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Coherent excitation-energy transfer and quantum entanglement in a dimer
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We study coherent energy transfer of a single excitation and quantum entanglement in a dimer, which consists
of a donor and an acceptor modeled by two two-level systems. Between the donor and the acceptor, there exists a
dipole-dipole interaction, which provides the physical mechanism for coherent energy transfer and entanglement
generation. The donor and the acceptor couple to two independent heat baths with diagonal couplings that do
not dissipate the energy of the noncoupling dimer. Special attention is paid to the effect on single-excitation
energy transfer and entanglement generation of the energy detuning between the donor and the acceptor and
the temperatures of the two heat baths. It is found that, the probability for single-excitation energy transfer
largely depends on the energy detuning in the low temperature limit. Concretely, the positive and negative energy
detunings can increase and decrease the probability at steady state, respectively. In the high temperature limit,
however, the effect of the energy detuning on the probability is negligibly small. We also find that the probability
is negligibly dependent on the bath temperature difference of the two heat baths. In addition, it is found that
quantum entanglement can be generated in the process of coherent energy transfer. As the bath temperature
increases, the generated steady-state entanglement decreases. For a given bath temperature, the steady-state
entanglement decreases with the increase of the absolute value of the energy detuning.
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I. INTRODUCTION

Coherent excitation energy transfer is an important step of
photosynthesis [1], in which photosynthetic pigments capture
the solar light to create electronic excitations and then transfer
the excitation energy to a reaction center [2–7]. Usually, the
transfer of a single excitation from the pigment where the
electronic excitation is created to the reaction center is a
very complicated physical process, since the practical transfer
process takes place on a complicated network of pigments.
However, the basic physical mechanism can be revealed in
such a light-harvesting complex by studying a basic part:
a dimer system which consists of a donor and an acceptor
modeled by two two-level systems.

On a complicated network of pigments, there generally
exist two kinds of interactions. On one hand, between any
two pigments there exists a dipole-dipole interaction, which
results in excitation energy transfer. On the other hand, the
pigments interact inevitably with their surrounding environ-
ments such as the nuclear degrees of freedom and the proteins.
Corresponding to different cases for the scale of the two kind
of interactions, different approaches have been proposed to
study the single-excitation energy transfer. Concretely, when
the dipole-dipole interactions between any two pigments are
much weaker than the interactions of the pigments with
their environments, the energy transfer process can be well
characterized by the Förster theory [8], in which the evolution
of the network is calculated perturbatively up to the second
order in the dipole-dipole interactions between the pigments.
When the interactions of the pigments with their environments
are much weaker than the dipole-dipole interactions between
any two pigments, various approaches based on the quantum
master equation have been proposed (e.g., Refs. [9–23]), in
which the evolution of the network is calculated perturbatively
up to the second order in the interactions between the pigments
and their environments.

With the above considerations, in this article we study
single-excitation energy transfer in a dimer, which consists
of a donor and an acceptor modeled by two two-level systems.
Obviously, when the donor and the acceptor are decoupled,
it is impossible to realize energy transfer between them.
Therefore, the simplest way to realize energy transfer is to
turn on a nontrivial interaction (for example, the dipole-dipole
interaction) between the donor and the acceptor. Then a single
excitation can coherently oscillate between the donor and the
acceptor. However, in this case, there is no steady-state energy
transfer, namely the transferred energy can not approach to a
stationary value. In the presence of environments, the donor
and the acceptor will inevitably couple with environments.
In general, the coupling form between the donor (acceptor)
and its environment is diagonal in the representation of the
free Hamiltonian of the donor (acceptor). Physically, due to
this type of coupling, although the excitation energy will not
decay into the environments, it will induce a steady-state
energy transfer between the donor and the acceptor. Since
in practical cases both the characteristic frequency and the
heat bath temperatures of the donor and the acceptor may
be different due to different chemical structures, we study in
detail how the characteristic frequencies and the heat bath
temperatures of the donor and acceptor affect the efficiency
of the excitation energy transfer. This is one point of the
motivations of our present work.

In the presence of the interactions between the pigments
for transferring energy, a naturally arising question is how
about the quantum entanglement among the pigments which
are involved in the energy transfer process. Because quantum
entanglement is at the heart of the foundation of quantum
mechanics [24,25] and quantum information science (e.g.,
Refs. [26,27]), it is interesting to know how is the dynamics of
the created quantum entanglement in the dimer system during
the process of single-excitation energy transfer. This is the
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other point of the motivations of our present investigations.
In fact, recently people have become aware of quantum
entanglement in some chemical and biologic systems (e.g.,
Refs. [17,28–32]) such as photosynthetic light-harvesting
complexes [17,31,32].

This article is organized as follows: In Sec. II, we present the
physical model and the Hamiltonian for studying the single-
excitation energy transfer. A dimer consists of a donor and an
acceptor, which are immersed in two independent heat baths.
Between the donor and the acceptor, there exists a dipole-
dipole interaction, which provides the physical mechanism
for coherent excitation energy transfer and entanglement
generation. In Sec. III, we derive a quantum master equation
to describe the evolution of the dimer. Based on the quantum
master equation we obtain optical Bloch equations and their
solutions. In Sec. IV, we study single-excitation energy
transfer from the donor to the acceptor. The effect on the
transfer probability of the energy detuning and the bath
temperatures are studied carefully. In Sec. V, we study the
quantum entanglement between the donor and the acceptor by
calculating the concurrence. We conclude this work with some
remarks in Sec. VI. Finally, we give an appendix for derivation
of quantum master equation (7).

II. PHYSICAL MODEL AND HAMILTONIAN

As illustrated in Fig. 1(a), the physical system under
our consideration is a dimer, which consists of a donor
and an acceptor modeled by two two-level systems (TLSs),
TLS1 (donor) and TLS2 (acceptor), with respective energy
separations ω1 and ω2. The donor and the acceptor are
immersed in two independent heat baths of temperatures T1

and T2, respectively. Between the donor and the acceptor
there exists a dipole-dipole interaction of strength ξ . The
Hamiltonian of the total system, including the two coupled
TLSs and their heat baths, is composed of three parts,

H = HTLSs + HB + HI , (1)

where HTLSs is the Hamiltonian (with h̄ = 1) of the two
coupled TLSs,

HTLSs = ω1

2
σ z

1 + ω2

2
σ z

2 + ξ (σ+
1 σ−

2 + σ−
1 σ+

2 ). (2)

Concretely, the first two terms in Eq. (2) are free Hamiltonians
of the two TLSs, which are described by the usual Pauli
operators σ+

l = (σ−
l )† = (σx + iσy)/2 = |e〉ll 〈g| and σ z

l =
|e〉ll 〈e| − |g〉ll 〈g|, where |g〉l and |e〉l are, respectively, the
ground and excited states of the lth (l = 1,2) TLS, namely
TLSl. The last term in Eq. (2) depicts the dipole-dipole inter-
action of strength ξ between the two TLSs. This dipole-dipole
interaction provides the physical mechanism for excitation
energy transfer and entanglement generation between the two
TLSs.

The Hilbert space of the donor and the acceptor is of
four dimension with the four basis states |η1〉 = |ee〉, |η2〉 =
|eg〉, |η3〉 = |ge〉, and |η4〉 = |gg〉, as shown in Fig. 1(b).
In the presence of the dipole-dipole interaction, a stationary
single-excitation state should be delocalized and composed
of a combination of the single-excitation in the two TLSs.
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FIG. 1. (Color online) (a) Schematic of the physical system. A
donor and an acceptor are immersed in two independent heat baths
of temperatures T1 and T2, respectively. A dipole-dipole interaction
of strength ξ exists between the donor and the acceptor, which are
described by two two-level systems with resonant frequencies ω1

and ω2, respectively. (b) The energy levels of the bare states |ηn〉
(n = 1,2,3,4) of the donor and the acceptor when they are decoupling.
(c) The energy levels of the eigenstates |λn〉 (n = 1,2,3,4) of the
coupled donor and acceptor. The corresponding eigenenergies are
denoted by En. The parameters �23 and �32 are, respectively, the
bath-induced transition rates from states |λ2〉 to |λ3〉 and from states
|λ3〉 to |λ2〉.

