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Collisional decoherence of a tracer particle moving in one dimension
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We study decoherence of the external degree of freedom of a tracer particle moving in a one-dimensional
dilute Boltzmann gas. We find that phase averaging is the dominant decoherence effect, rather than information
exchange between tracer and gas particles. While a coherent superposition of two wave packets with different
mean positions quickly turns into a mixed state, it is demonstrated that such superpositions of different momenta
are robust to phase averaging, until the two wave packets acquire a different position due to the different velocity
of each wave packet.
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I. INTRODUCTION

The transition from quantum mechanics to classical physics
is one of the most debated problems in the history of modern
physics. In particular, the question arises as to why one
cannot observe macroscopic objects in a superposition of
spatial distinct locations, despite the fact that all objects
are made up of microscopic particles which, indeed, can be
observed in such superposition states. Several conceptually
very different solutions to this problem have been proposed,
as, for example, the theory of spontaneous localization
[1], which modifies the Schrödinger equation by adding
an incoherent part. A less drastic approach is the theory
of environmentally induced decoherence [2]. This assumes
that the combined state of system and environment evolves
according to Schrödinger’s equation, but if only the system
density operator is observed, it seems as if the coupling to the
environment destroys the quantum feature that a system can be
in a superposition of several distinct states, a process known as
decoherence.

During the past two decades, there has been increasing
interest in the engineering of large quantum systems, for exam-
ple, for quantum information processing. A major limitation
to these efforts is posed by their fragileness to decoherence.
Therefore, a detailed understanding of different decoherence
processes is no more just an academic problem, but necessary
for future quantum technologies.

A paradigm of environmentally induced decoherence is
collisional decoherence, where the system of interest is a tracer
particle, possibly macroscopic in size, which experiences
random collisions with particles of a thermal reservoir. The
colliding particles can be molecules, much as in Brownian
motion, but one could also think of photons of the cosmic
background radiation. Several authors put forward increas-
ingly complicated master equations for a tracer particle in a
thermal gas, first for an infinitely heavy tracer particle [3–6]
and later for a tracer particle with finite mass [7–10]. The
latter were used to study collisional decoherence by applying
quantum trajectory methods [11,12]. However, the validity of
the single-collision calculations used in the derivations of the
master equations for a tracer particle with finite mass was
recently questioned [13,14] and is a matter of ongoing debate.

A different approach was developed by Caldeira and
Leggett [15] by linearizing the interaction with the bath, which

allowed for the derivation of an exact master equation [16].
This work is now known as quantum Brownian motion, and
although it found wide applications in several fields of physics
[17], its connection to collisions with bath particles as studied
here (and in classical Brownian motion) is not all that clear.

The mechanisms by which an environment can destroy
measurable superpositions can roughly be divided into two
categories. First, the environmental state can get entangled
with the system state. This effectively delocalizes the relative
phase of any superposition state of the system into the
combined state of system and environment. After tracing out
the environmental degrees of freedom, this leads to a reduction
of the coherences of the system. We say the environment
measures the system [see Fig. 1(b)]. In the second process,
sometimes called phase averaging, the interaction with the
environment changes the relative phase of the superposition
state. If this phase change is random and different for each run
of an experiment, then the coherence of the superposition state
can no longer be observed [see Fig. 1(c)]. In some sense, phase
averaging does not fundamentally destroy the coherences, but
rather makes the relative phase unpredictable and therefore
unmeasurable.

We mention that neither mechanism completely solves
the problem of the quantum-classical transition because
the measurement problem remains [2]. Nevertheless, both
mechanisms can successfully describe the observed lack of
coherences of macroscopic objects. However, it is the first
decoherence mechanism which is mostly cited in connection
with the quantum-classical transition, possibly because it
appears to destroy coherences more fundamentally than phase
averaging. This view is especially maintained within the topic
of collisional decoherence [3,4,18].

Although a colliding gas particle certainly carries away
some information about the state of the tracer particle, we
show in this article that the decoherence due to this information
exchange is negligible compared to phase averaging. The latter
arises because a collision adds a relative phase to a spatial
superposition state, which depends on the momentum of the
colliding gas particle and is therefore random. This article,
hence, aims to fundamentally change the understanding of the
collisional decoherence process.

