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Information flow, non-Markovianity, and geometric phases
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Geometric phases and information flows of a two-level system coupled to its environment are calculated and
analyzed. The information flow is defined as a cumulant of changes in trace distance between two quantum states,
which is similar to the measure for non-Markovianity given by Breuer. We obtain an analytic relation between
the geometric phase and the information flow for pure initial states, and a numerical result for mixed initial states.
The geometric phase behaves differently depending on whether there are information flows back to the two-level
system from its environment.
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I. INTRODUCTION

Geometric phase had not been noticed until Pancharatnam’s
study [1] and Berry’s discovery [2]. Briefly, Simon gave a
geometric interpretation of this kind of phase in the language
of differential geometry and fiber bundles [3]. Since then, there
has been a keen interest in the holonomy effect in quantum
theory, which leads to many extensions of the geometric phase,
including the geometric phase acquired in a nonadiabatic
and cyclic evolution by Aharonov and Anandan [4], in a
nonadiabatic and noncyclic evolution by Samel and Bhandari
[5], and in a nonadiabatic, noncyclic, and nonunitary evolution
by Mukunda and Simon [6]. All those investigations were
focused on a pure state. For a practical quantum system,
however, its state would be mixed due to the unavoidable
coupling to its environment. This motivates the study on the
geometric phase for mixed states [7–10], which has been
defined as [10]

�GP(t) = arg

[
N∑

i=1

√
εi(0)εi(t)〈ψi(0)|ψi(t)〉

× exp

(
−

∫ t

0
〈ψi(t

′)|ψ̇i(t
′)〉dt ′

)]
, (1)

where εi(t) and |ψi(t)〉 are the eigenvalues and the correspond-
ing eigenstates of the density matrix, respectively. Throughout
this paper, we will use this definition to study the geometric
phase.

On the other hand, it is complicated to exactly describe
the dynamics of open systems due to the huge number of
variables in an environment. To simplify the description, one
could make some approximations such as the weakly coupling
and Markovian approximations. Under these approximations,
we can obtain a Markovian master equation that describes the
dynamics of the open system without memory of its history.
However, many systems exhibit a strong non-Markovian effect
and cannot be described by the Markovian master equation.
It is then interesting to study the geometric phase in non-
Markovian dynamics, and establish the relation between the
geometric phase and the non-Markovianity of the dynamics.
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The non-Markovianity may be defined in many ways
[11–14], for instance, in Ref. [11] the authors proposed
a scheme to quantify the degree of the non-Markovianity
based on the trace distance of two quantum states, and in
Ref. [12] the non-Markovianity was measured by exploiting
the specific traits of quantum correlations. The effects of
non-Markovianity on the geometric phase has been considered
by several works, e.g., Refs. [15,16]. In this paper, we will
establish a relation between the geometric phase and the
information flows. We divide the information flow into two
types, i.e., the information flow from the open system into
the environment M (called forward information flow) and
the information flow back from the environment to the open
system N (called backward information flow). The backward
information flow N in fact is a modified measure of non-
Markovianity given by Breuer and his co-workers.

This paper is organized as follows. In Sec. II, we present a
definition for the information flow based on the trace distance,
then we establish the relation between the information flow and
the geometric phase for pure initial states. The case of mixed
initial states is considered in Sec. III, where the geometric
phase and the information flow are calculated numerically.
Finally, we give conclusions and discussions in Sec. IV.

