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Relativistic electron confined by isotropic parabolic potential
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Energies and wave functions for quasibound states of a relativistic particle interacting with the field of a
quadratic isotropic potential V (r) = mω2r2/2 are obtained using a power expansion method. The stabilization
of autoionizing resonances is performed by introducing the spherical confinement of finite radius Rb. For
comparison, the problem is investigated also in the framework of direct perturbation theory (DPT). It has been
shown that the substantial degeneracy of nonrelativistic levels of the isotropic harmonic oscillator is completely
removed. The relativistic effects, spin effects, fine-structure splittings, and radial densities of probability for
several states are studied.
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I. INTRODUCTION

The relativistic harmonic oscillator has been the subject of
many works [1–10]. The relativistic theory of the isotropic
harmonic oscillator is essential for a more realistic description
of many particle confined systems such as Hookean atom
(harmonium), Hookean molecules, confined positronium, or
related systems, modeled by nonrelativistic Hamiltonians with
parabolic potentials [9]. This subject is of interest also because
of its applications in nuclear physics and elementary particle
physics. The central potentials in the nuclear shell models
and two-body confining quark interactions are modeled by
nonrelativistic potentials, quadratic in the radial variable r .

The definition of a relativistic counterpart of the quantum-
mechanical harmonic oscillator is not unique. The straightfor-
ward generalization by the introduction of a quadratic potential
into the Klein-Gordon equation leads to the Schrödinger-type
equation, with the energy-dependent quartic potential, that has
no bound solutions [10]. Relativistic generalizations of a one-
dimensional harmonic oscillator, obtained by the insertion of a
parabolic potential into Dirac equation, have been considered
by Nikolsky [1] and Postȩpska [2]. The effective potentials
appearing in the resulting second-order equations do not
create stationary, square-integrable states. The discrete energy
levels correspond in these oscillator models to autoionizing
resonances. The exactly solvable model, for a spin- 1

2 particle, is
the Dirac oscillator (DO) described by the linear in coordinates
and momenta Hamiltonian [5]

HDO = cα · (p − imωβr) + βmc2, (1)

where ω is the frequency of the oscillator. The Dirac equation
with the Hamiltonian (1) leads to the energy eigenvalues [6,7]

EDO = mc2

(
±

√
1 + 2εnlj

mc2
− 1

)
, (2)

where we have subtracted the rest energy of electron and

εnlj =
{

2nω if j = l + 1
2

2n + 2l + 1)ω if j = l − 1
2 .

(3)

In the nonrelativistic limit the wave equation for the large
spinor component [8]

(
p2

2m
+ mω2

2
r2 − ωσ · L

)
ψL = ẼNψL (4)

contains the spin-orbit term and leads to energy levels

ẼN = EN +
{−lω if j = l + 1

2

l + 1)ω if j = l − 1
2 ,

(5)

where energies

EN = (2n + l + 3/2)ω (6)

correspond to the nonrelativistic isotropic harmonic oscil-
lator. Several properties of the Dirac oscillator, defined by
the Hamiltonian (1), have been studied in various contexts
[10–13]. Other approaches are based on the inverse scattering
method and lead to the models of the relativistic oscillator as
a quantum system with an infinite number of bound states and
equal-spaced energy levels [14,15].

Since relativistic wave equations produce finite potential
barriers as a result of substituting the parabolic potential into
them, the problem of confinement in relativistic theory, due
to the non zero probability of tunneling to the continuum,
cannot be modeled by quadratic potentials in an unlimited
space region.

The aim of this paper is the solution of the Dirac and Klein-
Gordon equations with a spherically symmetric potential

V (r) = 1
2mω2r2 (7)

using the power-series expansion method [16–18]. In order
to stabilize the autoionizing resonances we have introduced
the spherical confinement of a radius Rb, corresponding to the
maximum of the effective potential.

