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Enhancement and suppression of tunneling by controlling symmetries of a potential barrier
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We present a class of two-dimensional (2D) systems which shows a counterintuitive property that contradicts
a semiclassical intuition: A 2D quantum particle “prefers” tunneling through a barrier rather than traveling above
it. Viewing the one-particle 2D system as a system of two 1D particles, it is demonstrated that this effect occurs
due to a specific symmetry of the barrier that forces excitations of the interparticle degree of freedom that, in turn,
lead to the appearance of an effective potential barrier even though there is no “real” barrier. This phenomenon
cannot exist in 1D.
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I. INTRODUCTION

Quantum tunneling has been one of the most important
problems in quantum mechanics since its foundation. The
simplest problems of tunneling are one dimensional, which
is where our intuition on tunneling comes from. The extension
of one-dimensional (1D) tunneling to many dimensions is not
straightforward. There are many peculiarities that appear in
many dimensional cases that do not exist in 1D (for systematic
studies of such differences see, e.g., Refs. [1–3]). Quite often
many-dimensional tunneling is equated to the tunneling of
complex (i.e., many-particle) systems.

Key aspects of the quantum mechanical tunneling of
complex systems were analyzed by Zakhariev et al. [4,5]
in the mid-1960s; nevertheless, this problem has become an
area of active research only in the past few decades (see, e.g.,
Refs. [6–10] and references therein). Tunneling of a diatomic
molecule has been studied in Refs. [11–16]. Mechanisms of
single and double proton transfer have been modeled by mul-
tidimensional tunneling [17–19]. Time-dependent numerical
study of tunneling dynamics of a two-particle quantum system
with an internal degree of freedom has been analyzed in
Ref. [20], and an enhancement of the tunneling probability
due to the formation of a long-lived resonant state of the
system in the barrier region has been discovered (similar
analytical studies have been done in Ref. [21]). It has also
been suggested that collective tunneling of electrons may have
an important contribution to multiple ionization of atoms in
a superstrong laser field [22]. Quantum tunneling of complex
systems is not only of theoretical interest. Recent experiments
where this phenomenon is observed directly include tunneling
of a singe hydrogen atom [23], resonant tunneling of Cooper
pairs [24], and a bosonic Josephson junction consisting of two
weakly coupled Bose-Einstein condensates in a macroscopic
double-well potential [25].

We present a class of 2D systems which has a counter-
intuitive property that contradicts the semiclassical intuition:
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A 2D quantum particle “prefers” tunneling through to flying
above a barrier. According to our analysis, such “paradoxical”
dynamics is caused by a peculiar symmetry of the barrier that
leads to excitations of an interparticle degree of freedom. There
is no 1D counterpart of such systems.

The rest of the article is organized as follows: In Sec. II, we
present the systems and describe the counterintuitive effect.
The observed “paradox” is explained in Sec. III. Connections
between the phenomenon and classical physics are discussed
in Sec. IV. Concluding remarks and a possible application of
the effect to quantum control are presented in the last section.

II. FORMULATION OF THE “PARADOX”

Let us consider a particle moving in 2D (coordinates x1

and x2) toward a barrier located at the origin x1 = x2 = 0. The
initial velocity of the particle is chosen to be directed along
the diagonal x1 = x2, incident on the barrier from the third
(where x1 < 0 and x2 < 0) to the first quadrant (where x1 > 0
and x2 > 0); see Fig. 1. While the numerical calculations are
done for a specific Hamiltonian, the analytical analysis that
follows relies exclusively on the symmetry properties of the 2D
potential, making our conclusions, drawn from the numerical
analysis, general.

The model Hamiltonian for our system is chosen as (atomic
units are used throughout)

ĤN (α) = −1

2

(
∂2

∂x2
1

+ ∂2

∂x2
2

)
+ �N (α; x1,x2), (1)

�N (α; x1,x2) = αV (x1) + 3V (x2) + UN (x2 − x1), (2)

where N = 1,2,4 and α is an arbitrary real parameter. The
potentials V (x1) and V (x2) describe the potential barriers near
the origin, for the motion along each of the two coordinates.
The parameter α allows us to vary the relative height of the
barriers. We have chosen

V (x) = x exp(−x2), (3)

which corresponds to a potential barrier preceded by a potential
well.