II. INFORMATION FLOW AND GEOMETRIC
PHASE FOR PURE INITIAL STATES

A. Measure for information flow

Here we first recall the measure for non-Markovianity
defined by Breuer [11]. This definition is based on the so-called
trace distance between two states ρ1 and ρ2

D(ρ1,ρ2) = 1
2 Tr||ρ1 − ρ2||, (2)

where ||A|| =
√

AA†. For a two-level system, this trace
distance is equal to one half of the ordinary Euclidean
distance between the two states on the Bloch sphere, i.e.,
D(ρ1,ρ2) = 1

2 |�r1 − �r2|, where �rj is the Bloch vector for
state ρj . The change rate of the trace distance can be
represented as

σ (ρ1(t),ρ2(t)) = d

dt
D(ρ1(t),ρ2(t)). (3)
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When σ < 0, ρ1(t) and ρ2(t) approach each other in the
dynamics, and this can be understood as information flow
from the system to the environment; when σ > 0, ρ1(t) and
ρ2(t) are away from each other in the time evolution, and
this can be interpreted as information flow back to the system,
which is treated as a typical character of the non-Markovianity.
As shown in Refs. [11,17], one can define a measure of
non-Markovianity NB(t) for a quantum process �(t) by
maximizing over all initial states [ρ1(0),ρ2(0)] of total gain
of the trace distance, namely,

NB(�) = max
ρ1,2(0)

∫
σ>0

σ (ρ1(t),ρ2(t)) dt. (4)

The measure of non-Markovianity only characterizes the gain
of the trace distance in the dynamics. To describe the loss
and gain of the trance distance uniformly, we extend the
concept of information flow in the following. In fact, one of
the information flows defined below is a modified measure
of non-Markovianity in Eq. (4). We choose a steady state
as ρ2 in Eq. (2) and call it standard state. This choice
makes the maximization easy; however, it cannot measure all
non-Markovian dynamics. Fortunately, this simplified measure
of non-Markovianity is in agreement with the measure given
in [11] in our case.

Now we define M and N to measure the information gain
and loss for a given initial state ρ1(0) in the dynamics �(t).
We will refer to this information gain and loss uniformly as
formation flows.

N (�) =
∫

σ>0
σ (ρ1(t),ρ2) dt, (5)

and

M(�) = −
∫

σ<0
σ (ρ1(t),ρ2) dt. (6)

Obviously, the above two measures satisfy

D(ρ1(t),ρ2) = D(ρ1(0),ρ2) + N (ρ1(t),ρ2) − M(ρ1(t),ρ2).

(7)

The difference between N (t) and NB is as follows. NB is
the maximum information flow back to the system in the
dynamics. Hence it does not depend on the initial condition.
However, N (t) is the information flow back to the system
with respect to the standard state ρ2(0) in the interval (0,t)
[assuming that a steady state for the quantum process �(t)
exists, and the standard state ρ2(0) is exactly the steady state as
before]. This simplification is true in the situation considered
in this paper, i.e., a two-level system coupling to vacuum
electromagnetic fields at zero temperature with standard state
ρ2 in the Bloch sphere representation as �r2 = (0,0, − 1).

With these definitions and notations, we will dis-
cuss the relationship between the geometric phase and
the information flows between the open system and its
environment.

B. Geometric phase for pure initial states

Consider a two-level system coupled to its environ-
ment at zero temperature. The general form of the den-

sity matrix can be expressed as ρ(t) = 1
2 [1 + �r(t) · �σ ],

where �σ = (σx,σy,σz) is the Pauli matrix, and �r(t) = r(t) ·
(sin θ (t) cos φ(t), sin θ (t) sin φ(t), cos θ (t)) is the Bloch vec-
tor. For pure initial states, |�r(0)|2 = 1; while for mixed
initial states, |�r(0)|2 < 1. It is easy to gain the instantaneous
eigenvalues of the above density matrix ρ(t) as

ε±(t) = 1
2 [1 ± |�r(t)|]. (8)

It is obvious that in the case of the pure initial states, the
eigenvalue ε−(t = 0) = 0, which means that the eigenstate
corresponding to the eigenvalue ε−(t) gives no contribution to
the geometric phase. This simplifies our calculation and helps
us to obtain an analytic result for the geometric phase. The
eigenstates corresponding to the eigenvalues in Eq. (8) can be
written as

|ψ+(t)〉=
(

sin θ(t)
2

cos θ(t)
2 eiφ(t)

)
, |ψ−(t)〉=

( − cos θ(t)
2

sin θ(t)
2 eiφ(t)

)
.

