Echo experiments
in nuclear magnetic resonance [2,8], quantum optics [9],
atoms [10–12], condensed matter [13], microwave cavities
[14], and elastodynamics [15] have demonstrated that ML(t)
remains sizable for times significantly longer than the de-
phasing time. The decay of ML(t) allows one to extract
information on irreversible decoherence processes induced
by �.

In experiments with cold atoms, the Loschmidt echo,
ML, can be extracted from interference fringes of Ramsey
spectroscopy [16]. There, an effectively two-level atom is
initially prepared in a state |1〉 ⊗ |ψ〉, where |1〉 and |2〉 denote

the two internal atomic states and |ψ〉 stands for the spatial
component of the initial state. First, the atom is irradiated with
a microwave frequency field with energy chosen to change the
atomic state into an equiprobable superposition of |1〉 ⊗ |ψ〉
and |2〉 ⊗ |ψ〉. Such a field is referred to as a π/2 pulse.
The atom is then let to evolve in an optical trap for a time
t , during which the |1〉 component of the state evolves under a
spatial Hamiltonian H1, while the |2〉 component under H2.
After that, another π/2 pulse is applied to the atom and
the probability P2 of the atom being found in the internal
state |2〉 is measured. It turns out that this probability is
essentially determined by the Loschmidt echo amplitude, mL.
In practice, however, one works not with a pure initial state
|ψ〉, but with a thermal mixture of initial states. The echo
amplitude mL from each of these states contributes to P2 with
a different, effectively random phase, which in turn reduces
the fringe contrast in a Ramsey experiment. As a result, the
π/2-π/2 pulse sequence proves inefficient in measuring the
Loschmidt echo for large ensembles of thermally populated
states.

In order to overcome this difficulty, Davidson and col-
laborators implemented a pulse sequence in their echo spec-
troscopy experiments [11,12]:

MDa(t) = |mDa(t)|2 , with (2a)

mDa(t) = 〈ψ |eiH2t/2eiH1t/2e−iH2t/2e−iH1t/2|ψ〉. (2b)

The corresponding pulse sequence consisted of three short
pulses, π/2-π -π/2, separated by two time intervals of equal
duration t/2, after which P2 was measured. The π pulse
swaps the population of the internal states |1〉 and |2〉. The
probability P2 is then determined by the amplitude mDa, and
each individual state of the thermal ensemble contributes to
P2 with the same phase. Thus, the π/2-π -π/2 pulse sequence
allows one to measure the echo in Eq. (2) even for ensembles
of more than 106 of thermally populated states, as in the
experiments of Refs. [11,12].

It is clear from the definitions given by Eqs. (1) and (2)
that, mathematically, MDa is not the same quantity as the
Loschmidt echo ML. Even though some significant differences
between MDa and ML have been previously envisaged in the
literature, they have never been systematically studied. It is
the purpose of this article to fill this gap by comparing the two
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quantities both analytically and numerically. In what follows,
we show that MDa differs from the Loschmidt echo ML in the
two important respects that (i) its short-time decay is quartic
and not quadratic in time and (ii) for not too strong perturbation
� = H2 − H1, MDa saturates at a perturbation-dependent
value, well above the ergodic saturation of ML(∞) ∼ N−1

at the inverse Hilbert space size. Fidelity freezes have been
reported for Loschmidt echoes with off-diagonal perturbations
with a zero time average [17], phase-space displacement
perturbations [18], and more recently for initially pure states
coupled to complex environments [19]; however, the freeze
we report here has a different physical origin. We note in
particular that it persists for t → ∞. The long-time saturation
of MDa makes it possible to extract the strength of the fields
in � more easily than by fitting decay curves of conventional
echoes over not precisely defined time intervals. Moreover,
the absence of decay arising from � in this pulse sequence
makes it straightforward to extract decoherence rates because,
assuming that the pulse sequence is perfect, any decay in ex-
perimentally obtained data for MDa(t) would come exclusively
from the coupling of the system to external degrees of freedom,
not included in our theory. Given the superb experimental
control that modern echo experiments have on their pulse
sequence, this echo spectroscopy has therefore the potential
to deliver precious, previously unattainable information on
the dominant sources of decoherence in trapped cold atomic
gases.