According to Hamiltonian (2), we can obtain the following
four eigenstates

|λ1〉 = |ee〉, |λ2〉 = cos(θ/2)|eg〉 + sin(θ/2)|ge〉,
(3)

|λ3〉 = − sin(θ/2)|eg〉 + cos(θ/2)|ge〉, |λ4〉 = |gg〉,

and the corresponding eigenenergies E1 = −E4 = (ω1 +
ω2)/2 and E2 = −E3 =

√
�ω2/4 + ξ 2, as shown in Fig. 1(c),

by solving the eigenequation HTLSs |λn〉 = En |λn〉 (n =
1,2,3,4). Here we introduce the energy detuning �ω =
ω1 − ω2 and the mixing angle θ defined by tan θ = 2ξ/�ω.
Note that here the mixing angle 0 < θ < π . Therefore,
when �ω > 0, namely ω1 > ω2, we have θ = arctan(2ξ/�ω);
however, when �ω < 0, that is ω1 < ω2, we have θ =
arctan(2ξ/�ω) + π .

As pointed out by Caldeira and Leggett [33], when the
couplings of a system with its environment are weak, it
is universal to model the environment of the system as a
harmonic oscillator heat bath. In this work, we suppose that the
couplings of the TLSs with their environments are weak, then
it is reasonable to model the environments as two harmonic
oscillator heat baths with the Hamiltonian

HB = H
(a)
B + H

(b)
B . (4)
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Here H
(a)
B and H

(b)
B are respectively the Hamiltonians of the

heat baths for the TLS1 and TLS2,

H
(a)
B =

∑
j

ωaja
†
j aj , H

(b)
B =

∑
k

ωbkb
†
kbk, (5)

where a
†
j (b†k) and aj (bk) are, respectively, the creation and

annihilation operators of the j th (kth) harmonic oscillator with
frequency ωaj (ωbk) of the heat bath for TLS1 (TLS2). In prac-
tical systems of excitation energy transfer, the environment is
composed of the nuclear degrees of freedom of the molecules.

The interaction Hamiltonian of the TLSs with their heat
baths reads (e.g., Refs. [9–17])

HI = σ+
1 σ−

1

∑
j

g1j (a†
j + aj ) + σ+

2 σ−
2

∑
k

g2k(b†k + bk).

(6)

In this case, there is no energy exchange between the TLSs
and their heat baths. This type of diagonal coupling has been
used to describe the dephasing of quantum systems [34]. For
simplicity, but without loss of generality, in the following we
assume the coupling strengthes g1j and g2k are real numbers.

III. QUANTUM MASTER EQUATION AND OPTICAL
BLOCH EQUATIONS

Generally speaking, there are two kinds of different ap-
proaches to study photonsynthetic excitation energy transfer.
One is based on the Förster theory [8], which is valid when
the electronic couplings between pigments are smaller than
the couplings between electrons and environments. The other
is usually based on quantum master equations [9–23] in
various forms, which are valid when the electron-environment
couplings are weaker than electronic couplings between
pigments. In this work, we shall consider the latter case
where the coupling (with strength ξ ) between the two TLSs is
stronger than the couplings (relating to γ ) between the TLSs
and their local environments (in our following considerations
we take ξ/γ = 5). We will derive a quantum master equation
by truncating the evolution up to the second order in the
TLS-environment couplings. On the other hand, we derive the
master equation in the eiegenrepresentation of the two coupled
TLSs so we may safely make the secular approximation [35]
by neglecting the high-frequency oscillating terms. This ap-
proximation is also equivalent to rotating wave approximation
in quantum optical systems. The detailed derivation of the
quantum master equation will be presented in the appendix.

In the eigenrepresentation of Hamiltonian (2) of the two
coupled TLSs, the quantum master equation in Schrödinger
picture reads,

ρ̇S = i[ρS,HTLSs]

+
∑

n=1,2,3

�n(2σnnρSσnn − σnnρS − ρSσnn)

+�32(2σ23ρSσ32 − σ33ρS − ρSσ33)

+�23(2σ32ρSσ23 − σ22ρS − ρSσ22)

+ 2X12(σ11ρSσ22 + σ22ρSσ11)

+ 2X13(σ11ρSσ33 + σ33ρSσ11)

+ 2X23(σ33ρSσ22 + σ22ρSσ33). (7)

In Eq. (7), ρS is the reduced density matrix of the two TLSs.
The transition operators σnm (n,m = 1, 2, 3, and 4) are defined
as σnm ≡ |λn〉〈λm|, where the states |λn〉 have been defined in
Eq. (3). Meanwhile, we introduce the effective rates as follows:

�1 = χ1 + χ2,

�2 = cos4(θ/2)χ1 + sin4(θ/2)χ2,

�3 = sin4(θ/2)χ1 + cos4(θ/2)χ2,

�32 = 1
4 sin2 θ [γ1n̄1(ε) + γ2n̄2(ε)],

(8)
�23 = 1

4 sin2 θ [γ1(n̄1(ε) + 1) + γ2(n̄2(ε) + 1)],

X12 = cos2(θ/2)χ1 + sin2(θ/2)χ2,

X13 = sin2(θ/2)χ1 + cos2(θ/2)χ2,

X23 = 1
4 sin2 θ (χ1 + χ2),

where χl = limω→0 Sl(ω)[2n̄l(ω) + 1], with Sl(ω) =
π�l(ω)g2

l (ω) and γl = π�l(ε)g2
l (ε) for l = 1,2. Here

�1(ω) and �2(ω) are, respectively, the densities of state for
the two independent heat baths surrounding the donor and the
acceptor. The parameter ε ≡ E2 − E3 is the energy separation
between the two eigenstates |λ2〉 and |λ3〉. And

n̄l(ω) = 1

exp(ω/Tl) − 1
(9)

is the thermal average excitation numbers of the heat baths
of TLSl. Hereafter we set the Boltzmann constant kB = 1.
We consider a special case of the ohmic spectrum densities
S1(ω) = η1ω and S2(ω) = η2ω, and then we obtain χ1 =
2η1T1 and χ2 = 2η2T2.

From quantum master equation (7), we can see that
there exist both dissipation and dephasing processes in the
eigenrepresentation of the Hamiltonian (2). The first line in
Eq. (7) describes the unitary evolution of the system under
the Hamiltonian (2). The second line in Eq. (7) describes
the dephasing of the states |λ1〉, |λ2〉, and |λ3〉. The third
and fourth lines describe, respectively, the exciting process
from |λ3〉 to |λ2〉 and the decay process from |λ2〉 to |λ3〉,
as illustrated in Fig. 1(b). Moreover, there exist three cross
dephasing processes in the last three lines in Eq. (7), these
terms can decrease the coherence between two levels, which
can be seen from the following optical Bloch equations (10).

According to quantum master equation (7), we can de-
rive optical Bloch equations for the elements 〈σmn(t)〉 =
TrS[ρs(t)σmn],

〈σ̇11(t)〉 = 〈σ̇44(t)〉 = 0,

〈σ̇22(t)〉 = −〈σ̇33(t)〉 = 2�32〈σ33(t)〉 − 2�23〈σ22(t)〉,
〈σ̇32(t)〉 = [−iε − (�2 + �3 + �23 + �32 − 2X23)]〈σ32(t)〉.

