
PHYSICAL REVIEW A 82, 052105 (2010)

Evaluation of partial widths and branching ratios from resonance wave functions

Tamar Goldzak,1,2 Ido Gilary,1 and Nimrod Moiseyev1,2,3

1Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa IL-32000, Israel
2Russell-Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa IL-32000, Israel

3Department of Physics, Technion-Israel Institute of Technology, Haifa IL-32000, Israel
(Received 9 August 2010; published 8 November 2010)

A quantum system in a given resonance state has different open channels for decay. Partial widths are the decay
rates of the resonance (metastable) state into the different open channels. Here we present a rigorous derivation of
the partial widths from the solution of a time-dependent Schrödinger equation with outgoing boundary conditions.
We show that the sum of the partial widths obtained from the resonance wave function is equal to the total width.
The difference with respect to previous studies on partial widths and branching ratios is discussed.
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I. INTRODUCTION

Resonances are metastable states of a system which does
not immediately break into its subsystems although it has
enough energy to do so. The decay of the system typically takes
on an exponential time profile and such states can survive for
extremely long or short times depending on the studied system.
This phenomenon is very general and plays a key role in many
different types of scattering experiments in atomic, molecular,
nanostructural, optical, and nuclear physics. See, for example,
the pioneering work of Gamow on the subject [1] or Taylor’s
book on scattering theory [2]. Resonances are obtained in
one-particle systems as well as in many-particle systems. Their
occurrence is not limited by the dimensionality of the problem.
In one-dimensional cases, such as the case of electrons which
are temporarily trapped inside a quantum well, the electrons
have two open channels for decay. They can either decay to
the right lead which is attached to the quantum well or to the
left lead. In two-dimensional systems (for example, leaking
modes in two-dimensional waveguides [3,4] and the scattering
of diatoms from solid surfaces [5]) and three-dimensional
systems (e.g., predissociation of a three-atomic molecule [6])
there are several open channels for decay.

The probability of such metastable systems decaying to
every one of the open channels varies and determines the
ratios between the different decay products which will be
obtained. The rate of decay to each of the open channels is
also known as the partial width (this nomenclature is evident
from the discussion in what follows on the imaginary part
of the resonance energy). The ratio between two such rates
is known as the branching ratio since it dictates the relative
amount of decay products obtained in each of these channels.
Knowing the partial widths and branching ratios for a given
system in a metastable state is of a vital importance since it
may enable one to manipulate the system in order to get a
certain product and not another. In this article we show how
the partial widths of a system in a resonance state are obtained
in a rigorous fashion from the time-dependent Schrödinger
equation (TDSE).

Resonance can occur by various mechanisms. Probably the
simplest situation which gives rise to such metastable states
is in one-dimensional systems where the interaction potential
supports a double barrier (see, e.g., Fig.1). In such systems
the particle is temporarily trapped between the two barriers

but will eventually decay due to tunneling. Such a quasi-one-
dimensional picture is often used to explain resonant tunneling
profiles in semiconductor devices. When the threshold energies
for the decay of the particle in each direction are different (see
Fig. 1), there will be also a difference in the probability to
decay to each of the asymptotes.

In more complicated systems involving more degrees of
freedom the description of resonances is convenient from the
viewpoint of the different decay products or the common
terminology of decay channels. In this picture a resonance
can be viewed as a bound state of the Hamiltonian in one
channel embedded in the continuum of the Hamiltonian of
another channel which becomes metastable due to the coupling
with the embedding continuum. This state has a finite lifetime
and as time passes decays to the reaction products which are
defined by the uncoupled open channels. Let us elaborate on
this point. Without loss of generality we assume that the system
under study consists of two subsystems which interact with
one another. The system can be, for example, two interacting
particles or one particle which moves in a two-dimensional
potential (e.g., quantum wells), a light beam which propagates
in two coupled waveguides, etc. The Hamiltonian of the full
system is described by

H (1,2) = h1(1) + h2(2) + V (1,2), (1)

where, correspondingly, h1(1) and h2(2) are the Hamiltonians
for the noninteracting subsystems. The interaction potential
V (1,2) vanishes when either one of the two particles is
removed from the system (for example, via ionization or
dissociation) or when the separation distance between the
two quantum-wells or waveguides is sufficiently large. For
simplicity, let us assume that the subsystem that can be
removed is subsystem “2”. The threshold energies are the
eigenvalues of the h2 Hamiltonian,

h2χn(2) = εth
n χn(2). (2)

The αth eigenfunction of the full Hamiltonian given in Eq. (1)
can be expanded in terms of the eigenfunctions of the h2

Hamiltonian,

�α(1,2) =
N∑

n=1

ϕn,α(1)χn(2), (3)
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FIG. 1. (Color online) The one-dimensional potential in Eqs. (68)
and (69) (dashed line), the scaled function of the second resonance
(dash-dotted black line), and the unscaled resonance wave function
(solid red line). All values are given in atomic units. The complex
resonance energy is composed of the position ε2 = 2.750 62 and
width �2 = 0.265 19. Note that while the unscaled resonance function
diverges asymptotically, the scaled resonance wave function is square-
integrable.

where N is the number of the eigenfunctions of h2 which
serve as a basis set and ϕn,α(1)’s are the nth channel functions
labeled by the index α.