The potential UN (ρ) describes the coupling between the
two degrees of freedom. In the absence of UN (ρ) [i.e.,
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FIG. 1. (Color online) Plots of the potential �N (α; R,ρ) [Eq. (5)]
for different α and N . Roman numerals in plot (a) label quadrants.
Black solid lines denote the level sets of the expectation value of the
initial energy, ĒN [Eq. (9)], i.e., the boundary between the classically
allowed and classically forbidden regions. (a) N = 1 and α = 3;
(b) N = 1 and α = −3; (c) N = 2 and α = 3; (d) N = 2 and α = −3;
(e) N = 4 and α = 3; (f) N = 4 and α = −3.

for UN (ρ) = 0], the 2D dynamics breaks into two uncou-
pled 1D motions. Nontrivial features in tunneling appear
as the result of nonzero coupling of the two degrees of
freedom.

Before we describe the choice of UN (ρ) in our model,
let us introduce the center of mass (R) and relative (ρ)
coordinates

R = (x1 + x2)/2, ρ = x2 − x1. (4)

The Hamiltonian (1) in these new coordinates reads

ĤN (α) = −1

2M

∂2

∂R2
+ −1

2µ

∂2

∂ρ2
+ �N (α; ρ,R),

(5)
�N (α; R,ρ) = αV (R − ρ/2) + 3V (R + ρ/2) + UN (ρ),

where µ = 1/2 and M = 2. Now we can specify the potential
that couples the two degrees of freedom and see its role in
the problem. If UN (ρ) is attractive, as it is in our calculations,
it may support bound states. These bound states, and their
symmetries, play a key role.

Here, we set UN to describe a short-range attraction,

UN (ρ) = −A exp
(−ρ2

/
r2
N

)
. (6)

Varying the parameter rN , we change the number of bound
states supported by the attracting potential. In the calculations,
we use A = 2 and r1 = 1, r2 = 1.961, r4 = 3.162, corre-
sponding to one, two, and four bound states supported by the
Hamiltonian −1/(2µ)∂2/∂ρ2 + UN (ρ). The energies of these

states are −0.955 for U1; −1.377 and −0.372 for U2; and,
finally, −1.590, −0.856, −0.308, and −0.012 for U4.

Following Ref. [20], we study the tunneling within the time-
dependent approach solving the time-dependent Schrödinger
equation,

[i∂/∂t − ĤN (α)]�N (α; t,x1,x2) = 0, (7)

with the initial condition at t = 0 that reads in the coordinates
(4) as

�N (α; 0,R,ρ) = Cφg(ρ)e−(R−R̄)2/(2σ 2
R )+i

√
2MEc.m.R. (8)

Here C is a normalization constant and φg(ρ) is the ground
state of the interparticle Hamiltonian, −1/(2µ)∂2/∂ρ2 +
UN (ρ). In all our studies, we set m = 1, R̄ = −55, σR = 3,
and Ec.m. = 1 (all values are in atomic units).

The initial wave function (8) is localized in the third quad-
rant, and we calculate the probability of finding the particle in
the first quadrant, i.e., the probability of tunneling at later time
τ . The reason for using φg(ρ) as the relative coordinate part of
the initial wave function is that we wanted to avoid spreading of
the wave packet along ρ before it reached the potential barrier.

We also present the initial expectation value of energy

ĒN = 〈�N (α; 0,x1,x2)| ĤN (α) |�N (α; 0,x1,x2)〉 ,
(9)

Ē1 = 0.059 11, Ē2 = −0.3631, Ē4 = −0.5766

(all values are in atomic units). Rigorously speaking, ĒN

depends on α; however, this dependence is very weak because
the initial wave function (8), independent of α, is mostly
localized in the region where the potential barrier, αV (x1) +
3V (x2), vanishes.

The probabilities of tunneling, disintegration (see below
for the clarification of this term), and reflection are defined as
follows:

P
(N)
T (α,τ ) =

∫ ∞

0
dx1

∫ ∞

0
dx2 |�N (α; τ,x1,x2)|2 , (10)

P
(N)
D (α,τ ) =

∫ 0

−∞
dx1

∫ ∞

0
dx2 |�N (α; τ,x1,x2)|2

+
∫ ∞

0
dx1

∫ 0

−∞
dx2 |�N (α; τ,x1,x2)|2 , (11)

P
(N)
R (α,τ ) =

∫ 0

−∞
dx1

∫ 0

−∞
dx2 |�N (α; τ,x1,x2)|2 . (12)