Without any loss of generality we set for simplicity m = 1.
We will use the notation EA = EA/ω, where EA is the energy
and the superscript A = (N,K,D,DO) refers to a specific
model.
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II. FORMULATION OF THE PROBLEM

The Hamiltonian describing the motion of an electron
confined by the potential (7) in atomic units reads

HD = cα · p + βc2 + 1
2ω2r2. (8)

The time-independent Dirac equation with the Hamiltonian
(8) can be written in matrix form:[

1
2ω2r2 − ED cσ · p

cσ · p 1
2ω2r2 − ED − 2c2

] [
ψ1

ψ2

]
=

[
0
0

]
. (9)

Note that all quantities in Eq. (9) are dimensionless. One can
obtain the length, energy, and frequency by taking the products
of r,ED,ω and relevant units. These units are the Bohr radius
r0 = 5.3 × 10−9 cm as the unit of length, one hartree E0 =
27.2 eV as the unit of energy, and the value ω0 = 0.413 ×
1017 Hz as the unit of frequency.

In the nonrelativistic limit, after elimination of the lower
spinor component, Eq. (9) leads to the Schrödinger equation
corresponding to the isotropic harmonic oscillator(

p2

2
+ 1

2
ω2r2

)
�N = EN�N, (10)

of which the energies are given by the formula (6).
In the spherical coordinates, after introducing new variables

ρ = r
√

ω, λ = ω/c2, ED = ED/ω (11)

and substituting into Eq. (9) the Dirac spinor in the form[
ψ1

ψ2

]
= 1

ρ

[
P (ρ)�κµ(ϑ,φ)

i
√

λQ(ρ)�−κµ(ϑ,φ)

]
, (12)

where �κµ is the spherical spinor and κ and µ stand for the
Dirac quantum number and the projection of the total angular
momentum, respectively, we obtain the radial Dirac equation:

dP

dρ
+ κP

ρ
+ 1

2
λρ2Q − (2 + λED)Q = 0, (13)

dQ

dρ
− κQ

ρ
− 1

2
ρ2P + EDP = 0. (14)

Let us find the asymptotic behavior of functions P and Q, for
ρ → 0. In the case κ > 0, the asymptotic form of Eqs. (13)
and (14) reads

dP

dρ
+ κP

ρ
− (2 + λED)Q = 0, (15)

dQ

dρ
− κQ

ρ
= 0. (16)

Equation (16) has the solution Q = const × ρκ and after
substituting it into Eq. (15) we find P = const × ρκ+1. For
κ < 0 the asymptotic behavior of functions P and Q is
governed by equations

dP

dρ
+ κP

ρ
= 0, (17)

dQ

dρ
− κQ

ρ
+ EDP = 0, (18)

which have finite solutions P = const × ρ−κ and Q =
const × ρ−κ+1. Finally, both cases may be written together as

P (ρ) ∼ ρl+1, Q(ρ) ∼ ρl̃+1, (19)

where we have introduced the orbital quantum number l, given
by

l = |κ| + κ

2|κ| − 1

2
, (20)

and

l̃ = l − κ

|κ| . (21)

In order to determine the asymptotic behavior of functions
P and Q, for ρ → ∞, we may rewrite Eqs. (13) and (14) in
the asymptotic form

dP

dρ
+ 1

2
λρ2Q = 0, (22)

dQ

dρ
− 1

2
ρ2P = 0. (23)

After elimination of Q we obtain the second-order differential
equation

d2P

dρ2
+ 1

4
λρ4P = 0, (24)

which has the asymptotic solutions

P ∼ exp(±i
√

λρ3/6). (25)

One can see from Eq. (22) that the radial function Q behaves
in the same manner. The asymptotic solutions disclose the
oscillating behavior typical for motion in the classically
allowed, infinite region. This means that the effective potential
acting on the electron creates states that are resonances
rather than stationary bound states. Since the presence of the
autoionizing states is not caused by the spin of the confined
particle, we can start from the Klein-Gordon equation, in order
to determine the effective radial potential.

By substituting Eq. (7) into the pertinent Klein-Gordon
equation, we get the Schrödinger-like equation [10](

p2

2
+ U (EK,ρ)

)
�K = εK�K, (26)

where we have introduced the effective, energy-dependent,
radial potential

U (E,ρ) = 1
2 (1 + λE)ρ2 − 1

8λρ4 (27)

and the eigenvalue

εK = EK (2 + λEK )/2. (28)

Taking the Klein-Gordon wave function in the form

�K (ρ,ϑ,φ) = F (ρ)

ρ
Ylm(ϑ,φ), (29)

we transform Eq. (26) into the radial equation(
h(EK,ρ) + l(l + 1)