As usual, the exact eigenfunction �α(1,2) of the full
Hamiltonian is obtained when N → ∞ in the variational
calculations where a set of coupled secular equations
are solved and are represented as an eigenvalue matrix
problem,

Hϕα(1) = Eαϕα(1), (4)

where ϕα are vectors containing the channel function ϕn,α(x).
The operators on the diagonal of the Hamiltonian matrix H are
given by

Hn,n = h1(1) + Veff
n (1), (5)

where

Veff
n (1) = 〈χn(2)|V (1,2)|χn(2)〉2 + εth

n . (6)

Here the notation 〈··〉2 represents integration over all space on
the coordinates of subsystem 2. The bound states of the nth
closed channel for decay are associated with the eigenvalues
of Hn,n which are below the threshold energies εth

n . There
are bound states of the nth channel which are embedded
in the continuum of the Hn′,n′ effective Hamiltonian where
n′ < n. The n′ effective Hamiltonians are the open channels for
decay. This is due to the introduction of the coupling potential
terms Hn,n′ = ∫

ϕ∗
n(2)V (1,2)ϕn′ (2) dτ2 between the closed and

open channels. Consequently, the bound states of the Hn,n

effective Hamiltonians become metastable when coupled to
the continuum of the open channels. The calculations of
the so-called resonance states, are briefly described in what
follows.

A. The resonance energy and wave function

The resonances are associated with the poles of the
scattering matrix where there is only a flux of outgoing
particles [2]. Therefore, they are associated with the solu-
tions of the Schrödinger equation which are obtained under
the requirement of outgoing boundary conditions (see, e.g.,
Ref. [7]). In the case of multichannel problems, the outgoing
boundary conditions are imposed on the eigenfunctions of
the Hamiltonian given in Eq. (4). That is, the asymptotes of
every one of the components of the eigenfunctions ϕn,α are
given by

ϕn,α(1) → An,αeikn,αr1 , (7)

where

kn,α =
√

2m
(
Eα − εth

n

)
h̄

(8)

and m is the mass of the free particle. For the closed channels
for decay which are denoted by nc, the wave vectors kn,α are
purely imaginary numbers and therefore

ϕnc,α(1) → Anc,αe−|knc,α |r1 . (9)

For the open channels for decay which are denoted by no

the wave vector kn,α gets complex values (with negative-value
imaginary parts) and therefore the asymptotes of the open
channels exponentially diverge:

ϕno,α(1) → Ano,αeiRe[kno,α ]r1e+Im[kno,α ]r1 → ∞. (10)

The resonance energies Eα are complex where the total
rate of decay is defined by the imaginary part of the complex
energy:

�α = −2Im[Eα]. (11)

The resonance energies can be obtained by various techniques
and procedures developed over the years. These include, to
name a few, the variety of complex coordinate methods [8],
Siegert pseudostates [9] and Feshbach projection operator
techniques [10].

B. Open question regarding partial widths

Partial widths are important physical properties whenever
we are interested in the relative probability of obtaining any
of the decay products of a given metastable system. They also
play a part in explaining resonant transmission profiles. Since
the partial widths of the resonance represent a measurable
physical quantity which determines the amount of each of
the various decay products, we should be able to attain them
in a rigorous fashion from the solution to the Schrödinger
equation.

Partial widths are extracted in the literature by various
methods. In many cases, due to certain approximations in the
calculation, the sum of the partial widths does not add up to
the total width of the resonance. See, for example, Refs. [11]
and [12]. As previously pointed out [13,14], it is possible to
calculate the partial widths from the analysis of the tail of the
square-integrable complex scaled wave functions. This method
has been used in Ref. [15] to calculate the partial widths for
Noro-Taylor model Hamiltonian [16] motivated by the idea
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of using this approach for calculating the partial widths in
nuclear scattering experiments. Numerical calculations have
shown that the sum over all the partial widths calculated by
the analysis of the tail of the resonance wave function is about
equal to the resonance width �α . However, it is not clear if the
deviation of

∑
no

�no,α/�α from unity results from numerical
errors in obtaining the information from the tail of the complex
scaled resonance function which exponentially decays to
zero.

In previous studies, Garcı́a-Calderón et al. [17,18] obtained
the partial widths for finite-range potentials in a manner which
ensures that the partial widths will add up exactly to the total
width. This was achieved by evaluating the outgoing flux from
the relevant region of interaction at the boundaries where the
potential vanishes.

The open question we address in this article is how to
evaluate the partial widths from the tail of the resonance wave
function in a manner which will be independent of the potential
parameters and will ensure that∑

no

�no,α = �α. (12)

We show here that by analyzing the time dependence of the
resonance wave function itself, we are not restricted to an
exact definition of an interaction region and can apply our
formalism to smooth potentials regardless of their parameters.
For simplicity, in Sec. II we start with a general one-
dimensional formulation for a single particle. We then move
on to the more complicated but rather similar formulation of
multidimensional problems in Sec. III. In Sec. IV we illustrate
our findings with some numerical examples. We then proceed
to discuss in Sec. V the conditions which will emphasize our
results before concluding in Sec. VI.