However, since the potential barrier, αV (x1) + 3V (x2), has
“well” and “hill” regions, we also employ the corresponding
“shifted” probabilities to exclude regions where the potential
barrier is localized,

p
(N)
t (α,τ ) =

∫ ∞

3
dx1

∫ ∞

3
dx2 |�N (α; τ,x1,x2)|2 , (13)

p
(N)
d (α,τ ) =

∫ −3

−∞
dx1

∫ ∞

3
dx2 |�N (α; τ,x1,x2)|2

+
∫ ∞

3
dx1

∫ −3

−∞
dx2 |�N (α; τ,x1,x2)|2 , (14)
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p(N)
r (α,τ ) =

∫ −3

−∞
dx1

∫ −3

−∞
dx2 |�N (α; τ,x1,x2)|2 , (15)

p(N)
s (α,τ ) = 1 − p

(N)
t − p

(N)
d − p(N)

r , (16)

where p(N)
s is the probability that a particle is trapped in the

neighborhood of the potential barrier (in fact, mostly in the well
region of the potential barrier). We introduce these quantities
to verify that our conclusions are not due to variations of the
probability density in a neighborhood of the potential barrier
(see Ref. [26]).

The Hamiltonian (1) can be viewed as the Hamiltonian of
two 1D particles, where x1,2 are coordinates of the first and
second particles, respectively. This interpretation is crucial
to explain the observed effect. Utilizing such a point of
view, quantities P

(N)
D [Eq. (11)] and p

(N)
d [Eq. (14)] can be

indeed labeled as the probabilities of disintegration because
the particles are flying apart (i.e., the two-particle system is
disintegrating) if after sufficiently long time τ either x1 > 0
and x2 < 0 or x1 < 0 and x2 > 0.

Before stating the results of numerical calculations, let
us qualitatively analyze the dynamics of the system within
a semiclassical consideration. Figure 1 presents the plots of
the potentials (5). According to the initial condition [see
Eqs. (8) and (9)], the particle is located on the axis ρ = 0
and its initial velocity is directed along this axis toward the
first quadrant, and the amplitude of the velocity is chosen
such that the total energy of the particle equals ĒN ; hence,
the boundaries between the classically allowed and classically
forbidden regions are drawn by solid black lines in Fig. 1.
Now compare Figs. 1(a) and 1(b). Since the semiclassical
counterpart of our quantum particle “experiences” the barrier
in Fig. 1(a) (penetration though a barrier is of exponentially
small probability) and does not “feel” any barrier in Fig. 1(b)
(the particle moves solely in the classically allowed region)
while traveling along the axis ρ = 0, then one would intuitively
conclude that the probability of finding the particle in the first
quadrant in Fig. 1(a) ought to be smaller than in Fig. 1(b). By
the same token, the very same probabilities in Figs. 1(c) and
1(e) should be smaller than in Figs. 1(d) and 1(f), respectively.
Further discussions of the phenomenon from the point of view
of classical trajectories are presented in Sec. IV.

The results presented in Figs. 2–5 are obtained from
the numerical solution of the time-dependent Schrödinger
equation (7) by means of the split-operator method with
an absorbing boundary condition. Figures 2–4 show the
dependence of the probabilities of tunneling, disintegration,
and reflection as functions of the parameter α that characterizes
the asymmetry of the potential barrier. Dynamics of tunneling
processes occurring in Figs. 1(a)–1(f) are visualized as
animations, which are available for viewing in Ref. [26].

Remarkably, while our qualitative conclusion reached
regarding Figs. 1(a) and 1(b) is indeed correct (see Fig. 5),
the conclusions regarding the comparison of Figs. 1(c)–1(f)
turn out to be completely wrong. In other words, the particle
does prefer to “go” through the barrier [Figs. 1(c) and 1(e)]
rather than flying above the barrier [Figs. 1(d) and 1(e)].
Furthermore, even though the potentials �1(±3; R,ρ) look
similar to �2,4(±3; R,ρ), the particle favors motion above the
barrier [Fig. 1(b)] rather than penetration through the barrier

FIG. 2. (Color online) Probabilities of tunneling as a function
of the height of the barrier (α). (a) P

(N)
T (α,150) [Eq. (10)];

(b) p
(N)
t (α,150) [Eq. (13)].

[Fig. 1(a)] for the former pair of the potentials. This paradox
is resolved in the next section.

III. EXPLANATION OF THE EFFECT

The paradox posed in Sec. II is resolved in this section by
analyzing a perturbation theory solution of the Schrödinger
equation.

FIG. 3. (Color online) Probabilities of disintegration as a func-
tion of the height of the barrier (α). (a) P

(N)
D (α,150) [Eq. (11)];

(b) p
(N)
d (α,150) [Eq. (14)].
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FIG. 4. (Color online) Probabilities of reflection as a function
of the height of the barrier (α). (a) P

(N)
R (α,150) [Eq. (12)];

(b) p(N)
r (α,150) [Eq. (15)].