(9)

Now substitute Eqs. (8) and (9) into Eq. (1) with the assumption
that φ = ω0t + φ0 (where ω0 and φ0 are constants, this is
reasonable for different kinds of master equation [15,16]), and
the geometric phase with pure initial states [their Bloch vector
is �r(0)] can be obtained as

�GP = −
∫ T

0
ω0 cos2 θ (t)

2
dt, (10)

where we set T = 2nπ/ω0 (n = 1,2,3, . . .), i.e., a multiple of
the quasiperiod 2π/ω0.

Next, we establish the relationship between the geometric
phase and the information flows M(t) and N (t). Keeping the
relationship Eq. (7) between the N (t) and M(t) in mind, we
gain the geometric phase acquired by the system,

�GP

= −
∫ T

0
ω0

[
1

2
+ rz(t)

2
√

4[D(0)+N (t)−M(t)]2−2rz(t)−1

]
dt,

(11)

where rz(t) = r(t) cos θ (t) is the z component of �r(t), and
D(0) = D(ρ1(0),ρ2). It is shown that when the system is
closed, i.e., cos θ (t) = cos θ0 and r(t) = 1, where θ0 is the
initial polar angle on the Bloch sphere, and setting T = 2π/ω0,
Eq. (11) is reduced to the well-known form �

(closed)
GP = −π (1 +

cos θ0), that is the geometric phase acquired by a two-level
quantum system in a rotating magnetic field. For a Markovian
process, N (t) is always zero and M(t) increases with time
until it approaches D(0). In this case, the geometric phase is
only influenced by the information flow to the environment.
When we consider the non-Markovian effects, the situation
is more complicated, and the information flow N (t) back to
the open system has a link to the geometric phase given by
Eq. (11). We will discuss it numerically in Sec. III.

III. GEOMETRIC PHASE FOR MIXED STATE

In this section, we will study the geometric phase of a two-
level system with mixed initial states. Because it is difficult
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to get an analytical result like Eq. (11) for the information
flows and the geometric phase, we here numerically and
perturbatively establish a relation between the geometric phase
and the information flow. The perturbation is carried out
to first order in the coupling constant, while the numerical
results are for a wide range of coupling constants. Two types
of master equation, the time-local master equation and the
memory kernel master equation with exponential memory, will
be considered.

A. Time-local master equation

Let us consider a two-level system interacting with a
vacuum field at zero temperature whose spectral density is
Lorentzian [18–20],

J (ω) = 1

π

W 2λ

(ω0 − ω)2 + λ2
. (12)

Here W is the coupling constant between the system and the
environment, ω0 is the atomic transition frequency which is
of the time scale τ0 ∼ ω−1

0 , and λ is the spectral width of
the coupling that is connected to the environment correlation
time, τB ∼ λ−1. The dynamics of this system is governed by
the following master equation (namely, the time-local master
equation) [18]:

ρ̇(t) = −i
(t)[σ+σ−,ρ(t)] + �(t)[2σ−ρ(t)σ+
− σ+σ−ρ(t) − ρ(t)σ+σ−], (13)

where σ± are the Pauli operators, and the parameters


(t) = −Im

[
ċ(t)

c(t)

]
, �(t) = −Re

[
ċ(t)

c(t)

]
(14)

play the role of Lamb shift and decay rate for the system,
respectively. Here c(t) can be calculated by means of the
Laplace transform as

c(t) = exp

[−(λ + iω0)t

2

] (
cosh

�t

2
+ λ

�
sinh

�t

2

)
, (15)

with � = √
λ2 − 4W 2. We note that the rate R = W/λ

indicates the strength of the non-Markovianity. With R < 1
2 ,

the dynamics is called time-dependent Markovian, while for
R > 1

2 the dynamics is non-Markovian. Here we assume again
that the initial state of the open system is

ρ(0) = 1
2 (1 + �r0 · �σ ), (16)

where �r0 = r0 · (sin θ0 cos φ0, sin θ0 sin φ0, cos θ0) and |�r0|2 <

1. With this initial condition, the density matrix of the
system at time t can be obtained from the master
equation (13) as

ρ(t)

= 1

2

(
(1 + r0 cos θ0)|c(t)|2 r0 sin θ0 exp(iφ0)c(t)

r0 sin θ0 exp(−iφ0)c∗(t) 2 − (1 + r0 cos θ0)|c(t)|2

)
.

