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Hidden parameters in open-system evolution unveiled by geometric phase
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We find a class of open-system models in which individual quantum trajectories may depend on parameters
that are undetermined by the full open-system evolution. This dependence is imprinted in the geometric phase
associated with such trajectories and persists after averaging. Our findings indicate a potential source of ambiguity
in the quantum trajectory approach to open quantum systems.
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I. INTRODUCTION

Closed quantum systems evolving deterministically under
some Hermitian Hamiltonian is an idealized description that
at best approximates real laboratory experiments. In fact,
all quantum systems undergo open-system effects induced
by entanglement with environmental degrees of freedom;
effects that may be detrimental in various quantum information
protocols in which coherence is an essential ingredient [1].
This feature has led to a revived interest in the theory of open
quantum systems and how to deal with open-system effects
by different types of error control to achieve error resilient
quantum information processing [2].

Geometric and holonomic quantum computation, first con-
ceived in Ref. [3] and experimentally demonstrated in Ref. [4],
is an approach to error control that has attracted considerable
attention recently. In its simplest variant, it makes use of the
Abelian geometric phase [5] to construct quantum logical gates
acting on one or two quantum-mechanical bits (qubits) [6].
These gates may be used to build quantum Boolean networks
and may be combined with other error resilient methods
to perform robust quantum computation [7,8]. The need to
understand the error resilience of geometric and holonomic
quantum computation has led to proposals for the geometric
phase of open quantum systems [9–12].

Here, we examine the idea in Ref. [9] (see also Ref. [13]) to
associate geometric phases of individual quantum trajectories
in quantum jump unravelings of Lindblad-type open-system
evolution [14]. This approach involves only pure state geo-
metric phases, which may relate to the geometry of the full
open-system evolution by some averaging over trajectories
[15].

The trajectory-based geometric phase simplifies the analy-
sis of the robustness of geometric and holonomic quantum
computation [16–18]. The idea is that for weak influence
of the environment, it suffices to consider the lowest order,
no-jump trajectory to evaluate error resilience. Here, we
show that this geometric phase may in certain cases lead to
different predictions regarding the resilience of geometric and
holonomic quantum computation to open-system effects. This
result indicates a potential source of ambiguity in the no-jump
approach to analyze weak open-system effects.

The problem of how to define open-system geometric
phases by averaging over quantum trajectories has been
addressed in Refs. [19,20]. These works employ quantum state
diffusion (QSD) [21], which is a form of stochastic unravelings

of the Lindblad evolution consisting of continuous, Brownian-
type trajectories in state space.

In Ref. [19], the averaged geometric phase associated with
the full nonlinear form of the QSD equation [21] was exam-
ined. It was found that this phase is not invariant under unitary
rotations Lm → ∑

n VmnLn of the Lindblad operators Lm. On
the other hand, Ref. [20] demonstrated that this noninvariance
would disappear if the averaged geometric phase is instead
associated with the linearized version of QSD [22], provided
the system starts in a pure state. Based on this result, it was
claimed in Ref. [20] that the linearized QSD approach provides
a uniquely defined geometric phase of open systems. Here, we
demonstrate the existence of a class of Markovian open-system
evolutions for which the linearized QSD geometric phase may
change under symmetry transformations of the full Lindblad
evolution.

The outline of the paper is as follows. In the next section, we
find symmetry transformations of a certain class of Markovian
open-system evolutions which are not symmetries of the
corresponding no-jump trajectories. These transformations are
shifts of the Lindblad operators, i.e., of the form Lm → Lm −
fm(t)1̂. Here, fm(t) are arbitrary complex-valued functions
and are hidden parameters in the sense that they do not
affect this class of Markovian evolution models. In Sec. III,
this result is illustrated by an explicit calculation of the
no-jump geometric phase for a dephasing qubit (spin- 1

2 ) being
exposed to a static magnetic field. The geometric phase for
stochastic unravelings in the form of the linearized QSD
equation is analyzed in Sec. IV. The paper ends with the
conclusions.