II. PARTIAL WIDTHS IN ONE-DIMENSIONAL
POTENTIALS

In one dimension a particle trapped in a resonance state
can decay only to two different “channels”—the asymptotes
at ±∞. Accordingly, we refer to the partial width in each
of these directions as �±, respectively. The starting point for
the derivation will be the one-dimensional continuity equation
which results directly from the TDSE:

∂

∂t
ρ(x,t) + ∂

∂x
j (x,t) = 0, (13)

where the time-dependent probability density ρ(x,t) is

ρ(x,t) = |ψ(x,t)|2 (14)

and the probability current j (x,t) is given by

j (x,t) = h̄

m
Im

[
ψ∗(x,t)

∂

∂x
ψ(x,t)

]
. (15)

We now want to study the implications of Eq. (13) for
a single resonance state of the problem. This means we
impose outgoing boundary conditions on the solution of the
time-independent Schrödinger equation (TISE):

Ĥφ(x) = Eresφ(x). (16)

In other words, we are looking for solutions which satisfy

[p̂x ± h̄k±]φ(x → ±∞) = 0, (17)

where ±h̄k± is the momentum of the outgoing particles in each
direction given by

k± =
√

2m(Eres − Eth±)

h̄
= kRe

± − ikIm
± . (18)

Here the threshold for escape in each direction is Eth
± and

the resonance energy Eres is complex due to the restricting
boundary conditions such that

Eres = ε − i
�

2
. (19)

In the asymptotes these solutions will behave as

φ(x → ±∞) = A±e±ik±x = A±e±ikRe
± xekIm

± |x|. (20)

A resonance solution to the TDSE is given accordingly by

ψ(x,t) = e−iErest/h̄φ(x,t). (21)

This means that the probability density decays uniformly
exponentially in time,

ρ(x,t) = e−�t/h̄ρ(x,0), (22)

and the derivative in time of this probability density is simply

∂ρ(x,t)

∂t
= −�

h̄
ρ(x,0). (23)

The flux at any given point will also decay exponentially
in time but due to the spatially diverging properties of the
resonance state it will also diverge exponentially in the
asymptotes. These two seemingly contradicting trends are
addressed shortly in what follows. The flux at the asymptotes
is accordingly given by

j (x → ±∞,t) = ±h̄kRe
±

m
|A±|2e2kIm

± |x|e−�t/h̄. (24)

Since in Eqs. (23) and (24) the only time dependence is in
the exponent, we can eliminate the time dependence from the
continuity equation in Eq. (13) after taking the derivative in
time of the probability density. By integrating Eq. (13) over
a finite range, [−L−,L+], we can relate between the flux at
the boundaries j (±L±) and the decay of the total probability
density inside this region,

−[j (L+) − j (−L−)] = −�

h̄
NL, (25)

where NL is the initial probability inside the region [−L−,L+],

NL =
∫ L+

−L−
|φ(x)|2dx. (26)

We have two competing processes (decay to the left and to the
right). The rate of each process depends on the total probability
NL such that the two rates add up to the total rate: �+ + �− =
�. Thus, the contribution to the total width through the flux in
each direction is defined by

�± = ±h̄j (±L±)

NL

= h̄2kRe
±

mNL

|A±|2e2kIm
± L± . (27)
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Equation (27) is parallel to Eqs. (8) and (9) of Ref. [18].
It is evident that although in Eq. (27) we have ensured that
�+ + �− = �, this definition of the partial widths still depends
on where we choose to measure the flux. This is in a sense
analogous physically to putting detectors at L±. Since the
asymptotic divergence in each of the channels which depends
on kIm

± is inherently nonphysical, changing the boundary can
lead to very different and even contradicting results. This leads
naturally to the question of where the correct place to measure
the flux would be. In finite-range potentials the natural choice
will be the point where the potential vanishes. Generally, we
need to define our interaction region in a way which adheres to
the physical nature of the decay of the resonance. This problem
will also manifest itself in the branching ratio between the two
possible decay products given by

R = �+
�−

= kRe
+ |A+|2

kRe− |A−|2 e2(kIm
+ L+−kIm

− L−). (28)

Consider, for instance, the situation where we place the
boundaries L± at the same distance from the origin and find,
for instance, that there is a strong preference to decay to
−∞. If we now move only the right boundary due to the
spatial divergence of the wave function, we will get that
�+ will diverge. This will also cause NL to diverge, and
thus �− will vanish and we will get a complete opposite
trend.