FIG. 5. (Color online) The probabilities of tunneling P
(N)
T (α,τ )

[Eq. (10)] and p
(N)
t (α,τ ) [Eq. (13)] as functions of time τ .

(a) Comparison of Figs. 1(a) vs 1(b); (b) comparison of Figs. 1(c) vs
1(d); (c) comparison of Figs. 1(e) vs 1(f).

In this section, we shall study a general two-1D-particle
system given by the Hamiltonian

Ĥ = −1

2M

∂2

∂R2
+ −1

2µ

∂2

∂ρ2
+ U (ρ)

+V1

(
R − µ

m1
ρ

)
+ V2

(
R + µ

m2
ρ

)
, (17)

which is already written in the (general) center of mass (R)
and relative (ρ) coordinates,

R = (m1x1 + m2x2)/(m1 + m2), ρ = x2 − x1,

µ = m1m2/M, M = m1 + m2,

with x1,2 (m1,2), as previously, being the coordinates (masses)
of the first and second particles, respectively.

Let us introduce the following notation:

Û (tf ,ti) = T̂ exp[−iĤ (tf − ti)], (18)

Û0(tf ,ti) = T̂ exp[−i(Ĥ − V1 − V2)(tf − ti)], (19)

for total and unperturbed propagators, respectively. The
sum of the potential barriers, V1 + V2, will be considered
as a perturbation. The eigenfunctions, |n〉, and eigenval-
ues, En, of the internal motion are the solutions of the
problem

[−1

2µ

d2

dρ2
+ U (ρ)

]
|n〉 = En|n〉, (20)

where the index n denotes bound and continuous states. Intro-
ducing |nk〉 ≡ |n〉 ⊗ |k〉, where |k〉 is an eigenfunction of the
free motion of the center of mass 〈R |k〉 ≡ exp(ikR)/

√
2π – a

plane wave and |n〉 is an eigenstate of the internal motion, the
unperturbed propagator reads

Û0(tf ,ti) =
∑∫
n

∫
dke−i(En+ k2

2M
)(tf −ti ) |nk〉 〈kn|. (21)

The total propagator is a solution of the Lippmann-Schwinger
equation written in the “post” form

Û (tf ,ti) = Û0(tf ,ti)

− i

∫ tf

ti

dtÛ0(tf ,t)[V1 + V2]eεt Û (t,ti), (22)

where we set ε → 0.
Assuming that the initial condition |�(ti)〉 ≡ |n〉 ⊗ |ψin〉,

where |n〉 is one of the eigenstates (20) and |ψin〉 is a wave
packet localized before the barriers [see, e.g., Eq. (8)], we
obtain

|�(+∞)〉 ≈ Û0(+∞, − ∞) |�(−∞)〉 + |�1〉 + |�2〉, (23)

052112-4



ENHANCEMENT AND SUPPRESSION OF TUNNELING BY. . . PHYSICAL REVIEW A 82, 052112 (2010)

|�1〉 = −2πi
∑∫
n′

∫
dkdk′δ

(
En′ + k′2

2M
− En − k2

2M

)

× |n′k′〉Wnn′ (k − k′)〈k|ψin〉, (24)

|�2〉 = −2πi
∑∫

n′′,n′

∫
dkdk′dk′′|n′′k′′〉〈k|ψin〉

×δ(En′′ + k′′2/[2M] − En − k2/[2M])

× Wn′n′′ (k′ − k′′)Wnn′(k − k′)
En + k2/(2M) − En′ − k′2/(2M) + i0

, (25)

where Wnn′ (k − k′) = 〈k′n′|V1 + V2|nk〉 and |�1,2〉 are the
first- and second-order corrections, respectively. Higher-order
corrections can be derived in a similar manner, but what is
important for our further analysis is that they are functions
of W.

We simplify the matrix element W by representing it as
follows:

Wnn′ (k − k′) =
∫

dRdρdq

2π
ei(k−k′)Rφ∗

n′(ρ)φn(ρ)

× [V1(q)δ(R − µρ/m1 − q)

+V2(q)δ(R + µρ/m2 − q)], (26)

where φn(ρ) = 〈ρ |n〉. After trivial integration over R, we
obtain

Wnn′ (k − k′) = Fnn′

(
µ

m1
[k − k′]

)∫
dq

2π
ei(k−k′)qV1(q)

+Fnn′

(
µ

m2
[k′ − k]

)∫
dq

2π
ei(k−k′)qV2(q),

(27)

where the quantity

Fnn′ (p) =
∫

dρeipρφ∗
n′(ρ)φn(ρ) (28)

is called the form factor, and it is well known in scattering
theory. Its physical interpretation is the probability amplitude
of transferring a momentum p from the center of mass to
the interparticle degree of freedom by making the transition
n → n′.