II. SHORT-TIME DECAY

There has been a large number of analytical and numerical
investigations of the Loschmidt echo and some of its offspring
[3,4]. Most, if not all approaches assume a small perturbation;
that is, |�| � |H1,2| for an appropriate operator norm. As
but one consequence, the largest energy scale is the energy
bandwidth B, which to leading order is the same for H1 and
H2. For short times, t � B−1, ML(t) is easily calculated by
expanding the propagators in Eqs. (1) and keeping the leading-
order contributions. One obtains

ML(t) 	 1 − (σLt)2, (3)

where

σ 2
L = 〈ψ |�2

L|ψ〉 − 〈ψ |�L|ψ〉2, �L = H1 − H2. (4)

Thus, the short-time decay of the Loschmidt echo is quadratic
[5,6], with a rate given by the dispersion σL of the perturbation
operator �L evaluated over the initial state.

The same procedure can be applied to MDa, where it,
however, gives

MDa(t) 	 1 − (σDat)
4, (5)

with the decay rate σDa given by

σ 4
Da = 〈ψ |�2

Da|ψ〉 − 〈ψ |�Da|ψ〉2, �Da = i

4
[H1,H2]. (6)

Two things are remarkable here. First, the short-time decay
of MDa is quartic in t and thus slower than the decay of

ML. Second, its rate is determined by the commutator of the
unperturbed and perturbed Hamiltonians.

III. LONG-TIME SATURATION

The analysis of the long-time behavior of ML and MDa

starts by diagonalizing the unperturbed and perturbed Hamil-
tonian operators, H1 = ∑

u Eu|u〉〈u| and H2 = ∑
v Ev|v〉〈v|,

respectively, and expanding the initial state on the basis of the
unperturbed Hamiltonian, |ψ〉 = ∑

u cu|u〉 [4]. The resulting
expression for the echo is then averaged over time to yield the
mean saturation value. In the case of the Loschmidt echo the
time-averaged saturation is given by

ML,∞ =
∑

u,u′,u′′,v

c∗
ucu′′ |cu′ |2〈u|v〉〈v|u′〉〈u′|v〉〈v|u′′〉. (7)

The next step is to average this expression over a random
ensemble of coefficient cu for the initial state such that c∗

ucu′ =
N−1δu,u′ . (Hereinafter, an overline denotes the averaging over
an ensemble of random initial states.) Here N is the effective
size of the Hilbert space (the number of eigenstates of H1,2

comprising the initial state). To leading order in 1/N , one
uses c∗

ucu′′ |cu′ |2 = c∗
ucu′′ |cu′ |2 = N−2δu,u′′ to obtain the ergodic

saturation value

ML,∞ = 1

N
. (8)

Using the same procedure, one can calculate the long-time
saturation value of MDa. At the level of the echo amplitude
mDa, one gets

mDa,∞ =
∑
u,u′,v

c∗
ucu′ 〈u|v〉〈v|u′〉〈u′|v〉〈v|u′〉 (9a)

= 1

N

∑
u,v

|〈u|v〉|4. (9b)

One then uses an approximation |〈u|v〉|4 	 |〈u|v〉|22
with

|〈u|v〉|2 = ρ(Eu − Ev) a function of only the energy difference
between the two states. Replacing one of the sums in Eq. (9)
by an integral over the energy difference between the two
states scaled by the mean level spacing � = B/N , we can
write

mDa,∞ 	
∫

dE

�
ρ2(E). (10)