(10)

Here we present only the equations of motion for the elements
which will be used below. In fact, the equations of motion
for all of the elements in the density matrix ρS can be
obtained according to quantum master equation (7). Clearly,
from optical Bloch equations (10) we can see that the
diagonal elements decouple with the off-diagonal elements.
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It is straightforward to get the transient solutions of optical
Bloch equations (10),

〈σ11(t)〉 = 〈σ11(0)〉, 〈σ44(t)〉 = 〈σ44(0)〉,
〈σ22(t)〉 = [〈σ22(0)〉 + 〈σ33(0)〉]�32

�23 + �32

+ [〈σ22(0)〉�23 − 〈σ33(0)〉�32]

�23 + �32
e−2(�23+�32)t ,

〈σ33(t)〉 = [〈σ22(0)〉 + 〈σ33(0)〉]�23

�23 + �32

+ [〈σ33(0)〉�32 − 〈σ22(0)〉�23]

�23 + �32
e−2(�23+�32)t ,

〈σ32(t)〉 = 〈σ32(0)〉e−(�23+�32+cos2 θ�1)t e−iεt . (11)

Here we have used the relation �2 + �3 − 2X23 = cos2 θ�1.
The steady-state solutions of Eq. (11) read

〈σ11(∞)〉 = 〈σ11(0)〉, 〈σ44(∞)〉 = 〈σ44(0)〉,
〈σ22(∞)〉 = [〈σ22(0)〉 + 〈σ33(0)〉]�32

�23 + �32
,

(12)

〈σ33(∞)〉 = [〈σ22(0)〉 + 〈σ33(0)〉]�23

�23 + �32
,

〈σ32(∞)〉 = 0.

The steady-state solutions for other off-diagonal elements of
the density matrix are zero. Therefore, we can see that the
steady state of the two TLSs is a completely mixed one.

IV. PROBABILITY FOR SINGLE-EXCITATION
ENERGY TRANSFER

In order to study the probability for single-excitation energy
transfer from the TLS1 (donor) to the TLS2 (acceptor), we
assume that the TLS1 initially possesses a single excitation
and the TLS2 is in its ground state, which means the initial
state of the two TLSs is

|ϕ(0)〉S = |eg〉 = cos(θ/2)|λ2〉 − sin(θ/2)|λ3〉. (13)

Since the couplings between the TLSs and their heat baths
are diagonal, there is no energy exchange between the TLSs
and their heat baths, and the probability for finding the TLS2
in its excited state is right that of the single excitation energy
transfer,

P (t) ≡ Tr2[ρ2σ
+
2 σ−

2 ]

= 〈σ11(t)〉 + sin2(θ/2)〈σ22(t)〉 + cos2(θ/2)〈σ33(t)〉
+ sin θRe[〈σ23(t)〉], (14)

where ρ2 = Tr1[ρS] is the reduced density matrix of the TLS2.

A. Transient-state case

According to Eq. (11), the probability given in Eq. (14) can
be expressed as follows:

P (t) = �32 sin2(θ/2) + �23 cos2(θ/2)

�23 + �32

+ cos θ
�32 sin2(θ/2) − �23 cos2(θ/2)

�23 + �32
e−2(�23+�32)t

− 1

2
sin2 θ cos(εt)e−(�23+�32+cos2 θ�1)t . (15)

Now, we obtain the probability for single-excitation energy
transfer from the TLS1 to TLS2. This probability (15) is
a complicated function of the variables of the two TLSs
and their heat baths, such as the energy separations ω1 and
ω2, the strength ξ of the dipole-dipole interaction, and the
temperatures T1 and T2 of the heat baths. To see clearly
the effect on probability (15) of the bath temperatures and
the energy separations of the TLSs, we introduce the following
variables: mean temperature Tm = (T1 + T2)/2, mean energy
separation ωm = (ω1 + ω2)/2, temperature difference �T =
T1 − T2, and energy detuning �ω = ω1 − ω2. And �ω >

0 and �ω < 0 mean the positive and negative detunings,
respectively. For simplicity, in the following considerations
we assume γ1 = γ2 = γ .

In the following we consider three special cases: (a) The
resonant case, in which the two TLSs have the same energy
separations, i.e., ω1 = ω2 = ωm, that is, �ω = 0. Now the
mixing angle θ = π/2 and the energy separation ε = 2ξ . From
Eq. (15) we obtain

Pres(t) = 1
2 − 1

2 cos(2ξ t)e− 1
2 N(2ξ )γ t , (16)

where we introduce the parameter

N (2ξ ) = n̄1(2ξ ) + n̄2(2ξ ) + 1. (17)

The subscript “res” stands for resonant case. Equation (16)
means that the probability Pres increases from an initial value
0 to a steady-state value 1/2 as the time t increases. However,
the increase of the probability is exponential modulated by
a cosine function rather than monotone. In the short time
limit it may experience small oscillation. The exponential rate
N (2ξ )γ /2 is a function of the parameters ξ , γ , T1, and T2.
Obviously, the parameter N (2ξ ) increases with the increase
of the temperatures of the heat baths. In the low temperature
limit, i.e., T1/(2ξ ) ≈ 0 and T2/(2ξ ) ≈ 0, we have n̄1(2ξ ) ≈ 0
and n̄2(2ξ ) ≈ 0 and then N (2ξ ) ≈ 1. On the contrary, in
the high temperature limit, i.e., T1/(2ξ ) � 1 and T2/(2ξ ) �
1, we have n̄1(2ξ ) ≈ T1/(2ξ ) and n̄2(2ξ ) ≈ T2/(2ξ ) and
then

N (2ξ ) ≈ T1 + T2

2ξ
+ 1 ≈ Tm

ξ
. (18)

The above equation means that in the high temperature limit,
the rate N (2ξ ) is proportional to the mean temperature Tm and
does not depend on the temperature difference �T . In Fig. 2,
we plot the probability Pres vs. the scaled time γ t for different
bath temperatures Tm, here we assume that T1 = T2 = Tm.
From Fig. 2, we can see that in the low temperature limit
the probability increases with an initial oscillation. With the
increase of the bath temperatures, the oscillation disappears
gradually.

(b) The high temperature limit case, i.e., T1,T2 � ε. In
this case, n̄1(ε),n̄2(ε) � 1, and then we can make the ap-
proximations n̄1(ε) ≈ n̄1(ε) + 1 and n̄2(ε) ≈ n̄2(ε) + 1, which
lead to �23 ≈ �32. Therefore from Eq. (15) we can obtain the
time-dependent probability

Phtl(t) ≈ 1
2 − 1

2 cos2 θe− sin2 θN(ε)γ t

− 1
2 sin2 θ cos(εt)e−(2 cos2 θχ+ 1

2 sin2 θN(ε)γ )t , (19)
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FIG. 2. (Color online) The probability Pres given in Eq. (2) is
plotted vs. the scaled time γ t for different bath temperatures Tm/γ =
0.1 (solid red line), 10 (dash dotted blue line), and 100 (dashed black
line) in the resonant case �ω/γ = 0. Other parameters are set as
γ = 1, ξ/γ = 5, and �T/γ = 0.