2ρ2

)
F = εKF, (30)
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where

h(E,ρ) = −1

2

d2

dρ2
+ U (E,ρ). (31)

We may get the approximate expressions for the effective
potentials for a spin- 1

2 particle after transforming Eqs. (13)
and (14) into the second-order equations. Acting on Eqs. (13)
and (14) by operators d/dρ ∓ κ/ρ, respectively, after some
simple manipulations, we find(

h(ED,ρ) + κ(κ + 1)

2ρ2

)
P + 1

2
λρQ = εDP, (32)(

h(ED,ρ) + κ(κ − 1)

2ρ2

)
Q − 1

2
ρP = εDQ, (33)

where

εD = ED(2 + λED)/2. (34)

The quartic potential (27) corresponds to the effective interac-
tions of a spin-0 particle with the external field of a parabolic
potential. In a case of a spin- 1

2 particle the effective interactions
are described by Eq. (27) approximately. Note that both
relativistic wave equations behave asymptotically in the same
manner. Thus, the main properties of the spectrum resulting
from the shape of the potential and derived for the Klein-
Gordon equation can also be referred to the Dirac particle.

The effective potential (27) has the maximum

Um = ω

2c2
(E + c2/ω)2, (35)

corresponding to

ρm =
√

2(E + c2/ω). (36)

The maximum is energy and ω dependent. It exceeds, for
arbitrary energy, the value of E. As a consequence, the
positive-continuum eigenstates with energies greater than the
maximum of the effective potential do not occur. The radius ρm

is a monotonically decreasing function of ω. The dependence
of the maximum Um on the oscillator frequency is displayed
in Fig. 1. The function Um has a minimum U0 = 2E, which
corresponds to ωm = c2/E. The dependence of the effective

E c2 10

E c2 14

0 20 40 60 80
2

4

6

8

ω

10
3
U

m

FIG. 1. Dependence of the maximum of effective potential Um

on the oscillator frequency ω, for E = c2/10,c2/14. The minima
U0 = 2E correspond to ωm = c2/E.
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FIG. 2. Effective potentials for ω = 0.5,4,12 and the correspond-
ing values of ρm = 306.42,167.83,148.02. The energy is taken as half
of the rest energy of the electron. The stationary point ωm = 2.

potential on the frequency of the oscillator is illustrated in
Fig. 2.

Using the rectangular-barrier approximation, we may esti-
mate the magnitude of the probability for the tunneling. The
rectangular barrier is characterized by its height G and the
length L. From the tunneling effect point of view, only
the region lying over the level E has a significance. Thus,
we define the parameter G = Um − E. The parameter L

is determined by the equation U (E,ρ) = E. Solving this
equation we find two positive roots

ρ1,2 = [2(E + c2/ω) ± 2
√

E2 + c4/ω2]1/2 (37)

and define L = |ρ1 − ρ2|/2. The coefficient of the transition
through the rectangular barrier reads [19]

D ≈ 16
E

Um

(
1 − E

Um

)
exp(−2

√
2GL). (38)

The energy corresponding to the maximum of D may be
found numerically. Since E ≈ 2n + l + 3/2 we can indicate
states with the maximal probability of the decay. One can note
that for E > 2c2 ∼= 37 538, the effects related to the creation
of the electron-positron pairs are essential and the one-
particle models are not valid anymore. This leads to the upper
limit for ω, ≈ 2.5 × 104. In Table I the coefficients D, for ω

running from 10−1 to 105, are displayed. We can see that the
lifetimes (∼D−1) of all autoionizing resonances are extremely
large, for a wide range of the oscillator frequency. For this
reason we treat, in further calculations, the energy eigenvalues
as purely real ones.

III. POWER-SERIES SOLUTIONS

Now we are looking for solutions of the radial
equations (13) and (14) in the form of power series,

P (ρ) = ρl+1
∞∑

k=0

Akρ
k, Q(ρ) = ρl̃+1

∞∑
k=0

Bkρ
k. (39)

By substituting expansions (39) into Eqs. (13) and (14) and
equating coefficients of the equal powers of ρ, we obtain the
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TABLE I. Dependence of the maximal transition coefficients D

on the oscillator frequency. In the second and fifth columns the
approximate values of � = 2n + l corresponding to states with the
maximal probability of the decay are displayed. The numbers in
brackets are the powers of 10 by which the entries are to be multiplied.