II. SHIFT SYMMETRIES OF OPEN-SYSTEM
EVOLUTIONS

We consider Markovian evolution of open quantum systems
governed by the Lindblad equation (h̄ = 1 from now on) [23]

ρ̇(t) = −i[H (t),ρ(t)] + λ
∑
m

×
(

Lmρ(t)L†
m − 1

2
L†

mLmρ(t) − 1

2
ρ(t)L†

mLm

)
= −i[H (t),ρ(t)] + λL(ρ(t)). (1)

Here, Lm are dimensionless Lindblad operators that model
the influence of the environment on the system evolution. For
simplicity, we shall assume that Lm are time independent.
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The parameter λ � 0 controls the strength of the open-system
effect, such that λ = 0 corresponds to unitary closed-system
evolution.

The Lindblad equation obeys certain symmetries; an ap-
parent one is the independence of choice of zero point energy
corresponding to the transformation H (t) → H (t) − h(t)1̂,
where h(t) is real valued and 1̂ is the identity operator. Another
general type of symmetry corresponds to the transformation
Lm → ∑

n VmnLn, where Vmn is an arbitrary unitary matrix
[20]. One may check that this transformation leaves the
Lindblad equation unchanged and thus will not affect the state
ρ(t) of the system.

The quantum jump unraveling is defined by dividing the
evolution given by Eq. (1) into small time steps �t . In the
�t → 0 limit, this procedure leads to quantum trajectories in
state space consisting of smooth deterministic parts interrupted
by random jumps, generated by jump operators proportional
to Lm. For a pure initial state ψ0, these trajectories reside in
projective Hilbert space P(H) formed by rays of the system’s
Hilbert space H. These rays are equivalence classes consisting
of vectors that differ by multiplication of nonzero complex
numbers. As shown in Ref. [9], one may associate a pure state
geometric phase to each such trajectory. Here, we focus on the
geometric phase of no-jump trajectories. Such a trajectory is
the projection onto P(H) of the continuous Hilbert space path

[0,T ] � t → |ψ(t)〉 = Te−i
∫ t

0 H̃ (t ′) dt ′ |ψ0〉 (2)

with T time ordering and

H̃ (t) = H (t) − i

2
λ

∑
m

L†
mLm (3)

a non-Hermitian effective no-jump Hamiltonian. The cor-
responding no-jump geometric phase acquired on the time
interval [0,T ] reads [9]

γnj = arg〈ψ(0)|ψ(T )〉 +
∫ T

0

〈ψ(t)|H (t)|ψ(t)〉
〈ψ(t)|ψ(t)〉 dt. (4)

Note that γnj is a property of a path in P(H) as it is invariant
under the transformation |ψ(t)〉 → c(t)|ψ(t)〉 together with
H (t) → H (t) + i d

dt
ln c(t)

|c(t)| , where c(t) is a nonzero complex
number for all t ∈ [0,T ].

It is straightforward to check that the no-jump path |ψ(t)〉
and the corresponding geometric phase γnj are unaffected
by the above-mentioned unitary rotation Lm → ∑

n VmnLn.
But there may be other symmetries that apply only to certain
classes of open systems. We focus on the symmetry related
to the shifts Lm → Lm − fm(t)1̂ where fm(t) is, in general,
complex valued. Such shifts induce the transformations

H (t) → K(t) = H (t) − i

2
λ

∑
m

[f ∗
m(t)Lm − fm(t)L†

m],

(5)
L → L.

Thus, they result solely in an extra term in the Hamiltonian
part of Eq. (1). This implies that the Lindblad evolution is
unchanged under the shifts of Lm if all f ∗

m(t)Lm are Hermitian.
In such a case, fm(t) are said to be hidden parameters of the

full open-system evolution. On the other hand, the no-jump
Hamiltonian transforms as

H̃ (t) → K̃(t) = H̃ (t) + i

2
λ

∑
m

[fm(t)L†
m

+ f ∗
m(t)Lm − |fm(t)|21̂] (6)

with H̃ (t) the no-jump Hamiltonian in Eq. (3). The trans-
formed no-jump Hamiltonian K̃(t) may be nontrivially
different from H̃ (t) even for Hermitian f ∗

m(t)Lm. Thus,
for shifts Lm → Lm − fm(t)1̂ such that f ∗

m(t)Lm are
Hermitian, the Lindblad evolution is unchanged but the
deterministic no-jump evolution may undergo a nontrivial
change originating from the anti-Hermitian contributions
i
2λ[fm(t)L†

m + f ∗
m(t)Lm] to K̃(t). In this case, the no-jump

trajectories may depend on the parameters fm, which are
hidden in the full open-system evolution. We note that this
result applies to any smooth portion of a quantum trajectory,
i.e., trajectories that contain one or several jumps share with
the no-jump trajectories the same kind of behavior under shifts
of the Lindblad operators.