where we introduce the parameter N (ε) = n̄1(ε) + n̄2(ε) + 1
and the subscript “htl” stands for the high temperature limit.
Obviously, the above probability Phtl increases from an initial
value 0 to a steady-state value 1/2. And the increase of Phtl

is not simply exponential. In Fig. 3, we plot the probability
Phtl vs. the scaled time γ t and the mixing angle θ in the high
temperature limit. Since the probability (19) is a function of
sin2 θ and cos2 θ , therefore in Fig. 3 we only need to plot the
probability in Eq. (19) for the negative detuning cases. Figure 3
shows that in the long time limit the probability reaches
1/2 irrespective of the θ . Note that here the mixing angle
0 < θ < π . The cases of 0 < θ < π/2 and π/2 < θ < π

mean the energy detuning �ω > 0 and �ω < 0, respectively.
And the angle θ = π/2 corresponds to the resonant case.
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FIG. 3. (Color online) The probability Phtl given in Eq. (19) vs.
the scaled time γ t for different mixing angle θ = 0.6π (solid red
line), 0.8π (dash dotted blue line), and 0.9π (dashed black line) at
the high temperature limit Tm/γ = 100. Other parameters are set as
γ = 1, ξ/γ = 5, χ1/γ = χ2/γ = 0.01Tm, and �T/γ = 0.
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FIG. 4. (Color online) The probability Pltl(t) given in Eq. (20)
vs. the scaled time γ t for different mixing angle θ = 0.1π (solid red
line), 0.4π (dashed brown line), 0.6π (dash dotted blue line), and
0.9π (solid black line) at the low temperature limit Tm/γ = 1. Other
parameters are set as γ = 1, ξ/γ = 5, and �T/γ = 0.

Here we choose 0.1π < θ < 0.9π , which corresponds to
6.2 > �ω/ξ > −6.2.

(c) The low temperature limit case, i.e., T1,T2 ≈ 0. Now
we can make the approximations n̄1(ε) ≈ 0 and n̄2(ε) ≈ 0,
which lead to �32 ≈ 0 and �23 ≈ sin2 θγ /2. Then we obtain
the probability

Pltl(t) ≈ cos2(θ/2)(1 − cos θe− sin2 θγ t )

− 1
2 sin2 θ cos(εt)e− 1

2 sin2 θγ t , (20)

where the subscript “ltl” means the low temperature limit. In
this case, the probability increases for an initial value 0 to a
steady-state value cos2(θ/2). In Fig. 4, we plot the probability
Pltl vs. the time γ t for different mixing angles θ in the low
temperature limit. Figure 4 shows that the probability Pltl

increases from 0 to a steady-state value with the increase of
the time t . In the short time, the probability experiences small
oscillation. The steady-state value decreases with the increase
of the θ . Actually, the obtained results are very reasonable
from the viewpoint of energy conservation. For the case of
θ < π/2, the energy detuning �ω > 0, we have ω1 > ω2, and
then the energy emitted by TLS1 can excite more than one
TLS2 into their excited state. For the case of θ > π/2, we
have �ω < 0, we have ω1 < ω2, and then the energy emitted
by TLS1 can only excite less than one TLS2 into the excited
state. Therefore, it is understandable that the steady-state value
of probability in low temperature increases as the parameter θ

decreases.

B. Steady-state case

At steady state, the probability (15) becomes

Pss = 1

2

[
1 + cos θ

N (ε)

]
, (21)

where the subscript “ss” stands for steady state and N (ε) =
n̄1(ε) + n̄2(ε) + 1. This steady-state probability is a very
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interesting result since it depends on the mixing angle θ and
the bath temperatures T1 and T2 independently. It depends on
the mixing angle θ and the bath temperatures T1 and T2 by
cos θ and 1/N (ε), respectively.

We first consider several special cases at steady state: (i) The
resonant case, i.e., �ω = 0. In this case, cos θ = 0, and then
Pss = 1/2. In the resonant case, the steady-state probability
Pss for single-excitation energy transfer is independence of
the temperatures of the two heat baths. This result can also be
understood from the following viewpoints: When sin(θ/2) =
cos(θ/2) = 1/

√
2, the eigenstates |λ2〉 and |λ3〉 become |λ2〉 =

(|eg〉 + |ge〉)/√2 and |λ3〉 = (−|eg〉 + |ge〉)/√2. Therefore
for any statistical mixture ρss = p2σ22 + p3σ33 of the two
eigenstates |λ2〉 and |λ3〉, the probability for finding the
two TLSs in state |ge〉 is 1/2, where p2 + p3 = 1 is the
normalization condition. (ii) The high temperature limit, i.e.,
T1,T2 � ε. In this case, n̄1(ε) � 1 and n̄2(ε) � 1, therefore
N (ε) � 1, which leads to Pss ≈ 1/2. In fact, in the high
temperature limit, the steady state of the TLSs should be
ρs ≈ (σ22 + σ33)/2, therefore according to Eq. (3) we know
that the probability for finding the two TLSs in state |ge〉 is 1/2.
(iii) The low temperature limit, i.e., T1,T2 	 ε. In this case,
n̄1(ε) ≈ 0 and n̄2(ε) ≈ 0, and then N (ε) ≈ 1, which means
Pss = cos2(θ/2). In Fig. 5, we plot the steady-state probability
Pss in Eq. (21) vs. the bath temperatures Tm. Figure 5 shows
that, for the positive detuning case, i.e., 0 < θ < π/2, the
steady-state probability Pss decreases from 1 to 1/2, but
for the negative detuning case, i.e., π/2 < θ < π , the Pss

increases from 0 to 1/2. For the resonant case, the Pss is
1/2 irrespectively of the bath temperature T1 = T2 = Tm. In
Fig. 6, we plot the steady-state probability Pss in Eq. (21)
vs. the mixing angle θ . Figure 6 shows that, in the high
temperature case, the Pss becomes approximately a fixed value
1/2 irrespective of the θ . But in the low temperature case, the
steady-state probability Pss decreases with the increase of θ .
These results are consistent with the above analysis. Therefore,
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FIG. 5. (Color online) The steady-state probability Pss vs. the
bath temperature Tm for different mixing angle θ = 0.1π (dashed red
line), 0.5 (solid black line), and 0.9π (dash dotted blue line). Other
parameters are set as γ = 1, ξ/γ = 5, and �T/γ = 0.
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FIG. 6. (Color online) The steady-state probability Pss vs. the
mixing angle θ for different bath temperature Tm/γ = 0.1 (dashed
red line), 10 (dash dotted blue line), and 100 (solid black line). Other
parameters are set as γ = 1, ξ/γ = 5, and �T/γ = 0.

in the low temperature limit, we can improve the steady-state
probability Pss via increasing the �ω.

In the above discussions of the steady-state probability, we
have assumed the bath temperature difference �T is zero.
Actually, we also study the dependence of the steady-state
probability on the bath temperature difference �T in both
the low and the high temperature limits. We found that the
dependence of the probability on �T is negligibly small with
the current parameters. This result is well understood from
the following viewpoint: in the low temperature limit, we
have T1,T2 	 ε, therefore n̄1(ε) ≈ 0 and n̄2(ε) ≈ 0, N (ε) ≈ 1,
and then Pss = cos2(θ/2), which does not depends on the
bath temperature difference �T ; On the other hand, in the
high temperature limit, T1,T2 � ε, therefore n̄1(ε) � 1 and
n̄2(ε) � 1, and then

Pss ≈ 1

2

(
1 + ε cos θ

2Tm

)
, (22)

which is independent of the bath temperature difference �T .