(17)

The eigenvalues and the eigenstates of the reduced density
matrix Eq. (17) can be easily obtained as

ε±(t) = 1

2
[1 ± r(t)],

|ψ+(t)〉 =
(

sin θt

2

cos θt

2 ei(ω0t+φ0)

)
, (18)

|ψ−(t)〉 =
( − cos θt

2

sin θt

2 ei(ω0t+φ0)

)
,

where

tan θt = r0 sin θ0|c(t)|/[(1 + r0 cos θ0)|c(t)|2 − 1],

r(t) =
√

[(1 + r0 cos θ0)|c(t)|2 − 1]2 + r2
0 sin2 θ0|c(t)|2.

We can expand the geometric phase with respect to the
coupling strength W 2 up to the first order (i.e., in the weak
coupling limit), that is,

�GP(T )
.= �

(0)
GP − W 2

[
tan �

(0)
GPC1(r0,θ0)κ1(λ,T )

+ω0 cos−2 �
(0)
GPC2(r0,θ0)κ2(λ,T )

]
, (19)

where κ1(λ,T ) = ∂|c(T )|2
∂W 2 |W 2=0 = 1−exp(−λT )

λ2 − T
λ

, κ2(λ,T ) =∫ T

0
∂|c(t)|2
∂W 2 |W 2=0 dt = T

λ2 + 1
λ3 [exp(−λT ) − 1] − T 2

2λ
, and �

(0)
GP

is the geometric phase acquired under the unitary evolu-
tion with mixed initial states, �

(0)
GP = arctan{r0 tan[−iπ (1 +

cos θ0)]}. The parameter Ci(r0,θ0) (i = 1,2) is a constant
relative to the initial condition given by

C1(r0,θ0) = 1

4
(r0 + r0 cos2 θ0 + 2 cos θ0),

(20)

C2(r0,θ0) = 1

r0

(
1 + r0 sin2 θ0 cos θ0

2
− cos2 θ0

)
.

It is interesting to calculate the trace distance between ρ(t)
defined in Eq. (17) and the standard state in the weak coupling
limit. Substituting Eq. (17) into Eq. (2), and expanding the
trace distance up to the first order in W 2, we have

D(t)
.= D(t)|W 2=0 + W 2

4D(t)|W 2=0

[
r2

0 (1 + cos2 θ0)

+ 2r0 cos θ0
]∂|c(t)|2

∂W 2
|W 2=0, (21)

where D(t)|W 2=0 =
√
r2

0 + 1 + 2r0 cos θ0/2 and ∂|c(t)|2
∂W 2 |W 2=0 =

1−exp(−λt)
λ2 − t

λ
. D(t)|W 2=0 is the trace distance at time t under

unitary evolution; it is not difficult to prove that D(t)|W 2=0 =
D(0). Then according to Eq. (7), we have

N (t) − M(t)
.= W 2

4D(t)|W 2=0

[
r2

0 (1 + cos2 θ0) + 2r0 cos θ0
]

× ∂|c(t)|2
∂W 2

∣∣∣∣
W 2=0

. (22)

If coupling strength is very weak, there is no information flow
back into the system in a quasiperiod, i.e., N (T ) = 0. So it is
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z=1/3
z=2/3
z=1