Because we are interested in a general understanding of the
collisional decoherence process, rather than details depending
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FIG. 1. (Color online) (a) Undisturbed double-slit experiment
with screen in the far field (not to scale). (b) A colliding particle
measures through which slit the tracer particle passes, removing the
coherence pattern at the screen. (c) A colliding particle transfers
momentum to the tracer particle, shifting the phase of the coherence
pattern. If this shift is random, the coherences cannot be observed
anymore. One of the results of this article is that process (c) is
responsible for decoherence, rather than process (b).

on a particular interaction model, we use the simplest possible
model. That is, we assume that the tracer particle and the
gas particles only move in one dimension. Further, the gas is
in a thermal state using Boltzmann statistics, and we apply
the low-density, high-temperature limit. Within this limit,
each collision is an independent event and we can neglect
three-particle collisions. The gas particles do not interact
with each other (ideal gas), and their interaction potential
with the tracer particle is of the hard-core type, that is,
V (x̂ − x̂g) = lima→∞ aδ(x̂ − x̂g), where the index g labels
the gas particle.

Let us briefly review a single collision following Ref. [14].
The effect of a collision on the tracer particle depends
on the state of the colliding gas particle. Therefore, we start
this discussion with a convenient convex decomposition of
the thermal density operator of a gas particle. A particular
useful convex decomposition was given by Hornberger and
Sipe [5] in terms of Gaussian minimum-uncertainty wave
packets |xg,pg〉σg

, with

〈x ′
g|xg,pg〉σg

= e−ixgpg/2h̄√√
πσg

eix ′
gpg/h̄e−(xg−x ′

g )2/2σ 2
g , (1)

where xg and pg label the mean position and momentum
of the wave packet, respectively, and σg labels the position
uncertainty. It was shown that the density operator can be
written as

ρ̂g = 2πh̄

L
µT (p̂g) (2)

=
∫

dxg

L

∫
dpgµTσg

(pg)|xg,pg〉σg
〈xg,pg|. (3)

Here µT (pg) = e−p2
g/2mgkBT /

√
2πmgkBT is the Maxwell-

Boltzmann distribution, L is a normalization length which
is taken to infinity, and Tσg

= T − h̄2

2mgkBσ 2
g

. The reason for a

lower temperature in the Maxwell-Boltzmann distribution in

Eq. (3) is that part of the thermal energy of the gas particle
has been transferred to being a contribution to the momentum
uncertainty of the states |xg,pg〉σg

.
With Eq. (3) at hand, we can assume that every gas particle

is in a minimum uncertainty state with position uncertainty
σg , while the probability density for a particular combination
of xg and pg is given by ngµTσg

(pg), where ng is the particle
density of the gas.

For a complete collision of the gas-particle wave packet
with the tracer-particle wave packet, it is required that the
velocity uncertainty of the gas-particle state |xg,pg〉σg

is small
compared to the relative velocity of the two colliding particles.
It was shown in [14] that this is the case (at least for most
gas particles) if 2mgkBT σ 2

g � h̄2, and therefore we choose
σg sufficiently large and approximate µTσg

(pg) by µT (pg)
in the following. Furthermore, to avoid the discussion of
three-particle collisions, we require σgng � 1. Therefore, the
position uncertainty has to satisfy

h̄√
mgkBT

� σg � 1

ng

, (4)

which is generally possible in the high-temperature, low-
density limit,

ngh̄√
mgkBT

� 1. (5)

Note that this limit must also be satisfied to use Boltzmann
statistics to describe an ideal gas.

It was further shown in [14] that, under the additional
assumption of a slow (compared to the gas particles) tracer
particle, the collision rate is

R = ng

√
2kBT /

√
πmg. (6)

It is well understood that if the tracer particle is ini-
tially (at time t = 0) also in a minimum uncertainty state
|x,p〉σ , but with a position uncertainty σ related to the
gas particle’s position uncertainty via their relative masses
according to

mσ 2 = mgσ
2
g , (7)

then a collision results in the remarkable simple product state
[14,19]:

Ug(t)|x̄g,p̄g〉σg
⊗ U(t) |x̄,p̄〉σ . (8)

Here t is some time after the collision, and U (t) is the free
evolution operator of the single particle. The mean positions
and momenta after the collision relate to the initial values
according to

x̄g = 2x − (1 − α)xg

1 + α
, p̄g = 2αp − (1 − α)pg

1 + α
, (9)

x̄ = 2αxg + (1 − α)x

1 + α
, p̄ = 2pg + (1 − α)p

1 + α
, (10)

which are precisely the same relations as in a collision of
classical particles. The relative mass is denoted by α = mg/m.
The final state (8) was derived in [14,19] by two different meth-
ods and can also easily be confirmed by using the scattering
operator for a one-dimensional hard-core interaction, that is,
Ŝ|pg〉|p〉 = −|p̄g〉|p̄〉.
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x′= x̄+ p̄t
m

x′=x+ pt
m

FIG. 2. (Color online) Position (a) and momentum (b) probability
distributions for the tracer particle during a collision in the reference
frame of center of mass. While the position probability distribution
“flows,” the momentum distribution “jumps” from the initial value
to the final one. The solid lines in (a) are the corresponding classical
trajectories. The collision time tc is indicated in (b).