V. QUANTUM ENTANGLEMENT BETWEEN
THE DONOR AND ACCEPTOR

In this section, we study the quantum entanglement between
the donor and the acceptor with concurrence, which will be
defined below. For a 2 × 2 quantum system (two TLSs) with
density matrix ρ expressed in the bare state representation, its
concurrence is defined as [36]

C(ρ) = max{0,
√

s1 − √
s2 − √

s3 − √
s4}, (23)

where si (i = 1,2,3,4) are the eigenvalues (s1 being the largest
one) of the matrix ρρ̃, where the operator ρ̃ is define as

ρ̃ = (
σ

y

1 ⊗ σ
y

2

)
ρ∗(σy

1 ⊗ σ
y

2

)
(24)
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with ρ∗ being the complex conjugate of ρ. Note that here
σ

y

i is the usual Pauli matrix pointing the y axis. For the 2 × 2
quantum system, the concurrences C = 0 and C = 1 mean the
density matrix ρ is an unentangled and maximally entangled
states, respectively. Specifically, for the “X”-class state with
the density matrix

ρ =

⎛
⎜⎜⎜⎝

ρ11 0 0 ρ14

0 ρ22 ρ23 0

0 ρ32 ρ33 0

ρ41 0 0 ρ44

⎞
⎟⎟⎟⎠ (25)

expressed in the bare state representation, the concurrence
is [37]

C(ρ) = max{0,2(|ρ23| − √
ρ11ρ44),2(|ρ14| − √

ρ22ρ33)}.
(26)

Now, for the present system, its density matrix ρ can
be expressed as the following form in the bare state
representation,

ρ =

⎛
⎜⎜⎜⎝

〈τ11〉 〈τ21〉 〈τ31〉 〈τ41〉
〈τ12〉 〈τ22〉 〈τ32〉 〈τ42〉
〈τ13〉 〈τ23〉 〈τ33〉 〈τ43〉
〈τ14〉 〈τ24〉 〈τ34〉 〈τ44〉

⎞
⎟⎟⎟⎠ , (27)

where the density matrix elements are defined as 〈τij 〉 =
Tr[τijρ] = Tr[|ηi〉〈ηj |ρ] = 〈ηj |ρ|ηi〉 with the transition op-
erator τij = |ηi〉〈ηj |. Since the concurrence is defined in
the bare state representation and the evolution of the sys-
tem is expressed in the eigenstate representation. There-
fore we need to obtain the transformation between the
two representations. The density matrix elements in the
eigenstate and bare state representations are expressed by
〈σij (t)〉 and 〈τij (t)〉, respectively. Making using of Eq. (3),

we can obtain the relations for diagonal density matrix
elements

〈σ11(t)〉 = 〈τ11(t)〉, 〈σ44(t)〉 = 〈τ44(t)〉,
〈σ22(t)〉 = cos2(θ/2)〈τ22(t)〉 + sin2(θ/2)〈τ33(t)〉

+ 1
2 sin θ (〈τ23(t)〉 + 〈τ32(t)〉),

〈σ33(t)〉 = sin2(θ/2)〈τ22(t)〉 + cos2(θ/2)〈τ33(t)〉
− 1

2 sin θ (〈τ23(t)〉 + 〈τ32(t)〉), (28)

and the following off-diagonal element which will be useful
below,

〈σ23(t)〉 = 1
2 sin θ (〈τ33(t)〉 − 〈τ22(t)〉)
+ cos2(θ/2)〈τ23(t)〉 − sin2(θ/2)〈τ32(t)〉. (29)

Correspondingly, we can obtain the inverse transform

〈τ22(t)〉 = cos2(θ/2)〈σ22(t)〉 + sin2(θ/2)〈σ33(t)〉
− 1

2 sin θ [〈σ23(t)〉 + 〈σ32(t)〉],
〈τ33(t)〉 = sin2(θ/2)〈σ22(t)〉 + cos2(θ/2)〈σ33(t)〉

+ 1
2 sin θ [〈σ23(t)〉 + 〈σ32(t)〉],

〈τ23(t)〉 = − sin2(θ/2)〈σ32(t)〉 + cos2(θ/2)〈σ23(t)〉
+ 1

2 sin θ [〈σ22(t)〉 − 〈σ33(t)〉]. (30)

Also here we only express explicitly the elements which will
be used below.

In order to calculate the concurrence of the system, we
need to know its density matrix in the bare representation
for a given initial state. Fortunately, the evolution relation
from 〈τij (0)〉 to 〈τij (t)〉 can be obtained through the following
process

〈τij (0)〉 → 〈σij (0)〉 → 〈σij (t)〉 → 〈τij (t)〉. (31)

Concretely, the transformation relations 〈τij (0)〉 → 〈σij (0)〉
and 〈σij (t)〉 → 〈τij (t)〉 are determined by Eqs. (28), (29),
and (30), and the evolution relation 〈σij (0)〉 → 〈σij (t)〉 is
determined by Eq. (11). In terms of Eqs. (11), (28), (29),
(30), and (31), we can obtain the following relation

〈τ23(t)〉 =
{

1

2
sin θ

�32 − �23

�23 + �32
+ sin θ

[cos2 (θ/2) �23 − sin2 (θ/2) �32]

�23 + �32
e−2(�23+�32)t − 1

2
sin θe−(cos2 θ�1+�23+�32)t [eiεt cos2(θ/2)

− e−iεt sin2(θ/2)]

}
〈τ22 (0)〉 +

{
1

2
sin θ

�32 − �23

�23 + �32
+ sin θ

sin2 (θ/2) �23 − cos2 (θ/2) �32

�23 + �32
e−2(�23+�32)t

+ 1

2
sin(θ )e−(cos2 θ�1+�23+�32)t [eiεt cos2 (θ/2) − e−iεt sin2 (θ/2)

] }
〈τ33 (0)〉

+
{

[sin4(θ/2)e−iεt + cos4(θ/2)eiεt ]e−(cos2 θ�1+�23+�32)t + 1

2
sin2 θe−2(�23+�32)t

}
〈τ23(0)〉

+ 1

2
sin2 θ [e−2(�23+�32)t − e−(cos2 θ�1+�23+�32)t cos(εt)]〈τ32(0)〉. (32)

Now, we obtain the evolution relation of the density
matrix elements in the bare state representation. Since the
expressions are very complex, here we only show the matrix

elements which will be used in the following. Based on
these evolutionary matrix elements, we can write out the
density matrix of the system in the bare state representation
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at time t once the initial state is given, and then we can
obtain the concurrence of the density matrix. In what follows,
we will discuss the entanglement dynamics and steady-state
entanglement.

A. Entanglement dynamics

In the process of single-excitation energy transfer from the
donor to the acceptor, the single excitation energy is initially
possessed by the donor and the acceptor is in its ground state.
Therefore the initial state of the system is

|ψ(0)〉 = |eg〉 = |η2〉, (33)

which means the initial conditions are that all matrix elements
are zero except 〈τ22(0)〉 = 1. According to Eq. (32), we know
that the density matrix ρ(t) of the system belongs to the so-
called X-class state. Then the concurrence can be obtained
with Eq. (26)

C(t) = 2

∣∣∣∣∣
{

1

2
sin θ

�32 − �23

�23 + �32

+ sin θ
[cos2(θ/2)�23 − sin2(θ/2)�32]

�23 + �32
e−2(�23+�32)t

− 1

2
sin θe−(cos2 θ�1+�23+�32)t

× [eiεt cos2(θ/2) − e−iεt sin2(θ/2])

}∣∣∣∣∣. (34)

In what follows, we consider three special cases of interest:
(a) The resonant case, i.e., ω1 = ω2 = ωm, that is �ω = 0.
Then the mixing angle θ = π/2 and the energy separation
ε = 2ξ , thus we obtain

Cres(t) ≈
∣∣∣∣ 1

N (2ξ )

(
1 − e−N(2ξ )γ t

) + i sin(εt)e− 1
2 N(2ξ )γ t

∣∣∣∣ ,
(35)

where N (2ξ ) = n̄1(2ξ ) + n̄2(2ξ ) + 1. From Eq. (35), we find
that the concurrence Cres(t) increases from zero to a steady-
state value 1/N (2ξ ) with the increase of the time t . Clearly, the
steady-state concurrence 1/N(2ξ ) decreases from one to zero
as the temperature Tm increases from zero to infinite. In Fig. 7,
we plot the concurrence (35) in the resonant case vs. the scaled
time γ t and for different heat bath average temperatures Tm.
Figure 7 shows the results as we analyze above.