FIG. 1. (Color online) The geometric phase (in units of π ) as a
function of the parameter R with different z. The coupling strength is
W = 0.1ω0 with ω0 = 1. The azimuthal angles of the two components
of the initial state are chosen as ϑ0 = π/4, ϕ0 = π/3.

straightforward to obtain

M(t)
.= − W 2

4D(t)|W 2=0

[
r2

0 (1 + cos2 θ0) + 2r0 cos θ0
]

× ∂|c(t)|2
∂W 2

∣∣∣∣
W 2=0

. (23)

This result tells us that M(t) increases monotonically with the
increase of 1/λ. Comparing this result with Eq. (19), one may
find that the dependence of M(T ) and �GP(T ) on the spectral
width λ is almost the same for mixed initial states in the weak
coupling limit.

Numerical results for the geometric phase and the informa-
tion flow M under the weak coupling limit is shown in Figs. 1
and 2. The initial states are chosen as

ρ(0) = 1 − z

2
I + z|ξ 〉〈ξ |, (24)

where |ξ 〉 = cos ϑ0|0〉 + sin ϑ0 exp(iϕ0)|1〉 is a pure state, z ∈
[0,1], and I is a 4 × 4 unitary matrix. For z = 0, the density
matrix is the maximally mixed state, while they reduce to a
pure state in the case of z = 1. In the language of the Bloch
vector, the initial state Eq. (24) can be represented as

r0 = z, θ0 = 2ϑ0, φ0 = ϕ0. (25)

Now we establish the relation between the geometric phase
and the information flow with different coupling strengths
one by one. For example, W = 0.1ω0, W = ω0, and W =
10ω0 will be chosen to explore the geometric phase and the
information flow, numerical results are shown in Figs. 1–6.
Figures 1 and 2 show the geometric phase �GP and the
information flowM as a function of R with different parameter
z for weak coupling (W = 0.1ω0). The geometric phase �GP is
plotted in units of π . We can see from Fig. 1 that the geometric
phase increases monotonically with the parameter R. In this
case, the coupling strength W is small enough so that there is no
information flowing back into the system in a quasiperiod. For
pure initial states, i.e., z = 1, comparing Fig. 1 with Fig. 2,
we find that the larger the geometric phase, the more the

0 2 4 6 8 10
0.04

0.08

0.12

0.16

0.2

R

z=1/3
z=2/3
z=1

FIG. 2. (Color online) The information flow M as a function of
the parameter R with different z. The parameters are the same as in
Fig. 1.

information flows to the environment; this is confirmed by
Eq. (11). Because N (R) is always zero in a quasiperiod, the
geometric phase mainly depends on M(R).

With an increasing coupling strength W , the correlation
time of the environment τB approaches time T , which indicates
that N (R) > 0 in a quasiperiod. In Figs. 3 and 4, we plot
the information flow N (R) and the geometric phase �GP

as a function of R for W = ω0. Here we only focus on
the information flow N , because it characterizes the non-
Markovianity of the open system.

Comparing Fig. 3 with Fig. 4, we may find that when
the information flows back to the system, the geometric
phase decreases with increasing N (R) and, in the region of
N (R) = 0, the behavior of the geometric phase is similar
to the case in the weak coupling limit. This indicates the
backward information flow (i.e., information flow back to the
open system) affects the geometric phase acquired by the open
system. This phenomenon can be understood as follows: for
this time-local master equation, when the information flows
back to the system, the Bloch vector moves toward to the

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

R

z=1/3
z=2/3
z=1

FIG. 3. (Color online) The information flow N as a function of
the parameter R with different z. Here the coupling strength W =
ω0 and ω0 = 1. The initial states of the open system are chosen as
Fig. 1.
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R

Φ
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z=1/3
z=2/3
z=1

FIG. 4. (Color online) The geometric phase as a function of the
parameter R with different z. Here the coupling strength W = ω0 and
ω0 = 1. The initial states of the open system are chosen as in Fig. 1.

north pole of the sphere, then the geometrical phase, which is
interpreted as the solid angle in the Bloch sphere, decreases.