How can this discrepancy be settled? We can reach a
resolution if we understand the “physical nature” of the
resonance wave function. When we try to describe a resonance
state over the whole range of space and time, we have a
problem. This is because a resonance is constantly decaying;
therefore, it had to decay also infinitely long ago. In addition,
the probability has to go somewhere, but if we consider the
whole space it has nowhere to decay to. This is the source for
the large accumulation of probability at the asymptotes, which
is in a sense compensated by the temporal decay of the wave
function. In order to describe a more realistic situation, we
have to consider some initial time when the decay is initiated,
as well as some restricted part of space where the probability
can decay from. Using this reasoning in Ref. [19], Hatano
et al. considered a more physical situation of a resonance
which starts emanating at some time t = 0 from a finite region
which expands at the speed of the escaping particles. Using
this description of a resonance state, the authors showed that
the total probability inside the confining region in this state is
conserved.

We use similar reasoning here. The main difference is
that here the escaping particles possess different velocities
in each direction. Thus, we have to allow the volume to
expand at a different rate in every direction. Accordingly, we
define our volume of interest using time-dependent boundaries
given by

L± = h̄kRe
±

m
t. (29)

Note that by considering such a moving boundary we settled
the “competition” between the exponential decay in time and
the exponential divergence in space which we observed in the

flux in Eq. (24) and when we look at the flux on the boundaries
of the confined region we get

j(L±(t)) = ±h̄kRe
±

m
|A±|2e2kIm

± L±−�t/h̄. (30)

In the exponent in Eq. (30) we have now

2kIm
±

h̄kRe
±

m
t − �

h̄
t = 0. (31)

This term vanishes since the width of the resonance is a product
of the real and the imaginary parts of the wave vector in each
direction,

� = 2h̄2kRe
± kIm

±
m

. (32)

Thus, we see that on the moving boundary we have a constant
flux. Substituting the moving boundaries in the integration
over the flux equation (after taking the time derivative of the
probability density) and subsequently in Eqs. (27) and (28)
yields a well-defined branching ratio. In the exponent in
Eq. (28) we have now

kIm
+

h̄kRe
+

m
t − kIm

−
h̄kRe

−
m

t. (33)

This term vanishes again due to Eq. (32). So we have
established that the branching ratio is given by

R = �+
�−

= kRe
+ |A+|2

kRe− |A−|2 , (34)

while the partial widths are given by

�± = h̄2kRe
± |A±|2
m

[
e+�t/h̄

NL(t)

]
. (35)

NL(t) is the probability density of the initial resonance wave
function inside the expanding region [−L−,L+], which is
given by

NL(t) =
∫ L+(t)

−L−(t)
|φ(x)|2dx. (36)

It may seem as if these partial widths are time dependent, but
the increase of NL(t) is proportional to the increase in the flux
in each channel due to the divergence of φ(x) at the asymptotes
and therefore the partial widths are constant. That is,

lim
t→∞

[
e+�t/h̄

NL(t)

]
= const. (37)

This is clearly evident if we express them through the
branching ratio and the total width:

�+ = �

1 + R−1
; �− = �

1 + R
. (38)

Therefore, all the information we need is the behavior of the
resonance wave function at each of the asymptotes; that is, we
need to know k± and A±.

III. PARTIAL WIDTHS IN MULTICHANNEL PROBLEMS

We now consider a system which has many degrees of
freedom which we label {x1,x2, . . . ,xN }. Assuming that we
wish to examine several of these coordinates (for instance,
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these could be the coordinates along which dissociation
can occur), we label them x = {x1,x2, . . . ,xM}, while the
remaining coordinates are labeled y = {xM+1, . . . ,xN }. In
general, we can write the Hamiltonian in these coordinates
in a similar manner to Eq. (1) as

Ĥ = ĥx(x) + ĥy(y) + V (x,y). (39)

Choosing an orthonormal basis in the y coordinates {χn(y)},
we can write the general solution of the Schrödinger
equation as

ψ(x,y,t) =
∑

n

ϕn(x,t)χn(y). (40)

A convenient choice for {χn(y)} which sets the ground for
intuitive physical interpretation of the system is simply to
take the eiegenstates of ĥy . This leads to a set of coupled
equations,⎛

⎜⎜⎝
ĥx + V11 V12 · · ·

V21 ĥx + V22 · · ·
...

...
. . .

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ϕ1

ϕ2

...

⎞
⎟⎟⎠ = ih̄

∂

∂t

⎛
⎜⎜⎝

ϕ1

ϕ2

...

⎞
⎟⎟⎠ ,

(41)

which is just the matrix form of the TDSE: Hϕ = ih̄ ∂
∂t

ϕ, where

Hm,n = ĥx(x)δm,n + Vm,n(x),
(42)

Vm,n(x) = 〈χm(y)|ĥy(y) + V (x,y)|χn(y)〉y.
Here the notation 〈··〉y implies integration over the y coordi-
nates only. The diagonal terms of Hn,n define the channels
of the problem which are coupled to each other through the
off-diagonal terms Vn,m. In order to arrive at an equation
relating the flux at each channel with the probability density,
we have to integrate the N -dimensional continuity equation
over all the y coordinates,

∂

∂t
ρ(x,y,t) + ∇ · j(x,y,t) = 0, (43)

where ρ(x,y,t) = |ψ(x,y,t)|2 is the probability density and
j(x,y,t) is the probability flux. When the potential is real, this
integration leads to the following result:

∂

∂t

∑
n

ρn(x,t) + ∇x ·
∑

n

jn(x,t) = 0, (44)

where the probability density in each channel is given by

ρn(x,t) = |ϕn(x,t)|2 = |〈χn(y)|ψ(x,y,t)〉y |2. (45)

For a single particle the current density in each of the
channels is

jn(x,t) = h̄

m
Im[ϕ∗

n(x,t)∇xϕn(x,t)]. (46)

In order to obtain the partial widths for this general case, we
need to integrate Eq. (44) over a finite volume in space. Here
we can make use of the divergence theorem which will allow us
to convert the volume integral over the current to the outgoing
flux on the surface bounding the chosen volume. For simplicity,
we consider now just one dissociative coordinate x in the
range of x ∈ [0,∞], where dissociation can occur only when

x → ∞. To obtain partial widths and branching ratios, we
substitute a resonance solution. The resonance wave function
reads

ψ(x,y,t) = e−iErest/h̄ψ(x,y,0). (47)

Using the expansion Eq. (40), we get the wave function in each
channel by

ϕn(x,t) = e−iErest/h̄〈χn(y)|ψ(x,y,0)〉y. (48)

Accordingly, the asymptotic behavior in each of the channels
is given by

ϕn(x → ∞,t) = Ane
−iErest/h̄eiknx, (49)

where the outgoing wave vector in each of the channels is
determined by the respective threshold energy, Eth

n ,

kn =
√

2m(Eres − Eth
n )

h̄
= kRe

n − ikIm
n . (50)

Consequently, the probability density in each channel in
Eq. (45) when we have a resonance state is given by

ρn(x,t) = e−�t/h̄|〈χn(y)|ψ(x,y,0〉y |2, (51)

and the flux in each channel in Eq. (46) for a resonance
state is

jn(x,t) = e−�t/h̄ h̄

m
Im[ϕ∗

n(x,0)∇xϕn(x,0)]. (52)

The uniform time dependence enables us in a similar fashion to
the one-dimensional case to take the time derivative in Eq. (44)
and eliminate time from the continuity equation:

∂

∂x

∑
n

jn(x) = �

h̄

∑
n

ρn(x). (53)

The current density in the asymptotes of each of the channels
is now given by

jn(x → ∞) = h̄kRe
n

m
|An|2e2kIm

n x . (54)

When we now come to integrate Eq. (53) over a finite region in
the x coordinate, we have only one available boundary which
leads to ∑

n

jn(L) = �

h̄

∑
n

Nn, (55)

where

NL
n =

∫ L

0
ρn(x,0) dx. (56)

However, as we have seen in Sec. II, in order to obtain a
consistent result, we must allow for different boundaries in
each of the channels. It is imperative to show that in Eq. (55)
we can extend the integration to different values of L for the
different channels. That is, we want to check if the following
equality also holds:∑

n

jn(Ln) = �

h̄

∑
n

Nn. (57)

To this end, let us assume that we integrated Eq. (44) up to
some minimal value of L = Lmin, which is in the asymptotic
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region of all the channels. This means that on the left-hand
side of Eq. (57) we added∑

n

jn(Ln) − jn(Lmin) =
∑

n

h̄kRe
n

m
|An|2e2kIm

n (Ln−Lmin), (58)

whereas on the right-hand side of Eq. (57) we added

�

h̄

∑
n

∫ Ln

Lmin

ρn(x,0) dx =
∑

n

�|An|2
2h̄kIm

n

e2kIm
n (Ln−Lmin). (59)

Using the fact that

� = 2h̄2kRe
n kIm

n

m
, (60)

we see that what we added on both sides is identical and thus
the equality in Eq. (57) holds when L = Lmin. This result
should be obvious once we realize that in the asymptotes the
channels are uncoupled and thus we can add to each channel
whatever we want as long as we maintain the continuity of
probability in that channel.

It is now possible to use the same reasoning of Sec. II
and allow the boundary in each of the channels to expand
according to the velocity of the escaping particles in that
channel:

Ln(t) = h̄kRe
n

m
t. (61)

Now if we define the partial width as

�n = h̄2kRe
n

m
∑

n N
Ln
n (t)

|An|2e2kIm
n Ln(t), (62)

where

NLn

n (t) =
∫ Ln(t)

0
ρn(x,0) dx, (63)

we get that, due to Eq. (60), the branching ratios are well
defined and given by

Rn,n′ = �n

�n′
= kRe

n |An|2
kRe
n′ |An′ |2 . (64)

This definition ensures us, due to Eq. (57), that the sum over
all the partial widths will add up to the total width; that is,
� = ∑

n �n. This also means that knowing all the branching
ratios we can evaluate the partial width in a more convenient
manner through the branching ratios:

�n = �

1 + ∑
n′ 	=n Rn′,n

= |An|2kRe
n∑

n′ |An′ |2kRe
n′

. (65)

It is evident that all the information we need can be extracted
from the asymptote of the wave function and the resonance
energy. Therefore, even though our analysis was based on the
Hermitian TDSE, we can extract all the necessary information
from a non-Hermitian time-independent calculation.