(b) The high temperature limit, i.e., T1,T2 � ε. In this case,
n̄1(ε),n̄2(ε) � 1, then we can have the approximate relations
n̄1(ε) ≈ n̄1(ε) + 1 and n̄2(ε) ≈ n̄2(ε) + 1, which lead to �23 ≈
�32. Then the concurrence (34) becomes

Chtl(t) ≈
∣∣∣∣∣ sin(2θ )

2
e− sin2 θN(ε)γ t − sin θe−(2 cos2 θχ+ 1

2 sin2 θN(ε)γ )t

× [eiεt cos2(θ/2) − e−iεt sin2(θ/2)]

∣∣∣∣∣. (36)

The expression of the concurrence (36) in the high temperature
limit is not simple as that of the resonant case, but we can still
observe the two points: The first is that the dependence of
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FIG. 7. (Color online) The concurrence Cres in Eq. (35) vs. the
scaled time γ t for different bath temperature Tm/γ = 0.1 (dashed
red line), 10 (dash dotted blue line), and 100 (solid black line) in
the resonant case �ω/γ = 0. Other parameters are set as γ = 1,
ξ/γ = 5, and �T/γ = 0.

the concurrence on the angle θ is approximately sin θ and
the second is that the steady-state concurrence is zero, which
means there is no quantum entanglement between the donor
and the acceptor. This result can also be seen from the density
operator of the steady state for the donor and the acceptor.
In the high temperature limit, the steady-state density matrix
of the donor and the acceptor is ρ ≈ (|eg〉〈eg| + |ge〉〈ge|)/2,
which is an unentangled state. Physically, this result is direct
since the quantum systems will transit to classical systems in
the high temperature limit. In Fig. 8, we plot the concurrence
given by Eq. (36) vs. the evolution time γ t for different mixing
angles θ . Figure 8 shows that the concurrence experiences an
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FIG. 8. (Color online) The concurrence Chtl in Eq. (36) vs. the
scaled evolution time γ t for different mixing angle θ = 0.1π (dashed
red line), 0.3π (dashed blue line), and 0.5π (solid black line) in
the high temperature limit Tm/γ = 100. Other parameters are set as
γ = 1, ξ/γ = 5, χ1/γ = χ2/γ = 0.01Tm, and �T/γ = 0.
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increase from zero to a maximal value and then decreases to a
steady-state value with the scaled time γ t .

(c) The low temperature limit, i.e., T ≈ 0. Now we can
approximately have n̄(ε) ≈ 0, which lead to �32 ≈ 0 and
�23 ≈ sin2 θγ /2. Then the concurrence (34) becomes

Cltl(t) ≈ sin θ
∣∣1 − 2 cos2(θ/2)e− sin2 θγ t + e− 1

2 sin2 θγ t

× [eiεt cos2(θ/2) − e−iεt sin2(θ/2)]
∣∣, (37)

where the subscript “ltl” stands for low temperature limit.
Similar to the high temperature limit, the increase of the
concurrence is also not simply exponential. The concurrence
increases from zero to a steady-state value sin θ with the
increase of the scaled time t , which means the concurrence at
long time limit is irrespective of the sign of the detuning. This
long-lived entanglement is much larger than that of the high
temperature limit. We can also see the steady-state concurrence
from the viewpoint of quantum noise. When T ≈ 0, the steady
state of the donor and the acceptor is ρ ≈ |λ3〉〈λ3| with
concurrence sin θ . In Fig. 9, we plot the concurrence given
by Eq. (37) vs. the evolution time γ t and the mixing angle θ .
Figure 9 shows that the concurrence increases from zero to a
steady-state value with the scaled time t .

B. Steady-state entanglement

From Eq. (34), it is straightforward to obtain the steady-state
concurrence between the donor and the acceptor,

Css = sin θ

N (ε)
. (38)

In the high temperature limit, we have Chtl(∞) ≈ 0, and in
the low temperature limit, we have Cltl(∞) ≈ sin θ . For a
general state, it is interesting to point out that the steady-state
concurrence Css depends on the temperature Tm and the angle
θ independently. For a given θ , the dependence on Tm is inverse
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FIG. 9. (Color online) The concurrence Cltl in Eq. (37) vs. the
scaled evolution time γ t for different mixing angle θ = 0.1π (solid
black line), 0.3π (dash dotted blue line), and 0.5π (dashed red line) is
plotted in the low temperature limit Tm/γ = 0.01. Other parameters
are set as γ = 1, ξ/γ = 5, χ1/γ = χ2/γ = 0.01Tm, and �T/γ = 0.
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FIG. 10. (Color online) The steady-state concurrence Css vs. the
bath temperature Tm for different mixing angle θ = 0.1π (solid black
line), 0.3 (dash dotted blue line), and 0.5π (dashed red line). Other
parameters are set as γ = 1, ξ/γ = 5, and �T/γ = 0.

proportional to N (ε), and for a given Tm, the dependence on θ

is sin θ . In Fig. 10, we plot the concurrence given by Eq. (38)
vs. the temperature Tm for different mixing angles θ .

Figure 10 shows that the steady-state concurrence decreases
with the increase of the temperature Tm. In Fig. 11, we plot
the concurrence given by Eq. (38) vs. the mixing angle θ

for different average bath temperature Tm. Figure 11 shows
that the dependence of the concurrence on the mixing angle θ

decreases with the increase of the average bath temperature Tm.
Moreover, from Eq. (38), we can also see that the steady-state
concurrence is independent of �T at the high temperature
limit.
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FIG. 11. (Color online) The steady-state concurrence Css vs. the
mixing angle θ for different bath temperature Tm/γ = 0.1 (dashed
red line), 10 (dash dotted blue line), and 100 (solid black line). Other
parameters are set as γ = 1, ξ/γ = 5, and �T/γ = 0.
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VI. CONCLUSIONS

In conclusion, we have studied analytically coherent single-
excitation energy transfer in a dimer consisting of a donor and
an acceptor modeled by two TLSs, which are immersed in two
independent heat baths. Special attention is paid to the effect on
the single-excitation energy transfer probability of the energy
detuning and the heat bath temperatures of the two TLSs. It
has been found that the probability for single-excitation energy
transfer largely depends on the energy detuning in the low tem-
perature limit. Concretely, the positive and negative energy de-
tunings can increase and decrease the probability, respectively.
In the high temperature limit, however, the effect of the energy
detuning on the probability is negligibly small. We have also
found that the probability is negligibly dependence on the bath
temperature difference in the low and high temperature limits.
We have also studied analytically quantum entanglement in
the dimer system through calculating quantum concurrence. It
was found that quantum entanglement can be created during
the process of excitation energy transfer. The steady-state en-
tanglement between the donor and the acceptor decreases with
the increasing of the bath temperature. And the dependence
of the steady-state concurrence on the energy detuning is
proportional to the sine function of the mixing angle and
irrespective of the bath temperatures. Moreover, we have found
that the dependence of the steady-state concurrence on the bath
temperature difference is negligibly small with the current
parameters.