When W is very large, the system will drop into steady
state after time T . In this case, by comparing the geometric
phase �GP and the information flow N , we can see that
when N (R) = 0 (as shown in Fig. 6), the behavior of the
geometric phase (as shown in Fig. 5) is very similar to the
case of W = 0.1ω0 and W = ω0 with N (R) = 0. With an
increasing R, the information flow back into the open system
increases whereas the geometric phase decreases; this is very
similar to the case when W = ω0 in the region of N (R) > 0.
Based on these observations, we conclude that for a dynamics
described by the time-local master equation, if the geometrical
phase is inversely proportional to R, the dynamics must be
non-Markovian. In other words, the non-Markovianity can
be reflected in the geometrical phase to a certain extent.
This conclusion are valid for both pure and mixed initial
states.

It seems that the point (in the R axis) where the geometric
phase arrives at its extremum is exactly the point where

0 2 4 6 8 10
1.8

1.85

1.9

1.95

2

R

Φ
G

P

z=1/3
z=2/3
z=1

FIG. 5. (Color online) The geometric phase as a function of R

with different z. Here the coupling strength W = 10ω0 and ω0 = 1.
The initial states of the open system are the same as in Fig. 1.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

R

z=1/3
z=2/3
z=1

FIG. 6. (Color online) The information flow N as a function of R

with different z. Here the coupling strength W = 10ω0 and ω0 = 1.
The initial states of the open system are the same as in Fig. 1.

N (T ) begins to increase (in the following we will call
this the critical point); however, by careful examination,
we find that this is not the case. According to Eq. (11)
and the definition of trace distance, we can clarify that
the critical point is the very point where the integrand of
the geometric phase reaches its minimum (a detailed proof
can be found in the Appendix). Moreover, the integrand of
the geometrical phase behaves similarly to the information
flow N (t).

The information flow N (T ) and the geometric phase �GP

as a function of ϑ0 and R are plotted in Fig. 7. When
N (T ) > 0, it can be seen from the figure that the more the
information flows back, the smaller the geometric phase is;
in the region of N (T ) = 0, for any initial azimuthal angle
ϑ0, the geometric phase increases with R, which is exactly
the finding of our analytical analysis. When ϑ0 = π/2, both
N (T ) and �GP reach their extrema, the geometric phase
does not change with R and �GP = 2π , but the information
flow changes indeed. This can be understood as follows:
When ϑ0 = π/2, sin 2ϑ0 = 0, and the initial density matrix
is diagonal, i.e., ρ(0) = diag{(1 − z)/2,(1 + z)/2}; with this
diagonal density matrix, the geometric phase is always equal to
2π , and N (T ) changes with R since the information exchange

0

5

10 0

0.5

1
1.8

1.9

2

ϑ
0R

Φ
G

P

0

5

10 0

0.5

1
0
1
2

ϑ
0

R

FIG. 7. (Color online) The information flow N and the geometric
phase �GP as a function of R and the initial polar angle ϑ0 (in units of
π ). Here the coupling strength is W = 10ω0 and ω0 = 1. The initial
states of the open system are chosen as z = 1/2 and ϕ0 = π/6.
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between the system and the environment varies with R. The
situation remains unchanged for the cases where ϑ0 = 0 and
ϑ0 = π . Furthermore we find that, although �GP = 2π for
both ϑ0 = π/2 and ϑ0 = π , the information flows N (T ) are
completely different. This can be explained as the difference in
the initial states, which are ρ(0) = diag{(1 − z)/2,(1 + z)/2}
for ϑ0 = π/2 and ρ(0) = diag{(1 + z)/2,(1 − z)/2} for ϑ0 =
π . By the definition of the geometric phase, it depends on
the spectrum of the density matrix, which is the same for the
initial states, leading to the same geometric phase acquired in
the dynamics. But the information flow N (T ) for ϑ0 = π is
larger than that for ϑ0 = π/2, because the information flow
is defined as the distance between the actual state and the
standard state of the open system, which is different for the
initial states.