Now we consider the case of identical particles: m1 =
m2 = m and U (−ρ) = U (ρ). Then, there are two types of
the eigenstates of the internal motion: even (+), φn(−ρ) =
φn(ρ), and odd (−), φn(−ρ) = −φn(ρ). Since Fnn′ (−p) =
Fnn′ (p) [Fnn′(−p) = −Fnn′ (p)] in the case of φn and φn′

being of the same (different) parity, Eq. (27) takes the
form

Wnn′ (k − k′) =
{

Fnn′ ([k − k′]/2)
∫

dq

2π
ei(k−k′)q[V1(q) + V2(q)] if φn and φn′ have the same parity,

Fnn′ ([k − k′]/2)
∫

dq

2π
ei(k−k′)q[V1(q) − V2(q)] if φn and φn′ have different parities,

(29)

which is the product of the form factor and the Fourier
transform of either the sum of the barriers or the difference
of the barriers, depending on the parities of the initial and final
states.

Two conclusions can be readily drawn from Eq. (29): First,
considering tunneling within the time-independent picture,
Amirkhanov and Zakhariev [5] have discovered the violation
of the barrier penetration symmetry for complex particles,
i.e., the penetration of composite particles through asymmetric
barriers in opposite directions may differ. [Note that the rates of
tunneling of an elementary (structureless) particle are exactly
the same in both the directions within the time-independent
approach.] The situations when the system approaches the
barrier from the left and from the right differ only by inversion
of the sign of the momentum of the center of mass. The only
part of the wave function (23) that maintains the dependence on
the sign of the momentum is the matrix element (27). Thus, the
discussed phenomenon of tunneling asymmetry is manifested
in our consideration as a physical consequence of the property

Wnn′ (k′ − k) = Wnn′(k − k′) ⇐⇒ V1(q) = V2(−q). (30)

Equation (30) is not only an alternative and perhaps faster
way of achieving the main result of Ref. [5] but also the
generalization of their conclusion for the case of nonidentical
barriers (V1 = V2).

Second, Eq. (29) basically provides an explanation of
the observed anomalies related to the potentials �n(α; x1,x2)
[Eq. (5)] pictured in Fig. 1, if we recall that tunneling of
a 2D particle in the potential �n(α; x1,x2) is equivalent
to collective tunneling of two equal 1D particles through
the potential barriers V1(x1) = αV (x1) and V2(x2) = 3V (x2).
Hence, Eq. (30) determines the selection rule for transitions
between states of the internal degree of freedom induced by
(collective) tunneling. The key point is that the probability of
collective tunneling strongly depends on whether an excitation
of the internal degree of freedom is possible. If a system is
initially in the ground state and the excitations are allowed,
then by going to an excited state, the center of mass of the
system lowers its kinetic energy (i.e., increasing the width of
the barrier), consequently reducing the probability of tunneling
(see Refs. [8,11,12,14,15] and references therein). We recall
that the parity of the ground state is even, the first excited state
odd, the second excited state even, etc.; therefore, according
to Eq. (29), if

V1(q) = V2(q), (31)

then the transition from the ground state to the first excited
state is forbidden, but if

V1(q) = −V2(q), (32)
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then the transition is allowed. Paraphrasing, we note that if
condition (31) takes place, then the interparticle degree of
freedom may stay the same while the center of mass traverses
the barriers, but if condition (32) holds then the state of the
interparticle degree of freedom can change. In essence, this is
the core of the observed phenomenon in Sec. II.

Indeed, condition (32) is satisfied for Figs. 1(d) and 1(f).
Hence, the tunneling probability is less in these cases than in
Figs. 1(c) and 1(e) for which equality (31) takes place. On the
whole, the same conclusion is valid as long as the potential
UN (ρ) can have at lest two bound states. In Figs. 1(a) and
1(b), when there is only a single bound state supported by
the intraparticle interaction, the simple intuitive picture holds.
Why is this the case? After all, there are also continuum states
of the intraparticle motion available for the excitation.