This expression relates the long-time saturation of MDa to
the energy spreading of eigenfunctions of H1 over those of
H2 as measured by ρ(E). It is known for a large variety of
quantum chaotic systems that, in the regime � � �/� � B,
this spreading has a Lorentzian shape,

ρ(Eu − Ev) 	 �

π

�/2

(Eu − Ev)2 + (�/2)2
, (11)

with a spreading width given by the golden rule, � 	 σ 2
L/�

[20]; see Eq. (4) for the definition of σ 2
L . We thus obtain

mDa,∞ 	 �

π�
. (12)

Equations (11) and (12) predict an average saturation value
MDa,∞ above the ergodic saturation for N < (B/π�)2. The
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width � of the Lorentzian (11) increases with |�|, and the
ergodic saturation [Eq. (8)] is recovered when � > B/πN1/2;
thus,

MDa,∞ 	 max

[(
�

π�

)2

,
1

N

]
. (13)

We note that the Lorentzian spreading of Eq. (11) is replaced
by more complicated, system-dependent spiked structures in
dynamical systems with mixed or regular dynamics, for which
it is accordingly impossible to draw general conclusions. We
stress, however, that Eq. (10) remains valid even in that case.

Equation (13) is the main result of this article. This
new long-time fidelity saturation originates from the specific
sequence of time evolutions in MDa, giving the long-time
behavior of the latter as an energy integral over the squared
average overlap |〈u|v〉|4 of eigenstates |u〉 of H1 over the
eigenstates |v〉 of H2. For completeness we next comment on
the intermediate regime, between the short-time quartic decay
and the long-time saturation.

IV. INTERMEDIATE ASYMPTOTIC DECAY

We briefly sketch a semiclassical analysis of MDa in the
intermediate regime between the short-time decay and the
long-time saturation. We follow the lines of Ref. [7] to show
that MDa and ML have the same behavior in that regime.

In the semiclassical approximation the time evolution of
|ψ〉 under Hj , j = 1,2, is given by

〈r|e−iHj t |ψ〉 =
∫

dr′ ∑
γ (r′→r,t)

Dj,γ eiSj,γ 〈r′|ψ〉. (14)

Here the sum goes over all classical paths γ connecting r′
and r in time t , Sj,γ = Sj,γ (r,r′,t) is the action along γ ,
Dj,γ = (2πi)−d/2|det(∂2Sj,γ /∂r∂r′)|1/2e−iπνj,γ /2 with Morse
index νj,γ counting the number of conjugate points on γ , and
d is the dimensionality of the system [21]. The semiclassical
Loschmidt echo amplitude is obtained by inserting Eq. (14)
into Eq. (1b). The resulting expression contains three spatial
integrals over r, r′, and r′′ with a double sum over trajectories
γ1(r′ → r,t) and γ2(r′′ → r,t) corresponding to the Hamilto-
nians H1 and H2, respectively. The standard analysis of this
expression involves three steps [7]. (i) One assumes that 〈r|ψ〉
is localized about a point r0 and evaluates the integrals over
r′ and r′′ using stationary phase approximations. This reduces
the set of paths γ1 and γ2 to those starting at r0 (see Fig. 1).
(ii) Noting that the double sum over trajectories contains
rapidly oscillating phase factors exp[i(S1,γ1 − S2,γ2 )], so that
only pairs of correlated paths γ1 and γ2 contribute to mDa, one
employs the diagonal approximation (γ2 	 γ1) to reduce mL

to a sum over a single path γ1. Reference [22], building on
ideas first expressed in Ref. [6], justified this step using the
shadowing theorem. (iii) Finally, one uses the fact that |D1,γ1 |2
is the Jacobian of a transformation between final positions r
and initial momenta p on paths γ1. This allows one to change
the integration variable from r to p to get

mL(t) = (2π )−d

∫
dp ei�S |〈p|ψ〉|2. (15)

FIG. 1. (Color online) Trajectories of the unperturbed (γ1) and
perturbed (γ2, γ ′

2, and γ ′′
2 ) systems together with the associated action

differences (�S, �S ′, and �S ′′).