B. Memory kernel master equation with exponential memory

Now we consider the geometric phase of an open two-level
system governed by the memory kernel master equation with
exponential memory. Here, we apply this model to calculate
the geometric phase, but we do not discuss the positivity of the
master equation in detail.

In the interaction picture, the integro-differential master
equation with memory kernel can be expressed as

ρ̇(t) =
∫ t

0
K(t ′)Lρ(t − t ′) dt ′, (26)

where L is the Liouvillian superoperator which takes the form

Lρ = 1
2γ0(2σ−ρσ+ − σ+σ−ρ − ρσ+σ−), (27)

with γ0 is the dissipation rate, and K(t) represents the memory
effect called the Shabani-Lidar memory kernel [21,22]

K(t) = γ exp(−γ t). (28)

We call τR = 1/γ the memory time. It is not difficult to solve
this integro-differential equation by the Laplace transform with
the initial condition of Eq. (16). In the Schrödinger picture, the
solution is

ρ(t)

= 1

2

(
(1 + r0 cos θ0)ξ (C,t) r0 sin θ0e

−i(ω0t+φ0)ξ
(

C
2 ,t

)
r0 sin θ0e

i(ω0t+φ0)ξ
(

C
2 ,t

)
2 − (1 + r0 cos θ0)ξ (C,t)

)
,

(29)

where

ξ (C,τ ) = e
−τ
2

[
cosh

(
�τ

2

)
+ 1

�
sinh

(
�τ

2

)]
,

� = √
1 − 4C.

The parameters C and τ are defined as C = γ0/γ and τ = γ t .
By the same procedure as in Sec. III A, we establish the

relation between the geometric phase and the information flow,
which is found to be similar to that in the last section. Hence,
the conclusions for the relation between the geometric phase
and the information flow hold true for open systems described
by the memory kernel master equation. See the numerical
results shown in Figs. 8 and 9.

0 0.05 0.1 0.15 0.2 0.25
−0.36

−0.32

−0.28

−0.24

−0.2

C

Φ
G

P

z=1/3
z=2/3
z=1

FIG. 8. (Color online) The geometric phase for the memory
kernel master equation with exponential memory kernel as a function
of the parameter C with different z. Here the dissipation constant
takes γ0 = 0.1ω0 and ω0 = 1. We choose the same initial states as in
Fig. 1 for the open system to plot this figure.

For the memory kernel master equation with exponential
memory kernel, it is well known that in some region of pa-
rameter C, the master equation (26) may lead to a nonpositive
density matrix. In Ref. [22], the positivity for a density matrix
has been discussed: when C > 1/4, the the memory kernel
master equation with exponential memory is not valid, because
the second perturbation used to drive the master equation
does not suit this case. Recently, Breuer et al. checked that
this kind of master equation does not own memory effect
when the positivity of the density matrix is conserved [23].
When C < 1/4, there is no information flow back into the
open system, no matter how one chooses the parameter γ0;
so we choose γ0 = 0.1ω0 and plot the geometric phase and
the information flow M(C) in this region. Comparing Fig. 8
with Fig. 9, we can find the link between the information flow
M(C) and the geometric phase is the same as that found in
Sec. III A.

0 0.05 0.1 0.15 0.2 0.25
0.1

0.12

0.14

0.16

0.18

0.2

R

z=1/3
z=2/3
z=1

FIG. 9. (Color online) The information flow M for memory
kernel master equation with exponential memory kernel as a function
of C with different z, where the dissipation constant is γ0 = 0.1ω0

and ω0 = 1. The initial states of the open system are the same as in
Fig. 1.
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IV. CONCLUSION AND DISCUSSIONS

In summary, we have discussed the information flows and
geometric phases in different non-Markovian processes. For
an open two-level system with pure initial states, an analytic
relation between the information flow and the geometric phase
has been given in terms of the Bloch vector. For mixed initial
states, two kinds of master equation, namely, the time-local
master equation and the memory kernel master equation with
exponential memory, have been numerically studied. We find
that in both cases, the information flows affect the geometric
phase directly, and a relation between the geometric phase and
information flow is numerically established. An understanding
for the observation is provided.