To answer this question, let us look at collective tunneling
from the point of view of the (time-independent) multichannel
formalism, which is the most common method employed to
the problem at hand (see, e.g., Refs. [2–5,8,9,11–15,27–29]).
According to the multichannel approach, using the expansion
�(R,ρ) = ∑∫

nφn(ρ)χn(R), the stationary Schrödinger equa-
tion, Ĥ�(R,ρ) = E�(R,ρ), is reduced to the following sys-
tem of ordinary differential equations for unknown functions
χn(R):

1

2M

d2χn(R)

dR2
−

∑∫
n′

Znn′ (R)χn′(R) = (En − E)χn(R),

where Znn′ (R) are effective potentials,

Znn′ (R) =
∫

dρ φ∗
n(ρ)

[
V1

(
R − µ

m1
ρ

)

+V2

(
R + µ

m2
ρ

)]
φn′ (ρ). (33)

Such an effective potential may be interpreted as the potential
barrier that the center of mass encounters while incident in the
state n′ and reflected or transmitted in the state n.

Let g denote the ground as well as the single bound state of
the potential U1(ρ) [Eq. (6)] and c a low-lying odd (unbound)
state of the continuum spectrum, which is normalized to
the δ function. Then, Zcg(R) ≡ Zgc(R) ≡ 0 since the g → c

transition is forbidden in Fig. 1(a); respectively, Zgg(R) ≡ 0 in
Fig. 1(b). The first nonzero effective potentials in Figs. 1(a) and
1(b) are Zgg(R) and Zcg(R), respectively, and they are plotted
in Fig. 6. Taking into account that Eg − Ē1 ≈ Ec.m. = 1 (a.u.)
(Eg being the ground-state energy) is the kinetic energy of
the center of mass, we may qualitatively conclude from Fig. 6
that the center of mass needs to tunnel through the barrier
[Zgg(R)] in Fig. 1(a) and flies above the barrier [Zcg(R)] in
Fig. 1(b); thus, the probability of finding the particle in the first
quadrant in Fig. 1(b) prevails over the probability of tunneling
in Fig. 1(a). Finally, we note that the first nonzero effective
potentials in Figs. 1(c) and 1(d) are of the same order; the
same statement is valid in Figs. 1(e) and 1(f).

Traces of the forced excitations, which occur in Figs. 1(d)
and 1(f), can be directly observed in the obtained numerical
data; these are steplike structures in P

(2)
T (−3,τ ), p

(2)
t (−3,τ ),

P
(4)
T (−3,τ ), and p

(4)
t (−3,τ ) [see Figs. 5(b) and 5(c)] and a

snakelike shape of the wave function �2,4(−3; t,R,ρ) that

FIG. 6. (Color online) Plots of effective potentials Znn′ (R)
[Eq. (33)]. The solid line is Zgg(R) for case (a) of Fig. 1. The dashed
line represents Zcg(R) for case (b) of Fig. 1.

emerges from the barrier (see Ref. [26]). Nevertheless, the
data regarding Fig. 1(b) [see Fig. 5(a)] seem not to reveal
similar jumps at first sight. It is due to the fact that the
coupling between bound states [the form factor (28), more
precisely] is bigger than the coupling of a bound state to
a state of the continuum spectrum. Regardless of smallness,
these transitions show up in the observation that the probability
of disintegration in Fig. 1(a) is less than in Fig. 1(b) [see
Fig. 3 which shows that P

(1)
D (3150) < P

(1)
D (−3150) as well as

p
(1)
d (3150) < p

(1)
d (−3150)].

Concluding this section, we list pivotal factors in explaining
the paradox reported in Sec. II. (i) This effect cannot
exist in one dimension, it requires at least two dimensions.
(ii) Our explanation of the effect relies on a natural iso-
morphism between systems of one 2D particle and two 1D
particles of the same mass. The essence of the effect lies in
the possibility of tuning the potential barriers such that the
intraparticle degree of freedom is excited. (iii) The dynamics
of tunneling crucially depends on whether the intraparticle
potential supports one or more bound states (an exact number
is irrelevant for the qualitative description).

IV. CLASSICAL PHYSICS AND THE PARADOX

A classical counterpart of the quantum system at hand
[Eq. (1)] is a mechanical system with the Hamiltonian

H (p1,p2; x1,x2) = (
p2

1 + p2
2

)/
2 + �N (α; x1,x2), (34)

where p1,2 and x1,2 are canonically conjugate variables. One
may perform the canonical transformation to rewrite the
Hamiltonian (34) in terms of the new canonical variables PR ,
Pρ and R,ρ, where the latter pair are the center of mass and
relative coordinates [Eq. (4)],

H (PR,Pρ ; R,ρ) = P 2
R

/
4 + P 2

ρ + �̃N (α; R,ρ). (35)

The connection between new and old canonical momenta reads
p1 = PR/2 − Pρ,p2 = PR/2 + Pρ.