ω � D ω � D

0.1 56 400 2.20[−123440] 60 94 9.64[−210]
0.4 14 230 2.38[−30863] 100 56 1.86[−127]
0.8 7040 7.57[−15438] 400 14 7.29[−35]
1 5645 1.19[−12347] 1000 5 2.48[−16]
4 1460 2.41[−3090] 4000 0 4.45[−7]
8 720 4.88[−1547] 10 000 0 4.55[−5]
10 560 2.15[−1238] 1 00 000 0 1.58[−5]

recurrent linear relations for the coefficients ak and bk , of
the form

(k + l +κ +1)Ak + 1
2λBk−3+κ/|κ| − (2+λED)Bk−1+κ/|κ| =0,

(40)

(k + l̃ + κ + 1)Bk − 1
2Ak−3−κ/|κ| + EDAk−1−κ/|κ| = 0. (41)

By solving the linear equations (40) and (41) separately for
κ > 0 and κ < 0, we can observe that only the coefficients
corresponding to the even values of k are nonzero. Therefore,
denoting ak ≡ A2k and bk ≡ B2k , we find for κ > 0

b0 = 2κ + 1

2 + λED

a0 (42)

and

bk = (−EDak−1 + 1
2ak−2

)/
(2k), (43)

ak = (
(2 + λED)bk − 1

2λbk−1
)/

(2κ + 2k + 1), (44)

and for κ < 0

b0 = ED

2κ − 1
a0 (45)

and

ak = (
(2 + λED)bk−1 − 1

2λbk−2
)/

(2k), (46)

bk = (−EDak + 1
2ak−1

)/
(2k − 2κ + 1), (47)

where a0 is a nonzero constant. For an arbitrary value of ED

we can generate a set of coefficients ak and bk until k = I , by
starting from a0 = 1 and using relations (42)–(44) for κ > 0
and relations (45)–(47) for κ < 0, respectively. The index I

determines the number of terms required for the summation
of the series on a desired precision level.

The energy eigenvalues and the radial wave functions are
determined by the boundary conditions

P (ρb) = 0, Q(ρb) = 0, (48)

where ρb corresponds to the maximum of the effective
potential (ρb = Rb

√
ω). Note that in the nonrelativistic limit,

ρb = ∞. In order to achieve the desired accuracy
(10−12 hartree) one can terminate the integration process at
ρ < ρb. To this end we extrapolate the boundary conditions to

distances ρ = R (R < ρb) and complete them by the require-
ment that dP/dρ and dQ/dρ decay at ρ = R. The calculation
of P (R),Q(R) and their derivatives, by the summation of the
series at fixed ρ, with energy-dependent coefficients, leads
to the energy-dependent functions. Focusing attention on the
large component P , we have

(E) = Rl+1
I∑

k=0

ak(E)R2k (49)

and

̃(E) = (l + 1)(E)

R
+ 2

I∑
k=0

kak(E)R2k+l , (50)

where  and ̃ denote functions P and dP/dρ, respectively,
as functions of energy.

For E > 0 functions (49) and (50) oscillate with amplitudes
strongly growing for increasing R. They have an infinite
number of well-separated zeros lying close to the values
2n + l + 3/2. For sufficiently large R, zeros of both functions
become equal. Moreover, functions (49) and (50) behave in
the same manner with the coefficients ak replaced by bk .
Therefore, we can consider only one equation

(E) = 0 (51)

that defines the discrete energy spectrum in a given R

approximation. Equation (51) is nonlinear with respect to E

and it can be solved by iterative methods. Applying numerical
procedures we control the stability of results by comparison
of the difference between successive solutions obtained for
growing R. The process is terminated if energy differences
become <10−12 hartree. Figure 3 shows functions (E) and
̃(E) for ω = 1 and κ = −1, calculated for R = 8.