The reader should note that at no time does the position
probability distribution of either particle change discontinu-
ously, as might be suggested incorrectly by Eqs. (9) and (10).
The actual position probability distribution of the state (8) also
includes the free-particle evolution operator, and in [14] it was
shown that the evolution of the tracer particle in position repre-
sentation is completely continuous, as can be seen in Fig. 2(a).

We point out that in this work we neglect the possibility of
incomplete collisions of the colliding wave packets. Therefore,
our work is valid on a coarse-grained time scale,

t � tc = 2σg
√

mg√
kBT

� h̄

kBT
, (11)

where tc is the collision time defined in [14] and shown in
Fig. 2(b). For this very reason, we use a finite time interval
(0,t) to study the decoherence process.

II. REMARKS ABOUT COLLISIONAL DECOHERENCE

Coherences of a quantum state are often described by the
off-diagonals of the density matrix. This leads to the question:
What basis should we use to examine decoherence? The two
bases which first come to mind are the position basis and
the momentum basis, and, indeed, these are the bases usually
used in the literature [3–5,11,12,18]. Nevertheless, they are
not without problems.

If one uses, for example, the momentum basis, one would
be interested in how long a superposition of the form (|pa〉 +
|pb〉)/

√
2 survives or, equivalently, how fast the coherences

|pa〉〈pb| decrease. There is a major problem in this sort of
question: A momentum eigenstate (or any state which is very
localized in momentum) is itself a coherent superposition of
widely spread position eigenstates, and one should expect
that these position coherences of each individual momentum
eigenstate do vanish on the same time scale, or even faster,
as the momentum coherences of interest. The same reasoning
applies to using the position basis.

Our reservations are clearly related to the concept of a
pointer basis [2,20]. Pointer basis states should be fairly
robust to decoherence. That is, if the system is prepared in
one of these pointer states, it will stay there for some time,
whereas if the system is in a superposition of two pointer
states, then the coherences typically decrease rapidly in time.

These properties makes a pointer basis the basis of choice for
studying decoherence effects. Because a momentum eigenstate
is highly unrobust to position decoherence, the momentum
basis is not a good pointer basis. Similarly, a position eigenstate
is unrobust to momentum decoherence, and therefore also not
an appropriate pointer state.

To add some weight to our concern, we have a brief
look at the decoherence rate found by [11] for an initial
superposition (|p〉 + |−p〉)/√2 of momentum states, that is,
their Eq. (67). Inserting the definitions (27), (31), and (32)
of [11] and assuming that the velocity of the tracer particle
is small compared to an average gas particle, their Eq. (67)

leads to the decoherence rate Dp = 8
√

2πσng

3
p2

m2

√
mg

kBT
, where

we changed the notations according to ours, and σ is a con-
stant scattering cross section. This formula opposes physical
intuition because it predicts a decrease of the decoherence
rate upon increasing the temperature, despite the fact that an
increase of the temperature leads to more powerful and more
frequent collisions.

Could we possibly single out a pointer basis from a
measurement interpretation of a single collision? We showed
in [14] (see [21] for details) that a colliding gas particle
|xg,pg〉σg

performs a smeared-out measurement on the tracer
particle in the basis |x,p〉σ ,1 indicating that these states could
be used as a pointer basis. We know from Eq. (3) that we
have a choice in the width σg of the gas-particle states.
Therefore, we can use minimum uncertainty states of any
width σ = √

m/mgσg as a pointer basis, as long as σg satisfies
relation (4), which was required for the treatment of a single
collision.

As is stated in, for example, [20], there are still many
open questions about the emergence of a pointer basis from
the coupling to an environment. Nevertheless, because of the
heuristic reasoning in the previous paragraph and the lack
of sensible alternatives, we indeed discuss decoherence by
using superpositions of Gaussian states |xa,pa〉σ + |xb,pb〉σ ,
commonly referred to as cat states in the literature. We
note that [12] superimposed several momentum eigenstates
to produce a state similar to a cat state to study decoherence
using quantum trajectory theory. This study was limited to
the situation where the gas-particle mass equals the tracer-
particle mass, and each collision leads to a complete loss of
decoherence.