The initial condition for the classical counterpart that cor-
responds to the initial condition (8) is x1(0) = x2(0) = R̄ and
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FIG. 7. (Color online) Classical vs quantum mechanics for potentials plotted in Fig. 1. Classical and quantum normalized probability
density distributions (in the logarithmic scale) at the time moment t = 150 (a.u.). Black corresponds to the minimum values, whereas white
corresponds to the maximum.

p1(0) = p1(0) = [ĒN − �N (α; R̄,R̄)]1/2. Having calculated
classical trajectories with this initial condition, we observe
that the classical particle does not reach the first quadrant
in Figs. 1(b), 1(d), and 1(f); it is reflected back to the third
quadrant. The same conclusion can be reach qualitatively by
calculating the force that acts on the classical counterpart,

F1,2(x1,x2) = −∂�N (α; x1,x2)/∂x1,2. (36)

Since

F1(x,x) = (2αx2 − α)e−x2
, F2(x,x) = (6x2 − 3)e−x2

,

the classical particle experiences a force that deflects it from
moving along the diagonal, x1 = x2 (which coincides with the
axis ρ = 0), and pushes it toward a kneelike barrier located in
the second quadrant (see Fig. 1); hence, the particle eventually
bounces off the barrier back to the third quadrant.

It is noteworthy to mention a peculiarity of numerical
calculations. We have found that it is advantageous to employ
a (fourth-order) symplectic integrator [30–32] for solving
Hamilton’s equations in this section due to the following

reason: A sharp and localized shape of the kneelike barrier
leads to an unstable motion of the classical particle. If one
employs nonsymplectic integrators (e.g., the Runge-Kutta
methods), a very tiny time step must be chosen in order to
properly account for the influence of the kneelike barrier; this,
in fact, often leads to instability of the numerical scheme for a
long-time propagation. A physical reason of such an instability
lies in the fact that nonsymplectic integrators do not explicitly
conserve energy while the symplectic integrators always do;
hence, they give a proper long-time evolution of any chaotic
Hamiltonian system.

The observation of this behavior of the classical counterpart
casts doubt on the quantum nature of the paradox. More
precisely, is it possible that an ensemble of classical particles,
which corresponds (in some sense) to the initial wave
function of the system at hand (8), would mimic the observed
phenomenon? As shown below, the answer turns out to be
negative.

Furthermore, since it is well known that the application
of the semiclassical approximation, as a mediator between
classical and quantum mechanics, to tunneling often is very
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fruitful in shedding light on the physical nature of the studied
process (see, e.g., Refs. [33,34]), the addressed question is
important as the first step toward the usage of semiclassical
methods for the interpretation of the paradox.

Shirokov has proposed a unified formalism for quantum
and classical mechanics [35]—a reformulation of both the
theories in terms of the same physical and mathematical
concepts. Crudely speaking, this formalism is based on the
well-known fact that observables of quantum mechanics can
be converted from operators to functions (i.e., to a very
similar form as in classical physics) by means of the Weyl
representation [36]. In these terms, the probability density of
quantum states is represented by the Wigner quasiprobability
density distribution function [37]. Hence, in order to construct
a classical ensemble that corresponds to the quantum particle,
we shall calculate the Wigner function W (PR,Pρ ; R,ρ) for the
initial condition (8),

W (PR,Pρ ; R,ρ)

= (2π )2
∫

�(R − R′/2,ρ − ρ ′/2)

×�∗(R + R′/2,ρ + ρ ′/2)ei(PRR′ +Pρρ ′)dρ ′dR′, (37)

where �(R,ρ) ≡ �N (α; 0,R,ρ). Since φg(ρ) has no zeros and
decays exponentially at infinity, we shall approximate it by a
Gaussian

φg(ρ) ∝ exp
[−ρ2/

(
2σ 2

ρ

)]
, (38)

where we set σρ = 1.5 (a.u.). Substituting Eqs. (38) and (8)
into Eq. (37), one readily obtains

W (PR,Pρ ; R,ρ) ∝ exp
{−(R − R̄)2/σ 2

R − ρ2/σ 2
ρ

− σ 2
R(PR −

√
2MEc.m.)