The eigenvalues corresponding to the Klein-Gordon equa-
tion can be obtained by using the same calculational procedure.
By expanding the radial function F in the even powers of ρ

F (ρ) = ρl+1
∞∑

k=0

dkρ
2k, (52)

0 2 4 6 8 10 12 14

0

E hartree

FIG. 3. Functions (E) (solid line) and ̃(E) (dashed line) for
κ = −1, ω = 1, and R = 8.
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with respect to the behavior at small distances described by a
factor ρl+1, we obtain an explicit formula for the expanding
coefficients

dk = [ − EK (2 + λEK ) dk−1 + (1 + λEK ) dk−2 − 1
4λ dk−3

]/
[2k(2k + 2l + 1)]. (53)

Energies are determined by Eq. (51), where the function (E)
is defined by coefficients dk .

IV. THE PERTURBATION APPROACH

In order to compare the power-series approach with other
methods, we investigate the relativistic oscillator problem also
in the framework of the first-order perturbation theory. In this
theory, relativity is treated as a perturbation with respect to the
perturbation parameter λ = ω/c2.

Substituting the perturbation expansions

�K =
∞∑

p=0

�
(p)
K λp, EK =

∞∑
q=0

E
(q)
K λq (54)

into the Klein-Gordon equation (26) and equating appropriate
coefficients we may obtain, in the standard way, a set of the
perturbation equations, ordered according to the powers of λ.

The first-order equation leads to

E
(1)
K = − 1

2E2
N + 1

2EN 〈�N |ρ2|�N 〉 − 1
8 〈�N |ρ4|�N 〉. (55)

Taking into account the identity [20,21]

〈�N |ρ4|�N 〉 = 3
2E2

N + 1
8 [3 − 4l(l + 1)], (56)

and applying the virial theorem, we have

E
(1)
K = − 1

8

(
3n(2n + 2l + 3) + 1

4 (2l + 3) (2l + 5)
)
. (57)

For a Dirac particle, the relevant formula resulting from the
direct perturbation theory (DPT) [22] has a general form [23]

E
(1)
D = 1

4 〈σ · p�N |V − EN |σ · p�N 〉, (58)

where V is a potential appearing in the Schrödinger equation.
Taking into account the Hermitian property of σ · p and using
the identity [19]

(σ · p)ρ2(σ · p) = ρ2p2 − 2ρ
∂

∂ρ
+ 2σ · L, (59)

we obtain, for the potential (7), the first-order energy correction

E
(1)
D = E

(1)
K − 1

4

〈
�N

∣∣∣∣ρ ∂�N

∂ρ

〉
+ 1

4
〈�N |σ · L|�N 〉. (60)

TABLE II. Dirac energies ED and Klein-Gordon energies EK in hartrees for states with l = 0,1,2,3,4 of the bounded harmonic oscillator
with parabolic potential compared with nonrelativistic energies EN . The radius of spherical bound ρb ≈ 194. The oscillator frequency ω = 1.
In the last column the corresponding values of R and I are given. The values of energy are computed with c = 137.035 999 76 [24].