IV. ILLUSTRATIVE NUMERICAL EXAMPLES

To illustrate the finding of the previous sections regarding
the branching ratios and partial widths, we need to calculate the
amplitude of the resonance wave function in the asymptotes.
We find the resonances by a complex scaling technique where

the dissociative coordinate x is scaled by a complex factor
such that x → xeiθ . This is one of a class of similarity
transformations Ŝθ (see the review in Ref. [8]) which render the
originally exponentially diverging resonance wave functions
square integrable. In other words, via the complex scaling pro-
cedure the obtained resonance wave functions are embedded
in the generalized Hilbert space such that for one-dimensional
systems,

Ŝθφ(x) → 0, (66)

while in multichannel problems in every channel we get

Ŝθϕn(x) → 0 (67)

as x → ∞. The diagonalization of the complex-scaled
Hamiltonian matrix yields eigenvalues which give the reso-
nance energies in Eq. (19). The eigenvectors give the scaled
form φ(xeiθ ) of the resonance wave functions in Eq. (16).
These behave in the asymptotes according to Eq. (20), with
the momentum ±h̄k± in each of the different open channels.
Another method we used to evaluate the resonance wave
functions was to solve the Schrödinger equation numerically
using a Runge-Kutta method with the requirement of the
outgoing boundary condition at the resonance energies we
found by complex scaling.

A. Single particle one-dimensional model Hamiltonian

The first example we show here is a one-dimensional
nonsymmetric potential, that is, a double barrier with
two different threshold energies. The potential is given
by

V (x) = V1(x) + V2(x) − c, (68)

where each one of the potentials V1,2(x) is given by

V1,2(x) = a1,2

cosh2(x − b1,2)
− tanh(x − b1,2). (69)

In the calculation we used the parameters a1 = 6, b1 = 1.5,
a2 = 4, b2 = −1.5, and c = 2. The resonance in this potential
is a shape resonance and its partial widths reflect the rate of
tunneling through the potential barriers on each side. Figure 1
shows that the resonance wave function is localized in the
interaction area, and in the asymptotes it diverges in the
unscaled form and converges in the scaled form. To calculate
the amplitudes A± from the complex scaled wave function φθ ,
we need to scale Eq. (20) by eiθ such that

φθ (x → ±∞) = A±e±ik±xeiθ

, (70)

thus yielding

A± = φθ (x → ±∞)

e±ik±
resxeiθ

. (71)

The scaled resonance wave function is normalized accord-
ing to the biorthogonal c product [20], which means that∫

φ2(x)dx = 1. Figure 2 shows how the value of the resonance
wave function amplitude |A±|2 stabilizes beyond the interac-
tion area but diverges at the far asymptotes due to numerical
errors.

Previous studies on evaluating branching ratios and partial
widths from the resonance wave function mostly rely on the
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FIG. 2. (Color online) The asymptotic amplitude in both channels
of the resonance wave function shown in Fig. 1 given in atomic units.

formula derived by Moiseyev-Peskin (MP) (see Ref. [13]),
which gives the branching ratio between any two channels α

and β as

RMP
α,β =

∣∣kβA2
β

∣∣∣∣kαA2
α

∣∣ , (72)

such that the partial widths are given by

�MP
α,β = h̄2

m

∣∣kα,βA2
α,β

∣∣. (73)

Note that in this case we obtain the partial widths from the
normalized complex scaled resonance wave function, and thus
we do not enforce that �+ + �− = �. We wish to see how
extracting the partial widths and branching ratios from the
complex scaled wave function in this method differs from
what we proposed here in Sec. II, which, as we have shown,
is rigorous. To illustrate this, we calculated the MP branching
ratios and partial widths by the MP method and compared them
with the new formulas for branching ratios and partial widths,
which we label GGM. These were given in Eqs. (34) and (35).
Table I gives a comparison between the two methods for a
few resonances of the model one-dimensional Hamiltonian
we chose. From Table I one can conclude that the old formula
gives good results and the sum of the partial width is almost
equal to the total width for narrow resonances. For broad
resonances evaluating the partial width from the normalized
complex scaled resonance wave function does not yield a
good result as the partial widths do not add up to the total
width. It is interesting to note that for the branching ratios
the difference between the two methods is not significant even
for broad resonances. Thus, if we renormalize the resonance
wave function such that �+ + �− = �, the results of the two
methods will be very similar for all resonances in this model.
This point is addressed in Sec. V

B. Single-particle 3D model Hamiltonian

The second example we give here is the Noro-Taylor model
Hamiltonian [16], which was used before in similar studies
on branching ratios and partial widths. This is a model of two
coupled channels for spherical s-waves where the Hamiltonian
potential matrix elements are given by

Vi,j (x) = λi,j x
2e−x + Eth

j δi,j . (74)

TABLE I. Values of the partial widths and branching ratios
obtained by the method in Ref. [13] (MP) and the method presented
in this article (GGM) in Eqs. (35) and (34) for the model 1D potential
in Fig. 1 (all values in atomic units).