2 − σ 2
ρ P 2

ρ

}
. (39)

Therefore, our quantum system corresponds to an ensemble
of classical particles with the Hamiltonian (35), and the
initial state of the ensemble that corresponds to the initial
condition (8) can be generated by considering R, ρ, PR , and
Pρ as independent normal random variables with means R̄,0,√

2MEc.m., 0 and with standard deviations σR/
√

2,σρ/
√

2,
[
√

2σR]−1, [
√

2σρ]−1, respectively.
Results of classical simulations of dynamics of an ensemble

of 106 particles are compared with ab initio quantum simula-
tions in Fig. 7. Foremost, one may notice how well the classical
simulations reproduced quantum behavior in the classically
allowed regions in almost all the cases. One observes a
qualitative agreement between classical and quantum results in
the cases of tunneling [Figs. 7(a), 7(c), and 7(e)]. Nevertheless,
in the cases of the over barrier motion [Figs. 7(b), 7(d), and
7(f)], classical mechanics gives more asymmetric probability
distributions than quantum mechanics. This can be explained
by means of a simple observation that there are kneelike
potential barriers in Figs. 1(b), 1(d), and 1(f), which force
a majority of classical particles to go to the fourth quadrant.

Having calculated the classical probability density distri-
butions, we may introduce the probability of tunneling as
well as the shifted probability of tunneling analogously to the
corresponding quantum quantities [Eqs. (10) and (13)]. The
classical probabilities of tunneling in the above-barrier cases
are an order of magnitude larger than the corresponding clas-

sical probabilities in the under-barrier cases. This conclusion
contradicts the results of the quantum calculations (Fig. 5).
In other words, there is no paradox in classical physics. It is
natural since the ensemble of classical particles should prefer
going above than tunneling through the barrier. Hence, we
have confirmed that the reported effect is genuinely quantum
mechanical.

V. CONCLUSIONS AND DISCUSSIONS

In Sec. II, we presented the 2D systems, whose potentials
are plotted in Fig. 1, which hold the unexpected property that
the probability of tunneling through a barrier is larger than the
probability of flying above a barrier. As was clarified in Sec. III,
this phenomenon occurs due to a specific symmetry of the
potential [Eq. (32)] that forces excitations of an interparticle
degree of freedom, thus lowering the probability of tunneling.
This effect is overlooked by the intuitive conclusion which
uses the language of trajectories within the quasiclassical
approximation that the tunneling is an “exponentially harder”
process than flying above a barrier. First and foremost, we note
that the quasiclassical approximation, being an elegant and
insightful approach in 1D, is in fact very cumbersome and quite
often impractical in 2D. Hence, in most situations of interest
different modifications of the original quasiclassical approxi-
mation that make additional assumptions on the wave function
are employed (see, e.g., Ref. [9] and references therein). From
this point of view, we conclude that a quasiclassical model
capable of explaining the reported paradox must not only rely
on the language of trajectories but also include the quantum
transitions that are at the core of the effect.

An important undiscussed issue is the dependence of the
reported effect on the initial condition (8). If we substitute
φg(ρ) in Eq. (8) by the wave function of the first excited state
of the interparticle Hamiltonian in the cases of N = 2 and
N = 4 (note that Ec.m. must be appropriately decreased such
that it would be possible to talk about tunneling), then one
may expect that the paradox should disappear, and one would
observe a conventional situation: the probability of tunneling
through the barrier [Figs. 1(c) and 1(e)] would be smaller than
the probability of flying above the barrier [Figs. 1(d) and 1(f)].
Indeed, since the transition from the first excited state to the
ground state is allowed because condition (32) is satisfied in
Figs. 1(d) and 1(f), then after making such a jump, the center
of mass gains the energy difference; hence, it can more easily
tunnel in Figs. 1(d) and 1(f) than in Figs. 1(c) and 1(e) where
this transition is forbidden.

As far as applications of the effect to quantum control are
considered, consider a system of two neutral atoms that interact
through the dipole-dipole interaction and are trapped, e.g., by
a dipole trap. The magnitudes of the atomic dipoles depend on
internal states occupied by the atoms. The internal states of the
atoms can be changed for each atom independently by means
of a laser with an appropriately tuned frequency, assuming that
the atoms have different spectra. Performing such excitations,
we may be able to switch between the cases where either
condition (31) or condition (32) is valid. Hence, we may allow
or forbid the two-atom system to tunnel through the trap.

A generalization of Eq. (29) as well as Eqs. (30), (31),
and (32) to the case of n (n � 3) particles is a nontrivial
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question that should be addressed in the future. One might
expect that such a generalization of the effect may reveal many
new varieties of the phenomenon, which could be interesting
from the point of view of quantum control of tunneling of
complex systems.
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