n l κ State ED κ State ED EK EN R,I

0 0 −1 s1/2 1.499 995 007 77 1.499 975 039 31 1.5 7,80
1 3.499 895 170 51 3.499 875 203 11 3.5 7,80
2 5.499 715 477 61 5.499 695 511 28 5.5 8,100
3 7.499 455 941 30 7.499 435 976 03 7.5 8,110
4 9.499 116 573 79 9.499 096 609 58 9.5 8,120
5 11.498 697 387 31 11.498 677 424 16 11.5 8,120
0 1 −2 p3/2 2.499 975 038 95 1 p1/2 2.499 935 104 43 2.499 941 759 52 2.5 7,80
1 4.499 835 270 62 4.499 795 339 28 4.499 801 993 31 4.5 7,90
2 6.499 615 652 76 6.499 575 724 61 6.499 582 377 57 6.5 8,110
3 8.499 316 197 60 8.499 276 272 64 8.499 282 924 54 8.5 8,110
4 10.498 936 917 35 10.498 896 995 57 10.498 903 646 41 10.5 8,120
5 12.498 477 824 23 12.498 437 905 64 12.498 444 555 42 12.5 9,140
0 2 −3 d5/2 3.499 941 758 23 2 d3/2 3.499 875 203 34 3.499 895 168 88 3.5 7,80
1 5.499 762 061 22 5.499 695 511 64 5.499 715 475 05 5.5 7,90
2 7.499 502 520 79 7.499 435 976 53 7.499 455 937 81 7.5 8,110
3 9.499 163 149 16 9.499 096 610 22 9.499 116 569 38 9.5 8,120
4 11.498 743 958 56 11.498 677 424 93 11.498 697 381 96 11.5 9,140
5 13.498 244 961 19 13.498 178 432 87 13.498 198 387 78 13.5 9,150
0 3 −4 f7/2 4.499 895 166 13 3 f5/2 4.499 801 993 01 4.499 835 267 93 4.5 7,80
1 6.499 675 542 83 6.499 582 377 14 6.499 615 648 87 6.5 7,90
2 8.499 376 082 22 8.499 282 923 97 8.499 316 192 52 8.5 8,110
3 10.498 996 796 52 10.498 903 645 72 10.498 936 911 07 10.5 8,120
4 12.498 537 697 96 12.498 444 554 59 12.498 477 816 76 12.5 9,140
5 14.497 998 798 73 14.497 905 662 79 14.497 938 921 78 14.5 9,150
0 4 −5 g9/2 5.499 835 263 19 4 g7/2 5.499 715 473 96 5.499 762 057 20 5.5 7,80
1 7.499 575 715 98 7.499 455 936 32 7.499 502 515 31 7.5 8,110
2 9.499 236 337 59 9.499 116 567 48 9.499 163 142 22 9.5 8,110
3 11.498 817 140 21 11.498 697 379 67 11.498 743 950 16 11.5 8,120
4 13.498 318 136 07 13.499 198 385 09 13.498 244 951 33 13.5 9,140
5 15.497 739 337 38 15.497 619 595 95 15.497 666 157 94 15.5 9,150
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Calculating the expectation value appearing in the second term,
we have 〈

�N

∣∣∣∣ρ ∂�N

∂ρ

〉
= −3

2
. (61)

The first-order relativistic correction may be written as

E
(1)
D = E

(1)
K + 1

8
×

{
2l + 3 if j = l + 1

2

−2l + 1 if j = l − 1
2 .

(62)

One can see that E
(1)
K is negative for all n and l. This is also

true in a case of the Dirac particle. The substitution of Eq. (57)
into Eq. (62) leads to the expression

E
(1)
D = −1

8

(
3n(2n + 2l + 3) + l2 + 3

4

)

−1

4
×

{
l if j = l + 1

2

3l + 1 if j = l − 1
2 .

(63)

V. RESULTS AND DISCUSSION

The algorithm described in the preceding section is based on
the expansion into the power series of the radial amplitudes and
leads to approximate solutions, corresponding to the bounded

a

0 200 400 600 800 1000

0.000

0.005

0.010

0.015

ω

E
ha

rt
re

e

b

0 200 400 600 800 1000

0.000

0.002

0.004

0.006

0.008

ω

E
ha

rt
re

e

FIG. 4. Dependence on the oscillator frequency of the dif-
ferences: (a) �E = EK − (EN + λE

(1)
K ), for states (from below)

1s,1p,1d,1f,1g; (b) �E = ED − (EN + λE
(1)
D ), for states (from

below) 1s1/2,1p3/2,1d5/2,1f7/2,1g9/2 (solid lines) and for states
(from below) 1p1/2,1d3/2,1f5/2,1g7/2 (dashed lines). The ω unit is
0.413 × 1017 Hz.

system. In a given R approximation, energy eigenvalues corre-
spond to roots of the nonlinear equation (51) and the wave func-
tions are obtained in the compact form as power series, with an
explicit given recurrence relation for coefficients. For growing
R, energies and wave functions converge to the exact solutions
determined by the boundary conditions, imposed at ρ = ρb.

The power-series method provides a very efficient tool
for solving one-particle problems with potentials including
rational powers of the radial variable r . More advanced
versions of this method have been employed for the solution
of the nonseparable wave equations for hydrogenic atoms in
an external magnetic field [16–18].