The fm dependence may be interpreted as an manifestation
of a continuous monitoring of the environment in the presence
of a specific form of system-environment interaction. To
see this explicitly, let us consider a unitary representation
model for the system-environment evolution during the time
interval [t,t + δt], where δt is the finite time resolution for
measuring projectively the environment in some orthogonal
basis {|0e〉,|me〉}. We assume that δt and λ are much smaller
than the typical energy shift associated with H (t). Under this
assumption, the change in the system-environment state can
be described by a unitary map U(t,t + δt ; {fm(t)}) with the
effect

|0e〉|ψ(t)〉 → U(t,t + δt ; {fm(t)})|0e〉|ψ(t)〉
= |0e〉(1̂ − iK̃(t)δt)|ψ(t)〉

+
√

λδt
∑
m

|me〉(Lm − fm(t)1̂)|ψ(t)〉. (7)

Here, we have assumed that the environment is prepared in the
pure state |0e〉 and we have taken

〈0e|U(t,t + δt ; {fm(t)})|0e〉 = 1̂ − iK̃(t)δt,
(8)

〈me|U(t,t + δt ; {fm(t)})|0e〉 =
√

λδt[Lm − fm(t)1̂]

to the first order in δt and
√

λδt . Thus, the shifts Lm →
Lm − fm(t)1̂ would correspond to engineering the system-
environment interaction so that Eq. (8) is satisfied. Evidently,
the jump operators are

√
λδt[Lm − fm(t)1̂]. The no-jump

trajectory [0,T ] � t → |ψ(t)〉 = Te−i
∫ t

0 K̃(t ′) dt ′ |ψ0〉 is realized
with probability 〈ψ(T )|ψ(T )〉 by verifying that no change has
occurred in the environment, and repeating up to time T .

The operators F0(t) = 1̂ − iK̃(t)δt and Fm(t) = √
λδt

[Lm − fm(t)1̂] in Eq. (8) constitute a set of Kraus op-
erators that represent a completely positive map of sys-
tem states from t to t + δt . Provided all f ∗

m(t)Lm are
Hermitian, there is a unitary matrix W (t) that relates this Kraus
representation with the original one consisting of E0(t) =
1̂ − iH̃ (t)δt and Em(t) = √

λδtLm. Explicitly, we may write
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Fµ(t) = ∑
ν Wµν(t)Eν(t), µ,ν = 0,1, . . . , with

W (t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 1
2λδt

∑
m |fm(t)|2 √

λδtf ∗
1 (t)

√
λδtf ∗

2 (t)
√

λδtf ∗
3 (t) . . .

−√
λδtf1(t) 1 0 0 . . .

−√
λδtf2(t) 0 1 0 . . .

−√
λδtf3(t) 0 0 1 . . .

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (9)

which can be checked to be unitary to lowest order in δt and√
λδt . The existence of such a unitary matrix demonstrates [1]

that the two maps are physically identical if all f ∗
m(t)Lm are

Hermitian; a result that is consistent with the invariance of the
Lindblad equation under the shifts Lm → Lm − fm(t)1̂ for this
type of open-system evolution.

III. GEOMETRIC PHASE

We next show that the previous result may have conse-
quences for the geometric phase of a no-jump trajectory. We
find an explicit physical example where a shift parameter f

is imprinted in the no-jump geometric phase, although the
corresponding open-system evolution is f independent.

Consider a qubit (spin- 1
2 ) prepared in the pure state

|ψ0〉 = cos( 1
2θ0)|0〉 + sin( 1

2θ0)|1〉, exposed to a static magnetic
field in the z direction and to dephasing of strength λ.
This may be modeled by a Hamiltonian H = ω

2 σz and a
single Lindblad operator L = σz, with ω the precession
frequency and σz = |0〉〈0| − |1〉〈1| the z component of the
standard Pauli operators. By using Eqs. (5) and (6), we
find the transformations H → K = H − λIm(f )σz, L → L,
and H̃ → K̃ = H̃ + iλRe(f )σz − i