Eres Method �− �+ �− + �+ R = �+
�−

ε1 0.877 06 MP 0.000 83 0.004 14 0.004 97 4.796 03
�1 0.004 98 GGM 0.004 12 0.000 86 0.004 98 4.796 38
ε2 2.750 62 MP 0.135 09 0.113 90 0.248 99 1.112 53
�2 0.265 19 GGM 0.125 52 0.139 67 0.265 19 1.112 80
ε4 5.501 30 MP 1.087 37 1.410 34 2.497 71 1.242 40
�4 4.881 51 GGM 2.159 94 2.721 57 4.881 51 1.260 02

This is in the range x ∈ [0,∞], where the λi,j parameters are
given by the following matrix λ:

λ =
( −1 −7.5

−7.5 7.5

)
. (75)

The threshold energies are Eth
1 = 0 and Eth

2 = 0.1 This coupled
channel problem where in each of the channels we have
an effective one-dimensional Hamiltonian has resonances
which posses both Feshbach-type character due to the cou-
pling between the bound state in the closed channel and
the continuum of the open channel as well as shape-type
character due to the tunneling through the barrier in the open
channel.

Figure 3 presents a resonance function in the two channels.
Like we observed for the 1D potential also, here the resonance
wave function is localized in the interaction area, and in
the asymptotes it is diverging for the unscaled function and
converging for the scaled function. The amplitude of the
function in the asymptotes is calculated in the same manner
as the one-dimensional case in Eq. (71). In Table II we
compare the MP method from Refs. [13,21] and Eqs. (73)
and (72) with our derivation (GGM) from Eqs. (62) and (64),
respectively.

We can see in Table II that for the first resonance in the NT
model, which is a very narrow resonance, the partial widths
sum up to the total width in the old formula and there is no
change at all in the branching ratio between the old and the new
formulas. In the broad resonances one can see that the broader
the resonance, the less accurate is Eq. (73), but the branching
ratio formula does not see a significant change. This result is

TABLE II. Values of partial widths and branching ratios calcu-
lated by the MP method in Eqs. (73) and (72) and by the method
derived in Eqs. (62) and (64) in Sec. III for the Noro-Taylor model
(all values in atomic units).

Eres Method �1 �2 �1 + �2 R = �2
�1

ε1 4.768 20 MP 0.000 05 0.001 37 0.001 42 0.037 72
�1 0.001 42 GGM 0.000 05 0.000 86 0.001 42 0.037 72
ε2 7.241 20 MP 0.523 75 1.677 10 2.200 85 0.316 37
�2 1.511 91 GGM 0.363 51 1.148 40 1.511 91 0.316 54
ε4 8.440 53 MP 12.054 83 35.476 20 47.531 03 0.339 80
�4 12.562 99 GGM 3.188 49 9.374 49 12.562 99 0.340 12
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FIG. 3. (Color online) The Noro-Taylor resonance wave function
with position ε2 = 7.241 20 and width � = 1.511 91. The scaled
(dashed red line) and unscaled (solid black line) functions are shown
in each of the channels. All values are given in atomic units. Note
that the unscaled resonance function diverges asymptotically while
the scaled resonance wave function is square integrable.

important in view of the use of the MP formalism for the eval-
uation of branching ratios in nuclear physics problems [15].

V. DISCUSSION

As we see in the previous section in the two examples
we studied there is no significant difference between the old
formulas commonly used for evaluating branching ratio in
Eq. (72) [13,14] and the formula we propose following our
derivation here in Eq. (64). This is in fact a very general result
and in most cases there would not be a significant difference
between using the “old” and the “new” formulas. In order to
understand this general result, let us take a closer look into the
two expressions.

The old formula for the branching ratio between two
channels is given in Eq. (72):

Rold =
∣∣∣∣k2A

2
2

k1A
2
1

∣∣∣∣. (76)

The new formula for the branching ratio is given in Eq. (64):

Rnew = kRe
2 |A2|2

kRe
1 |A1|2

. (77)

We see that the only difference is in using the real or the
absolute part of k1,2. Therefore, we now try to find a more
“telling” relation between these values:

γ =
∣∣∣∣k2

k1

∣∣∣∣ =
√√√√(

kRe
2

)2 + (
kIm

2

)2(
kRe

2

)2 + (
kIm

2

)2 = kRe
2

kRe
1

√
1 + z2

2

1 + z2
1

, (78)

where

z1,2 = kIm
1,2

kRe
1,2

. (79)

FIG. 4. (Color online) A geometrical representation of the dis-
tance of the resonance from the two thresholds Eth

1,2. �1,2 are the
distances of the resonance position ε from the two thresholds Eth

1,2,
respectively, while and λ1,2 are the distances of the resonance from
the two thresholds Eth

1,2, respectively.