In Table II we list fully relativistic energies ED and EK , and
compare them with nonrelativistic energies EN , for the lowest
six states with the orbital quantum numbers l = 0,1,2,3,4.
The maximal absolute error of each value does not exceed
±1 in the last digits. The minimal values of R and I , which
are necessary to obtain this accuracy, are listed in the last
column. We can see that all relativistic energies are lower than
the corresponding nonrelativistic ones. This property of the
relativistic spectra follows directly from perturbation theory.
The effect of the shift down of the relativistic spectra is caused
by the first-order relativistic corrections that give the leading
contribution to the energy and for all states are negative. One
can find from Eq. (62) that relativistic energy shifts for states
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FIG. 5. Dependence on the oscillator frequency of the relativistic
effects: (a) �E = EK − EN for states (from above) 1s,1p,1d,

1f,1g; (b) �E = ED − EN for states (from above) 1s1/2,1p3/2,1d5/2,

1f7/2,1g9/2 (solid lines) and for states (from above) 1p1/2,1d3/2,

1f5/2,1g7/2 (dashed lines). The ω unit is 0.413 × 1017 Hz.
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TABLE III. Dirac energies ED and Klein-Gordon energies EK

in hartrees for ground states of bounded harmonic oscillators with
parabolic potentials, ordered with growing values of the oscillator
frequency. In the second column the corresponding values of ρb

are displayed. In the last column the modified Dirac oscillator
energies ẼDO are listed [10]. Power-series energies are obtained
with R � 7 and I � 200. The calculations have been performed with
c = 137.035 999 76 [24].

ω ρb ED EK ẼDO

0.001 6128 1.499 999 995 01 1.499 999 975 04 1.499 999 940 09
0.01 1938 1.499 999 950 08 1.499 999 750 38 1.499 999 400 92
0.1 613 1.499 999 500 77 1.499 997 503 85 1.499 994 009 27
0.2 433 1.499 999 001 57 1.499 995 007 72 1.499 988 018 64
0.3 354 1.499 998 502 31 1.499 992 511 61 1.499 982 028 10
0.4 306 1.499 998 003 09 1.499 990 015 51 1.499 976 037 66
0.5 274 1.499 997 503 86 1.499 987 519 43 1.499 970 047 31
0.6 250 1.499 997 004 64 1.499 985 023 37 1.499 964 057 06
0.7 232 1.499 996 505 42 1.499 982 527 33 1.499 958 066 90
0.8 217 1.499 996 006 20 1.499 980 031 31 1.499 952 076 84
0.9 204 1.499 995 506 98 1.499 977 535 30 1.499 946 086 88
1 194 1.499 995 007 77 1.499 975 039 31 1.499 940 097 01
5 87 1.499 975 040 51 1.499 875 214 15 1.499 700 580 71
10 61 1.499 950 065 17 1.499 750 472 29 1.499 401 400 32
50 27 1.499 750 592 16 1.498 754 117 17 1.497 016 515 08
100 19 1.499 501 600 84 1.497 512 602 92 1.494 056 602 72
500 9 1.497 524 809 15 1.487 733 717 91 1.471 185 854 52
1000 6 1.495 092 432 08 1.475 874 843 16 1.444 447 431 79

with j = l − 1/2 (κ > 0) are greater than the shifts related
to the spin-0 particle and there is an opposite situation for
the states corresponding to j = l + 1/2 (κ < 0). The fully
relativistic energies behave in the same manner. By calculating
the difference between the total relativistic energy and the
perturbation first-order energy, we obtain the contribution of
the higher-order relativistic corrections. The dependence on
the ω of the differences EK − (EN + λE

(1)
K ) and ED − (EN +

λE
(1)
D ), for the lowest states with l = 0,1,2,3,4, are displayed

in Fig. 4. We can see that the influence of the higher-order
corrections is significant for excited states and for growing ω
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FIG. 6. Dependence on the oscillator frequency: (a) the
spin effects �E = ED − EK for states (from below)
1s1/2,1p3/2,1d5/2,1f7/2,1g9/2 (solid lines) and for states (from
above) 1p1/2,1d3/2,1f5/2,1g7/2 (dashed lines); (b) the fine-structure
splitting for states (from above) 1p1/2-1p3/2,1d3/2-1d5/2,

1f5/2-1f7/2,1g7/2-1g9/2 (solid lines) and the first-order perturbation
results (dot-dashed lines). The ω unit is 0.413 × 1017 Hz.

values. The ω dependence of the relativistic effects is presented
in Fig. 5. The spin effects and the fine-structure splittings are
displayed in Fig. 6. For comparison, in Fig. 6(b), the first-order
perturbation results are shown. We can see that the first-order
perturbation theory is relevant only in the low ω limit.