Finally, we give two remarks on the above obtained
results: First, we should distinguish the present work from
dynamic disentanglement suddenly or asymptotically (e.g.,
Refs. [38–50]). Mainly, there are three points of difference
between the two cases: the initial state, the coupling between
the two TLSs, and the coupling form between the TLSs and
their heat baths. In dynamic disentanglement, the two TLSs is
initially prepared in an entanglement state, there is no coupling
between the two TLSs, and the coupling form of the TLSs
with their heat baths is off-diagonal. But in the present work,
initially the two TLSs are unentangled, there is a dipole-dipole
interaction between the two TLSs, and the coupling form
of the TLSs with their heat baths is diagonal. Certainly, the
results also differ. In entanglement sudden death, the two TLSs
disentangle to zero suddenly. But in this work, steady-state
entanglement is created.

Second, in this work, we only address the problem about
how is the dynamics of the created quantum entanglement
in the process of excitation energy transfer [51]. But we do
not address the question about the relation between initially
prepared quantum entanglement among the pigments and the
efficiency for single-excitation energy transfer. Just as in quan-
tum information science, quantum entanglement is considered
an important resource since it can be used to enhance the effi-
ciency of quantum information protocols. Therefore it remains
a question whether initially prepared quantum entanglement
can enhance the efficiency of excitation energy transfer.
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APPENDIX: DERIVATION OF QUANTUM
MASTER EQUATION (7)

In this appendix, we present a detailed derivation of
quantum master equation (7). Let us start from the Hamiltonian
(1) of the total system. In the interaction picture with respect
to the Hamiltonian

H0 = HTLSs + HB, (A1)

the interaction Hamiltonian (6) becomes

HI (t) = σ11B11(t) + σ22B22(t) + σ33B33(t)

+σ23e
iεtB23(t) + σ32e

−iεtB
†
23(t), (A2)

through introducing the following noise operators:

B11(t) = A(t) + B(t),

B22(t) = cos2(θ/2)A(t) + sin2(θ/2)B(t),

B33(t) = sin2(θ/2)A(t) + cos2(θ/2)B(t),

B23(t) = sin θ

2

( ∑
k

g2kbke
−iωbk t −

∑
j

g1j aj e
−iωaj t

)
,

(A3)

with

A(t) ≡ eiH
(a)
B tA(0)e−iH

(a)
B t

=
∑

j

g1j (a†
j e

iωaj t + aj e
−iωaj t ),

B(t) ≡ eiH
(b)
B tB(0)e−iH

(b)
B t

=
∑

k

g2k(b†ke
iωbkt + bke

−iωbk t ). (A4)

Obviously, A(t) and B(t) are Hermitian operators. Note that
in Eq. (A2) we have made rotating wave approximation.

Under the Born-Markov approximation, the master equa-
tion reads [35]

ρ̇S = −
∫ ∞

0
dτTrB[HI (t),[HI (t − τ ),ρS ⊗ ρB]], (A5)

where TrB stands for tracing over the degrees of freedom of
the heat baths. The density matrix ρB ≡ ρ

(a)
th ⊗ ρ

(b)
th of the heat

baths means the two independent heat baths being in thermal
equilibrium,

ρ
(a)
th = Z−1

A exp
( − β1H

(a)
B

)
,

ρ
(b)
th = Z−1

B exp
( − β2H

(b)
B

)
, (A6)

where we denote the partition functions ZA =
TrBa

[exp(−β1H
(a)
B )] and ZB = TrBb

[exp(−β2H
(b)
B )] with

β1 = 1/T1 and β2 = 1/T2 being respectively the inverse
temperatures of the heat baths of the TLS1 and TLS2.

By using Eqs. (A2) and (A5) and making rotating wave
approximation, we can obtain the following quantum master
equation

ρ̇S = σ32ρSσ23

∫ ∞

0
e−iεt 〈B23(−τ )B†

23(0)〉dτ

+ σ23ρSσ32

∫ ∞

0
eiεt 〈B†

23(−τ )B23(0)〉dτ
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− σ22ρS

∫ ∞

0
eiεt 〈B23(0)B†

23(−τ )〉dτ

− σ33ρS

∫ ∞

0
e−iεt 〈B†

23(0)B23(−τ )〉dτ

+
∑

m,n=1,2,3

σmmρSσnn

∫ ∞

0
〈Bnn(−τ )Bmm(0)〉dτ

−
∑

n=1,2,3

σnnρS

∫ ∞

0
〈Bnn(0)Bnn(−τ )〉dτ + H.c., (A7)

where the correlation functions for the bath operators
are defined as 〈X(t)Y (t ′)〉 ≡ TrB[X(t)Y (t ′)ρB]. Note that
here we use the property 〈X(t)Y (t ′)〉 = 〈X(t − t ′)Y (0)〉 =
〈X(0)Y (t ′ − t)〉 of the correlation functions for the bath
operators. To derive the quantum master equation we need
to calculate the Fourier transform of the correlation functions
in Eq. (A7). For simplicity, here we only keep the real parts
of the Fourier transforms of the correlation functions and
neglect their imaginary parts since the imaginary parts only
contribute to the Lamb shifts, which are neglected in this work.
According to Eqs. (A3), (A4), and (A6), we can express the
Fourier transforms for the correlation functions in Eq. (A7) as
follows:∫ ∞

0
dτ 〈B11(0)B11(−τ )〉 =

∫ ∞

0
dτ 〈B11(−τ )B11(0)〉∗

= DA + DB,∫ ∞

0
dτ 〈B22(0)B22(−τ )〉 =

∫ ∞

0
dτ 〈B22(−τ )B22(0)〉∗

= cos4(θ/2)DA + sin4(θ/2)DB,∫ ∞

0
dτ 〈B33(0)B33(−τ )〉 =

∫ ∞

0
dτ 〈B33(−τ )B33(0)〉∗

= sin4(θ/2)DA + cos4(θ/2)DB,∫ ∞

0
dτ 〈B22(−τ )B11(0)〉 =

∫ ∞

0
dτ 〈B11(−τ )B22(0)〉

= cos2(θ/2)D∗
A + sin2(θ/2)D∗

B,∫ ∞

0
dτ 〈B33(−τ )B11(0)〉 =

∫ ∞

0
dτ 〈B11(−τ )B33(0)〉

= sin2(θ/2)D∗
A + cos2(θ/2)D∗

B,∫ ∞

0
dτ 〈B33(−τ )B22(0)〉 =

∫ ∞

0
dτ 〈B22(−τ )B33(0)〉

= 1

4
sin2(θ/2)

(
D∗

A + D∗
B

)
, (A8)

where the parameters are introduced as

DA =
∫ ∞

0
dτ 〈A(0)A(−τ )〉, DB =

∫ ∞

0
dτ 〈B(0)B(−τ )〉,

D∗
A =

∫ ∞

0
dτ 〈A(−τ )A(0)〉, D∗

B =
∫ ∞

0
dτ 〈B(−τ )B(0)〉.

(A9)

Since the noise operators Bnn (n = 1,2,3) are Hermitian
operators, then we have the relations∫ ∞

0
dτ 〈Bnn(−τ )Bmm(0)〉 =

∫ ∞

0
dτ 〈Bmm(0)Bnn(−τ )〉∗.