The forward and backward information flows are by
definition different, but they complementarily describe the
information exchange between the environment and the
system. The backward information flow can be used to
describe the non-Markovianity of the open system, while the
forward information flow is connected with the coherence
loss. Neither forward nor backward information flow can
be measured directly, indicating that the measure of non-
Markovianity defined in this way cannot be directly observed
in experiment. However, mixed-state geometric phases are
measurable, and the feature caused by it has been observed
[24]. This motivates the establishment of the connection
between the geometric phase and the information flow. Indeed,
The finding of this paper suggests that the geometric phase can
reflect non-Markovianity and then can serve as a measure of
non-Markovianity for open systems.
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APPENDIX

In this Appendix, we show in detail that the critical point is
exactly the point where N (t) begins to increase. By Eq. (11),
we write the integrand as

A(t,R) = ω0

[
1

2
+ rz(t,R)

2
√

4D2(t,R) − 2rz(t,R) − 1

]
, (A1)

where rz(t) = r(t) cos θ (t). To find the critical point, we take
a derivative with respect to R

∂

∂R
A(t,R) = ω0r

2
0 sin2 θ0

4r(t,R)3
[(1 + r0 cos θ0)|c(t,R)|2 + 1]

× ∂

∂R
|c(t,R)|2, (A2)

noting that r(t,R) ∈ [0,1] and (1 + r0 cos θ0)|c(t,R)|2 + 1 >

1, we find, when ∂
∂R

|c(t,R)|2 = 0, A(t,R) must reach its
extremum. Moreover, we check the first derivative of the trace
distance with respect to R,

∂

∂R
D(t,R) = 1

4D(t,R)

[
(1 + r0 cos θ0)2|c(t,R)|2 + r2

0 sin2 θ0
]

× ∂

∂R
|c(t,R)|2. (A3)
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0

0.2

0.4

0.6

0.8

1

 N(T)

M(T)

FIG. 10. (Color online) The measures N and M as functions of
R with a pure initial state (ϑ0 = π/3). The coupling strength W is
chosen as 0.6. This figure shows that at the start point (the point
of crossover with the dot-dashed line) of the measure N (T ), the
derivative of the measure M(T ) with respect to R is zero.

Obviously, since D(t,R) ∈ [0,1] and (1 + r0 cos θ0)2

|c(t,R)|2 + r2
0 sin2 θ0 � 0, we can see that the trace distance

arrives at its extremum if and only if ∂
∂R

|c(t,R)|2 = 0; this is
exactly the condition for the integrand to reach its maximum.
Substituting Eq. (7) into Eq. (A3), we obtain

∂

∂R
N (t,R) − ∂

∂R
M(t,R)

= 1

4D(t,R)

[
(1 + r0 cos θ0)2|c(t,R)|2 + r2

0 sin2 θ0
]

× ∂

∂R
|c(t,R)|2. (A4)

At the critical point, there is no backward information flow, i.e.,
N (t) = 0. Thus if the critical point is the very point satisfied
∂

∂R
|c(t,R)|2 = 0, the derivative of M(t) must be zero at this

point. Because the property of the information flows, it is
difficult to obtain analytic results. The numerical results of
N (T ) and M(T ) are shown in Fig. 10, which validate our
hypothesis. This is further confirmed by Fig. 11.
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0.4

0.6

0.8

1
The integrand of the GP
The trace distance
N(T)

FIG. 11. (Color online) The integrand of the geometric phase
A(T ,R), the trace distance D(T ,R) and the measure N (T ,R). The
initial state is chosen as ϑ0 = π/3, and the coupling strength W = 0.6.
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