First we see that for narrow isolated resonances it is clear that,
since the imaginary part of k1,2 is small, z1,2 is very small
and has small contribution to the branching ratio. Second, we
must realize that the expression in Eq. (78) already puts strong
restrictions on the differences we might observe between the
two methods. Since the wave vector in each of the channels
must lie in the fourth quadrant of the corresponding k plane
over the 45◦ bisector, we know that 0 � z1,2 � 1; thus, we
know that γ falls in the range of

√
2

2

kRe
2

kRe
1

� γ �
√

2
kRe

2

kRe
1

. (80)

To get a more general intuition into what conditions must be
satisfied in order to see a significant effect, we must remember
that the momenta are related to the complex energy through

h̄2

m
kRe

1,2k
Im
1,2 = �

2
, (81)

h̄2

2m

[(
kRe

1,2

)2 − (
kIm

1,2

)2] = ε − Eth
1,2 = �1,2. (82)

Thus, by dividing both equations by (kRe
1,2)2 and substituting

one into the other, we get that

z1,2 = λ1,2 − �1,2

�/2
, (83)
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FIG. 5. (Color online) The constant piecewise potential (dashed
blue line) and unscaled resonance wave function on a logarithmic
scale (solid red line). All values are given in atomic units. The
resonance energy is given by the position ε = 1.45 × 10−4 and the
width � = 6.13 × 10−3.
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TABLE III. Values of the partial widths and branching ratios in the old and new formulas for the constant piecewise potential
in Fig. 5 (all values in atomic units).

Eres Method �− �+ �− + �+ R = �+
�−

ε 1.45 × 10−4 MP 8.13 × 10−7 1.88 × 10−5 1.96 × 10−5 23.12
� 6.13 × 10−3 GGM 1.86 × 10−4 5.94 × 10−3 6.13 × 10−3 31.94

where

λ1,2 =
√

�2
1,2 + (�/2)2. (84)

If we now substitute this into the expression for γ , we get that

γ = kRe
2

kRe
1

√
λ2(λ2 − �2)

λ1(λ1 − �1)
. (85)

This expression enables us to understand why there is no
significant change when we use the new branching ratio over
the old. To do so, we examine the geometrical relationship
between the various terms in γ in Fig. 4.

When the two threshold are close with respect to the
position of the resonance (i.e., �1,2 � ε), then approximately
�1 ≈ �2 and λ1 ≈ λ2; thus, no significant effect on γ is
expected. We now examine the other extreme when one of
the thresholds is very close to the resonance position but
the other is far, that is, �1 � �2. In this case, again two
extreme scenarios are possible: Either λ2 � λ1 when � is
very small or when the � is much greater than both �1,2 then
λ2 ≈ λ1 ≈ �/2. In the second scenario λ1,2 − �1,2 ≈ �/2
and once again no effect is expected on the branching ratio.
Returning to the first option when λ2 � λ1, we can expect to
see a significant effect on the branching ratio; however, as we
increase the ratio λ2/λ1 by moving the second threshold further
apart, it is clearly evident from Fig. 4 that in this case λ1 ≈ �/2
and thus λ2 − �2 � λ1 − �1. This means that we will have
an opposing trend and thus again no major effect on the overall
result. The only case where there might be an observable effect
must lie somewhere between where the distance of the second
threshold from the resonance will be comparable (i.e., within
two orders of magnitude) to its width while still maintaining
the first threshold close to the resonance position. We must
always remember, though, that the “best” effect we will see
will be just a factor of 1.41.

To find a resonance which satisfies the preceding condi-
tions, we chose the constant piecewise potential depicted in
Fig. 5 which can be solved analytically.

Manipulating the potential parameters we are able to move
a long-living resonance between the barriers close enough
to the top threshold to satisfy the preceding conditions. The
partial widths and branching ratio for this resonance, which

are pictured in Fig. 5, are listed in Table III. We see that there
is a significant difference between the two methods almost up
to the maximum as Rnew = 1.38Rold

VI. CONCLUDING REMARKS

By carrying out a rigorous asymptotic analysis of the tail
of the resonance function, we obtained a unique expression
for the partial widths which ensures that the sum of all the
partial widths will add up to the total width. Our derivation was
based on the TDSE but using a wave function with outgoing
boundary condition. From this derivation it is evident that one
can evaluate partial width and branching ratios based only
on the parameters of the asymptote of the resonance wave
function. The relevant parameters can be evaluated by any of
the common methods used to obtain resonances. We showed
that the only difference from the previously used MP formula
for branching ratios and partial widths was in using the real
part of the complex wave vector instead of the complex wave
vector itself.

We have shown that, in general, one can hardly detect any
difference in the branching ratios between the previous method
and the one presented in this article and that the maximal
possible difference is a factor of

√
2. In order for this difference

to be significant, two conditions must hold:
(i) the difference in energy between the two thresholds

En and En′ must be large with respect to the distance of the
resonance position to the upper threshold such that ε − Eth

n �
ε − Eth

n′ ;
(ii) the distance of the resonance position from the upper

threshold should be comparable to the resonance width.
This difference will be evident when studying scattering

problems of resonances near the threshold.
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