2λ|f |21̂, under the shift
L → L − f 1̂, where f is assumed to be time independent
for simplicity. Thus, the Lindblad evolution is unaffected by
the shift if f is real valued. On the other hand, the geometric
phase of the no-jump trajectory

[0,T ] � t → |ψ(t)〉 = e−iK̃t |ψ0〉 (10)

for a quasicyclic path over the time interval [0,2π/ω] with
real-valued f takes the form

γnj = −π + ω

4f λ
ln

(
e

4π
ω

f λ cos2 θ0

2
+ e− 4π

ω
f λ sin2 θ0

2

)
,

(11)

which is explicitly f dependent.
The geometrical reason for this f dependence can be

seen by looking at the Bloch sphere polar angle θ , which
becomes time dependent if f 	= 0. Explicitly, by evaluating
the right-hand side of Eq. (10) we obtain tan[θ (t)/2] =
e−2f λt tan(θ0/2) and azimuthal angle ϕ(t) = ϕ0 + ωt , which
correspond to a spiralling motion toward the north (south)
pole of the Bloch sphere for f > 0 (f < 0) and all θ0 	= π

(θ0 	= 0). Furthermore, one may check that γnj in Eq. (11)
converges to the expected −π (1 − cos θ0) (minus half the

solid angle enclosed on the Bloch sphere) in the f λ → 0
limit. The non-trivial f dependence is illustrated in Fig. 1.
The resilience to dephasing of the geometric phase of the
no-jump trajectory found in Refs. [9,17] corresponds to the
case f = 0. However, as our calculation shows, any nonzero
f would predict γnj to be λ dependent and thus be affected by
this kind of open-system effect. For small f λ, this dependence
is linear, which may be seen by expanding the geometric phase
around the closed-system expression, leading to the lowest
order correction 2π2 f λ

ω
sin2 θ0.

We may show that the no-jump evolution of dephasing for
f 	= 0 is equivalent to decay of the precessing qubit. Consider
the evolution generated by the Lindblad operator L− = σx −
iσy , which corresponds to decay toward the south pole of the
Bloch sphere with some strength λ′, say. The no-jump curve
is determined by the effective no-jump Hamiltonian H̃ ′ =
ω
2 σz − iλ′σz − iλ′1̂, where we have assumed the Hamiltonian
H = ω

2 σz. If λ′ = −f λ, then the no-jump Hamiltonian H̃ ′

generates the same curve in P (H) as H̃ in the dephasing
model (the corresponding Hilbert space curves differ only by
multiplication of a nonzero complex number).

It is instructive to compare the preceding dephasing
example with the mixed state geometric phase γ [P] pro-
posed in Ref. [10] for real-valued f . Since γ [P] is based
directly on the kinematics ρ(t) of open-system evolution, it

FIG. 1. (Color online) The no-jump phase γnj as a function of the
open-system strength λ for the shift values f = 0,0.2,2. The initial
state is taken to be pure on the equator (θ0 = π

2 ) of the Bloch sphere.
The horizontal curve for f = 0 demonstrates the λ independence
found in Refs. [9,17]. For f 	= 0, γnj depends strongly on λ.
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follows immediately that γ [P] is f independent and therefore
experimentally testable [24]. It was furthermore found that
γ [P] for precession around the z axis is resilient to dephasing
only if the initial state lies on the equator of the Bloch sphere.
This particular form of resilience has been reported in a recent
experiment [25] with polarized ultracold neutrons exposed to
dephasing noise.

For one-qubit systems, f ∗
m(t)Lm can be chosen to be

Hermitian for all open-system models that include Lindblad
operators that are linear combinations of the Pauli operators
with real coefficients, such as dephasing and depolarization.
On the other hand, it should be stressed that if no fm(t)
exist such that f ∗

m(t)Lm becomes Hermitian, then the shift
in fact corresponds to a new Hamiltonian that may cause a
different evolution ρ(t). One such example is spontaneous
decay of a qubit, for which one cannot find a nonzero f

such that f ∗L− becomes Hermitian. Indeed, the shift L− →
L− − f 1̂ induces the Zeeman term λ[Im(f )σx + Re(f )σy] in
the Hamiltonian, in the case of spontaneous decay. Another
example is a spin- 1

2 system interacting with a quantized light
field and subjected to a linear loss of photons. This loss
may be modeled by the non-Hermitian photon annihilation
operator L = a. In this case, the shift L → L − f 1̂ yields the
extra term

√
2[−Im(f )x + Re(f )p] in the Hamiltonian, where

x = (a + a†)/
√

2 and p = (a − a†)/(i
√

2) are the ‘position’
and ‘momentum’ operators, respectively, of the quantized light
field. It is reasonable to expect that any robustness in the geo-
metric phase found in these two latter types of systems would
signal an error resistance also at the level of the full Lindblad
evolution. Applications of the quantum jump unraveling to
these model systems have indeed shown a nontrivial error
resilience [16,26], results that support the usefulness of the
geometric phase for robust quantum computation.