(A10)

Therefore we can know all the diagonal correlation func-
tions in Eq. (A7) as long as we obtain the expression of DA

and DB . According to Eqs. (A4) and (A6), we can calculate
the expression of DA as follows,

DA =
∑

j

g2
1j 〈a†

j aj 〉
∫ ∞

0
dτeiωaj τ

+
∑

j

g2
1j 〈aja

†
j 〉

∫ ∞

0
dτe−iωaj τ

=
∑

j

g2
1j 〈a†

j aj 〉
[
πδ(ωaj ) + iP

1

ωaj

]

+
∑

j

g2
1j 〈aja

†
j 〉

[
πδ(ωaj ) − iP

1

ωaj

]

= Re[DA] + i Im[DA], (A11)

where

Re[DA] = lim
ω→0+

π�1 (ω) g2
1 (ω) [2n̄1 (ω) + 1] . (A12)

Note that in the third line of Eq. (A11) we have used the
formula: ∫ ∞

0
dτe±iωτ = πδ (ω) ± i P

1

ω
, (A13)

where the sign P stands for the usual principal value integral.
Similarly, we can obtain the expression of Re[DB],

Re[DB] = lim
ω→0+

π�2 (ω) g2
2 (ω) [2n̄2 (ω) + 1] . (A14)

Here �1(ω) and �2(ω) are the densities of state of the heat
baths of the TLS1 and TLS2, respectively. And n̄1(ω) =
1/[exp(β1ω) − 1] and n̄2(ω) = 1/[exp(β2ω) − 1] are the av-
erage thermal excitation numbers. Using the same method we
can obtain the following expressions:

Re

[∫ ∞

0
dτeiετ 〈B23(0)B†

23(−τ )〉
]

= Re

[∫ ∞

0
dτe−iετ 〈B23(−τ )B†

23(0)〉
]

= π

4
sin2 θ

[
�1(ε)g2

1(ε)(n̄1(ε) + 1) + �2(ε)g2
2(ε)(n̄2(ε) + 1)

]
(A15)

and

Re

[∫ ∞

0
dτe−iετ 〈B†

23(0)B23(−τ )〉
]

= Re

[∫ ∞

0
dτeiετ 〈B†

23(−τ )B23(0)〉
]

= π

4
sin2 θ

[
�1(ε)g2

1(ε)n̄1(ε) + �2(ε)g2
2(ε)n̄2(ε)

]
. (A16)

By substituting these correlation functions into Eq. (A7) and
returning to the Schrödinger picture, we can obtain quantum
master equation (7).
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[40] Z. Ficek and R. Tanaś, Phys. Rev. A 74, 024304 (2006).
[41] F. Q. Wang, Z. M. Zhang, and R. S. Liang, Phys. Rev. A 78,

062318 (2008).
[42] Y. Dubi and M. Di Ventra, Phys. Rev. A 79, 012328 (2009).
[43] N. B. An and J. Kim, Phys. Rev. A 79, 022303 (2009).
[44] K. Ann and G. Jaeger, Phys. Rev. B 75, 115307 (2007).
[45] Z. Sun, X. G. Wang, and C. P. Sun, Phys. Rev. A 75, 062312

(2007).
[46] X. F. Cao and H. Zheng, Phys. Rev. A 77, 022320 (2008).
[47] A. Al-Qasimi and D. F. V. James, Phys. Rev. A 77, 012117

(2008).
[48] B. Bellomo, R. Lo Franco, and G. Compagno, Phys. Rev. Lett.

99, 160502 (2007).
[49] L. Aolita, R. Chaves, D. Cavalcanti, A. Acı́n, and L. Davidovich,

Phys. Rev. Lett. 100, 080501 (2008).
[50] M. Ban, Phys. Rev. A 80, 032114 (2009).
[51] T. Scholak, F. de Melo, T. Wellens, F. Mintert, and

A. Buchleitner, e-print arXiv:0912.3560.

052109-12

http://dx.doi.org/10.1063/1.881413
http://dx.doi.org/10.1146/annurev.physchem.040808.090259
http://dx.doi.org/10.1146/annurev.physchem.040808.090259
http://dx.doi.org/10.1007/s11120-009-9472-9
http://dx.doi.org/10.1126/science.1142188
http://dx.doi.org/10.1126/science.1142188
http://dx.doi.org/10.1038/nature05678
http://dx.doi.org/10.1038/nature05678
http://dx.doi.org/10.1002/andp.19484370105
http://dx.doi.org/10.1063/1.3155214
http://dx.doi.org/10.1063/1.3155214
http://dx.doi.org/10.1063/1.3155372
http://dx.doi.org/10.1063/1.2977974
http://dx.doi.org/10.1063/1.2977974
http://dx.doi.org/10.1063/1.3142485
http://dx.doi.org/10.1063/1.3142485
http://dx.doi.org/10.1063/1.3002335
http://dx.doi.org/10.1088/1367-2630/11/3/033003
http://dx.doi.org/10.1021/jp901724d
http://dx.doi.org/10.1021/jp901724d
http://dx.doi.org/10.1063/1.3259838
http://dx.doi.org/10.1063/1.3259838
http://dx.doi.org/10.1088/1367-2630/10/11/113019
http://dx.doi.org/10.1063/1.3223548
http://dx.doi.org/10.1103/PhysRevB.78.085115
http://dx.doi.org/10.1103/PhysRevB.78.085115
http://dx.doi.org/10.1021/jz100717d
http://dx.doi.org/10.1021/jz100717d
http://dx.doi.org/10.1103/PhysRevLett.103.146404
http://dx.doi.org/10.1063/1.3155213
http://dx.doi.org/10.1063/1.3155213
http://dx.doi.org/10.1063/1.3170939
http://dx.doi.org/10.1103/PhysRevE.80.011916
http://dx.doi.org/10.1021/jp906866g
http://dx.doi.org/10.1021/jp906866g
http://dx.doi.org/10.1103/PhysRevE.81.011906
http://dx.doi.org/10.1103/PhysRevE.81.011906
http://dx.doi.org/10.1063/1.3435213
http://dx.doi.org/10.1063/1.3435213
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysRevA.72.062329
http://dx.doi.org/10.1103/PhysRevA.72.062329
http://arXiv.org/abs/arXiv:0806.4552
http://dx.doi.org/10.1103/PhysRevLett.104.220502
http://dx.doi.org/10.1103/PhysRevLett.104.220502
http://dx.doi.org/10.1016/j.cplett.2009.07.053
http://dx.doi.org/10.1038/nphys1652
http://dx.doi.org/10.1038/nphys1652
http://dx.doi.org/10.1103/PhysRevA.81.062346
http://dx.doi.org/10.1016/0003-4916(83)90202-6
http://dx.doi.org/10.1016/0003-4916(83)90202-6
http://dx.doi.org/10.1103/PhysRevE.75.011105
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1103/PhysRevA.75.062336
http://dx.doi.org/10.1103/PhysRevA.75.062336
http://dx.doi.org/10.1103/PhysRevLett.93.140404
http://dx.doi.org/10.1103/PhysRevLett.97.140403
http://dx.doi.org/10.1103/PhysRevLett.97.140403
http://dx.doi.org/10.1103/PhysRevB.68.165322
http://dx.doi.org/10.1126/science.1167343
http://dx.doi.org/10.1126/science.1167343
http://dx.doi.org/10.1126/science.1139892
http://dx.doi.org/10.1126/science.1139892
http://dx.doi.org/10.1103/PhysRevA.74.024304
http://dx.doi.org/10.1103/PhysRevA.78.062318
http://dx.doi.org/10.1103/PhysRevA.78.062318
http://dx.doi.org/10.1103/PhysRevA.79.012328
http://dx.doi.org/10.1103/PhysRevA.79.022303
http://dx.doi.org/10.1103/PhysRevB.75.115307
http://dx.doi.org/10.1103/PhysRevA.75.062312
http://dx.doi.org/10.1103/PhysRevA.75.062312
http://dx.doi.org/10.1103/PhysRevA.77.022320
http://dx.doi.org/10.1103/PhysRevA.77.012117
http://dx.doi.org/10.1103/PhysRevA.77.012117
http://dx.doi.org/10.1103/PhysRevLett.99.160502
http://dx.doi.org/10.1103/PhysRevLett.99.160502
http://dx.doi.org/10.1103/PhysRevLett.100.080501
http://dx.doi.org/10.1103/PhysRevA.80.032114
http://arXiv.org/abs/arXiv:0912.3560