Here �S = �S(r0,p,t) = S1,γ1 − S2,γ2 is the difference be-
tween the action of an unperturbed trajectory γ1 leaving the
point r0 with a momentum p and traveling for time t and
the action of the corresponding perturbed trajectory γ2 	 γ1.
Following the same procedure, one finds

mDa(t) = (2π )−d

∫
dp ei(�S ′−�S ′′)|〈p|ψ〉|2, (16)

where �S ′ = �S(r0,p,t/2) and �S ′′ = �S(r̃,p̃,t/2), with
(r̃,p̃) being the phase-space point on γ1 at time t/2 (see Fig. 1).
In other words, �S ′ (�S ′′) is the action difference between
the first (second) half of the unperturbed trajectory γ1 and the
corresponding perturbed trajectory γ ′

2 (γ ′′
2 ). This is sketched

in Fig. 1.
Once averaged over an ensemble of initial states, both ML

and MDa satisfy

ML,Da(t) 	 mL,Da(t)
2

+ (2π )−2d

∫
dp

∫
�p

dp′ |〈p|ψ〉|2 |〈p′|ψ〉|2, (17)

where the integral over p′ is restricted to a volume �p
around p, such that two trajectories starting from the
same spatial point with momenta p and p′ ∈ �p stay
“close” in phase space during time t . The first term
on the right-hand side of Eq. (17) is evaluated us-
ing the central limit theorem, exp(i�S) 	 exp(−�S2/2) 	
e−�t/2 and exp[i(�S ′ − �S ′′)] 	 exp[−(�S ′2 + �S ′′2)/2] 	
e−�(t/2+t/2)/2 = e−�t/2, where � is defined in Eq. (11) as the
width of the local density of states. For MDa, we neglect
correlations between �S ′ and �S ′′, which is justified by the
fast decay of correlations along chaotic classical trajectories.
The second term in Eq. (17) is determined by the measure of
the set �p and in chaotic systems decays as e−λt with λ being
the average Lyapunov exponent of the underlying classical
system [7]. Therefore, the intermediate time decay of MDa is
the same as that of ML [7,23], that is,

ML(t) 	 MDa(t) ∼ e−t min[�,λ]. (18)

This exponential time decay continues until the echo reaches
the saturation plateau given by Eq. (13).

Reference [11] reported some saturation of MDa for
ultracold atoms inside optical traps. However, at this stage,
a direct comparison of these experiments with our theory
does not seem feasible, because they explore completely
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different time regimes. Indeed, the echo spectroscopy ex-
periments of Refs. [11,12] are concerned with short times
corresponding to no more than three to four oscillations or
bounces of an atom in the trap. In contrast, the semiclassical
derivation of the exponential decay [Eq. (18)] and the
RMT analysis of the fidelity freeze [Eq. (13)] are only
valid for times much longer than the average free-flight
time.

V. NUMERICAL STUDY

We confirm our analytical results with some numerical data.
Our simulations are based on the kicked rotator model with
dimensionless Hamiltonian:

H1(2) = p̂2

2
+ K1(2) cos x̂

∑
n

δ(t − nτ ). (19)

For large-enough kicking strength, K1(2)τ > 7, the dynamics is
fully chaotic with a Lyapunov exponent λ = ln[K1(2)τ/2]. We
quantize this Hamiltonian on a torus and accordingly consider
discrete values pl = 2πl/N and xl = 2πl/N , l = 1, . . . ,N ,
giving an effective Planck’s constant h̄eff = 1/N . Both echoes
ML(n) and MDa(n) are computed for discrete times t =
nτ , with the kicking period τ , using the unitary Floquet
operators U1(2) = exp[−ip̂2/2h̄eff] exp[−iK1(2) cos x̂/h̄eff] for
single-kick time evolutions. The bandwidth is B = 2π and,
accordingly, � = 2π/N . The eigenstates of U2 spread over
those of U1 according to Eq. (11) with � ∝ (δK N)2, with
δK = K2 − K1 [4]. Together with Eq. (13), we thus expect a
long-time saturation of MDa at a value