IV. STOCHASTIC UNRAVELINGS

Stochastic unravelings in the form of quantum state
diffusion (QSD) [21] consist of continuous, Brownian-like
quantum trajectories whose average coincides with the full
Lindblad evolution. The geometric phase of such trajectories
arising from nonlinear [21] and linear [22] versions of the
QSD equation has been considered in Refs. [19] and [20],
respectively. Reference [19] considered the phase transfor-
mation Lm → eiχmLm and found a nontrivial χm dependence
in the geometric phase for the nonlinear QSD evolution. In
Ref. [20], it was demonstrated that the averaged geometric
phase αg associated with the linearized evolution is invariant
under unitary rotations Lm → ∑

n VmnLn, provided the system
starts in a pure state. Here, we examine the behavior of this
geometric phase under the shifts Lm → Lm − fm(t)1̂ and
show that αg may depend on fm, also when fm is hidden
in the full open-system evolution.

The linearized QSD equation reads

|dφ〉=
[
−iH (t) dt − 1

2
λ

∑
m

L†
mLm +

√
λ

∑
m

Lmdwm

]
|φ〉,

(12)

where wm are complex Wiener processes with respect to
a probability measure Q. There is a mean EQ over Q

such that EQ[dwm] = EQ[dwmdwm′] = 0; EQ[dwmdw∗
m′] =

δmm′dt . This guarantees the properly renormalized average
of any measurable quantity to coincide with the expectation
value with respect to ρ(t). Following Ref. [20], the averaged
geometric phase αg with respect to the probability measure Q
is taken to be

αg = argEQ[〈φ0|φ(T )〉] +
∫ T

0
Tr [ρ(t)H (t)] dt. (13)

The second term on the right-hand side of this expression
depends only on the full state ρ(t) and would therefore be
unaffected under all symmetry transformations of the Lindblad
equation. To show the noninvariance of αg under shifts of the
Lindblad operators, it is therefore sufficient to show that the
first term may be fm dependent. We demonstrate this by an
example, again the dephasing qubit model with real-valued
and time-independent shift parameter f and Hamiltonian
H = ω

2 σz. For initial state |φ0〉 = cos( 1
2θ0)|0〉 + sin( 1

2θ0)|1〉,
we obtain

argEQ[〈φ0|φ(T )〉]
= arg〈φ0| exp

[
−i

(
1

2
ω + if λ

)
T σz

]
|φ0〉

= − arctan

[
tanh(f λT ) + cos θ0

1 + tanh(f λT ) cos θ0
tan

(
ωT

2

)]
. (14)

Thus, argEQ[〈φ0|φ(T )〉] is f dependent if ωT 	= nπ ,
n integer, and cos θ0 	= ±1. Thus, it follows that the averaged
geometric phase αg associated with the linearized QSD
evolution may depend on the hidden parameter f .

V. CONCLUSIONS

We have demonstrated the existence of Markovian open-
system evolutions for which the associated no-jump quantum
trajectories may depend on parameters that are undetermined
by the full open-system evolution. We have found conditions
for this situation to occur and have identified the origin
of this dependence in terms of continuous monitoring of
the system’s environment. Furthermore, we have explicitly
demonstrated how such a hidden parameter can be unveiled
by the geometric phase of an individual quantum trajectory
for a dephasing qubit. The realization of the geometric phase
for single quantum trajectories requires explicit engineering
of the system-environment interaction; a feature that is shared
by the mixed state geometric phases for completely positive
maps proposed in Ref. [27]. Finally, we have demonstrated that
the averaged geometric phase introduced in Ref. [20] of the
linearized QSD model shows a similar dependence on hidden
parameters. Thus, it remains open whether a well-defined
open-system geometric phase based upon quantum trajectories
exists.
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