TABLE IV. First-order relativistic energies EK1 = EN + λE
(1)
K and ED1 = EN + λE

(1)
D in hartrees for states corresponding to degenerate

nonrelativistic states with a given value of � = 2n + l. In the sixth and tenth columns the first-order relativistic corrections are listed. The
oscillator frequency ω = 1. The values of energy are computed with c = 137.035 999 76 [24].

� EN States n l E
(1)
K EK1 n κ E

(1)
D ED1

2 3.5 2s 1 0 −75/32 3.499 875 192 14 1 −1 −63/32 3.499 895 161 40
1d 0 2 −63/32 3.499 895 161 40 0 −3 −35/32 3.499 941 756 33

0 2 −75/32 3.499 875 192 14
3 4.5 2p 1 1 −119/32 4.499 801 971 53 1 −2 −99/32 4.499 835 253 62

1 1 −123/32 4.499 795 315 11
1f 0 3 −99/32 4.499 835 253 62 0 −4 −63/32 4.499 895 161 40

0 3 −119/32 4.499 801 971 53
4 5.5 3s 2 0 −183/32 5.499 695 468 82 2 −1 −171/32 5.499 715 438 08

2d 1 2 −171/32 5.499 715 438 08 1 −3 −143/32 5.499 762 033 01
1 2 −183/32 5.499 695 468 82

1g 0 4 −143/32 5.499 762 033 01 0 −5 −99/32 5.499 835 253 62
0 4 −171/32 5.499 715 438 08
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Table III shows the relativistic energies ED and EK for
ground states of relativistic harmonic oscillators, for growing
values of the oscillator frequency. The maximal absolute error
of each value does not exceed ±1 in the last digits. For
comparison, the modified Dirac oscillator energies EDO are
also displayed [10]. Since in the nonrelativistic limit the Dirac
oscillator becomes the isotropic harmonic oscillator with a
strong spin-orbit coupling, the spectra may be compared only
for the s states.
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FIG. 7. Normalized radial wave functions P (ρ) (solid line) and
Q(ρ) (dashed line) for excited states: (a) 2p3/2, (b) 3p1/2, and (c) 4d5/2,
with ω = 1.

In Table IV we list the first-order relativistic energies cal-
culated for the nonrelativistic degenerate states with 2n + l =
2,3,4. One can see that in the first-order perturbation theory,
the degeneracy of the nonrelativistic levels corresponding
to states with the same value of � = 2n + l is only partially
removed (states n = 2, κ = −1 and n = 0, κ = 4 have the
same energy). However, fully relativistic energies are non-
degenerate. This is because the dynamical symmetry SU(3),
specific for V ∼ r2, does not appear in the relativistic models.
The degeneracy of the relativistic spectra is caused only by the
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FIG. 8. Radial densities of probability for (a) relativistic spin-0
oscillator ξK and nonrelativistic isotropic oscillator ξS , (b) relativistic
spin- 1

2 oscillator ξD and nonrelativistic isotropic oscillator ξS , and (c)
relativistic spin- 1

2 oscillator ξD and relativistic spin-0 oscillator ξK ,
for excited states 3s and ω = 1000.
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symmetry of the Hamiltonian (8) with respect to the rotational
group. Since energies are independent of the eigenvalue of
the projection of the total angular momentum, the degree of
degeneracy of each level is equal to 2j + 1.

Figure 7 shows the normalized radial amplitudes P and
Q for three excited states of a relativistic spin- 1

2 harmonic
oscillator with a parabolic potential, corresponding to n =
1,2,3. We can see that the number n corresponds to the number
of the nonzero nodes of the radial function P . Thus, the number
n can be referred to as the radial quantum number. Note that the
radial functions P and Q have different nodes. Consequently,

the radial density of probability ξD(ρ) does not have any zeros,
for ρ > 0. The comparison of the radial densities of probability
for relativistic spin-0 and spin- 1

2 oscillators with quadratic
potentials and the nonrelativistic isotropic oscillator is made
in Fig. 8.

All features of the presented models of the oscillator make
them useful for further applications. The generalization to
many-particle relativistic problems with harmoniclike inter-
actions may be performed in a similar way as for atomic
systems. A relativistic model of the two-body harmonium will
be investigated in the forthcoming papers.
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