MDa,∞ ∼ (δK2N3)−2, (20)

for δK4N5 < 1.
Figure 2 shows the time decay of the echoes, ML(t) shown

as red curves and MDa(t) as black curves, averaged over
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FIG. 2. (Color online) Average echo decay for the kicked ro-
tator model with K1 = 57, N = 8192, K2 − K1 = 5 × 10−5, 1.2 ×
10−4, 2.1 × 10−4, and 5 × 10−4 (ML, red solid lines from top to
bottom), and K2 − K1 = 5 × 10−5, 9 × 10−5, 1.2 × 10−4, 1.6 ×
10−4, 2.1 × 10−4, 3.1 × 10−4, and 5 × 10−4 (MDa, black dashed
lines, from top to bottom). Curves are averages over 500 initial
states.
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FIG. 3. (Color online) Long-time saturation value of MDa for
K1 = 57 and N = 256 (black up-pointing triangles), 512 (red
circles), 1024 (green squares), 2048 (blue down-pointing triangles),
4096 (violet diamonds), and 8192 (cyan left-pointing triangles).
(Main panel) Rescaled data confirming the analytical prediction of
Eq. (20). The straight black line indicates a slope of ∝1/x3.8. (Inset)
Raw data as function of the difference of dimensionless kicking
strengths δK̃ = K̃2 − K̃1, with K̃1(2) = K1(2)/τ .

an ensemble of randomly chosen initial states. For equal
values of the perturbation strength, both ML and MDa display
an exponential time decay governed by the same decay
rate, providing a clear support for Eq. (18). The Loschmidt
echo decay saturates at a value ∼N−1, in agreement with
Eq. (8). The freeze of MDa occurs at a value that decreases
with increasing perturbation strength until it reaches ergodic
saturation at N−1. We confirm in Fig. 3 that the numerically
observed perturbation-dependent saturation of MDa follows
Eq. (20). Once plotted as a function of δKN3/2, saturation
data for N ∈ [256,8192] and δK ∈ [4 × 10−5,0.052] nicely
fall on top of one another until they deviate because they have
different ergodic saturation, N−1. Moreover, in the regime
of validity � � δK � B of Eq. (11), one has MDa,∞ ∝
(δKN3/2)b with an exponent b 	 3.8 close to the prediction
b = 4 from Eq. (20). We note that b is larger for data with larger
Hilbert space size N , where the fitting range is larger—and the
fit is accordingly more accurate—because saturation occurs at
larger values of δKN3/2. We also checked numerically that
the initial decay of MDa is quartic and not quadratic in time.
Our numerical simulations thus fully confirm the theoretical
predictions derived earlier.

VI. CONCLUSIONS

Our analysis of the fidelity function MDa [11,12] shows
that it significantly differs from the Loschmidt echo in
two important respects: (i) The short-time decay of MDa

is quartic (and not quadratic) in time and is governed by
the commutator (and not the difference) of the unperturbed
and perturbed Hamiltonians, and (ii) for not too strong
Hamiltonian perturbations, the decay of MDa freezes at values
inversely proportional to the square of the measure � of the
perturbation, as defined by the width of the local density
of states [Eq. (11)]. This makes it possible to estimate the
strength of decoherence processes in systems of cold trapped
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atoms by fitting the saturation value of MDa, which is arguably
easier and more precise than fitting decay curves over not
precisely defined time intervals. In addition to providing an
analytic derivation of this finding, in particular relating the
saturation level to the strength of decoherence fields, and to
predicting an initial quartic decay of MDa, our theory gives
an intermediate behavior of MDa which follows that of the

Loschmidt echo ML. We confirmed these analytical findings
numerically.
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