We need the transformation of an initial (unnormalized) cat
state |xa,pa〉σ + |xb,pb〉σ of the tracer particle upon a collision
with a gas particle in the state |xg,pg〉σg

. By using the linearity
of quantum mechanics, as well as Eqs. (8)–(10), and after
tracing out the gas particle, we find for the density matrix of
the tracer particle after a collision

ˆ̄ρ(t) = U(t)[|x̄a,p̄a〉σ 〈x̄a,p̄a| + c̄e−iϕ̄ |x̄a,p̄a〉σ 〈x̄b,p̄b|
+ c̄eiϕ̄|x̄b,p̄b〉σ 〈x̄a,p̄a| + |x̄b,p̄b〉σ 〈x̄b,p̄b|]U †(t).

(12)

1This is already indicated by Eq. (8), as the measurement basis is
commonly formed by the set of system states which do not become
entangled with the measurement apparatus during the measuring
process.
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Here, we used x̄a ≡ x̄(xg,xa), etc., given by Eq. (10), as
well as

c̄ = exp

[
− α

(1 + α)2

(
x2

D

σ 2
+ σ 2p2

D

h̄2

)]
, (13)

which is smaller than one because of a reduction of coher-
ences due to a measurement performed by the colliding gas
particle, and

ϕ̄ = 2α(xApD − xDpA) + (1 − α)pgxD − α(1 − α)xgpD

(1 + α)2h̄

(14)

is a phase shift induced by the collision. We further defined the
average position xA = (xa + xb)/2 and the position difference
xD = (xa − xb) (analogous for momenta) of the two cohering
wave packets.

Note that the phase shift ϕ = ϕ(xg,pg) depends on the state
of the colliding gas particle. If this state is random, as in
a thermal gas, the phase shift leads to phase averaging and
therefore to a loss of coherences.

Rather than using a density operator representation in terms
of Gaussian states, we found a Wigner function representation
(see, e.g., [22]) more graphic to display coherences of cat
states. Decoherence can then be discussed in terms of the
vanishing of the oscillatory behavior of the Wigner function.
In particular, we compare the Wigner function without a
collision, to the Wigner function with a collision. This way, we
obtain the decoherence per collision, which can be multiplied
with the collision rate Eq. (6) to obtain the decoherence
rate.

We mention that a Wigner function description of quantum
Brownian motion was already put forward previously in a very
heuristic derivation [23], as well as in a more precise approach,
but limited to states of the tracer particle which are close to a
thermal state [24]. Both articles are concerned with the general
form of a partial differential equation for the Wigner function,
and do not study decoherence.

We need the Wigner function corresponding to a density
operator of the form

ρ = |xa,pa〉σ 〈xa,pa| + ce−ıϕ |xa,pa〉σ 〈xb,pb|
+ ceıϕ |xb,pb〉σ 〈xa,pa| + |xb,pb〉σ 〈xb,pb|. (15)

Here c is bound between zero and one and is a measure for the
strength of the coherences between |xa,pa〉σ and |xb,pb〉σ ,
and ϕ determines the relative phase between these states.
In particular, an incoming tracer-particle state |xa,pa〉σ +
|xb,pb〉σ before a collision corresponds to c = 1 and ϕ = 0.

Using standard methods [22], the Wigner function cor-
responding to the density matrix [Eq. (15)] is easily
found to be

Wρ(x ′,p′)

= 1

πh̄
exp

[
− (x ′ − xa)2

σ 2

]
exp

[
−σ 2(p′ − pa)2

h̄2

]

+ 1

πh̄
exp

[
− (x ′ − xb)2

σ 2

]
exp

[
−σ 2(p′ − pb)2

h̄2

]

+ 2c

πh̄
exp

[
− (x ′ − xA)2

σ 2

]
exp

[
−σ 2(p′ − pA)2

h̄2

]

FIG. 3. (Color online) The Wigner function of the initial coherent
superposition |ψ〉 = |xa,pa〉σ + |xb,pb〉σ (a) and of the state resulting
from a collision with |xg,pg〉σg

. (b) Parameters are xa = 15 Å,xb = 0,

pa = 0, pb = 1.5h̄/Å, σ = 4 Å, xg = 100 Å, pg = −1h̄/Å, and
mg/m = 0.04.

× cos

[
ϕ + xApD − pAxD

2h̄
+ xD

pA − p′

h̄
−pD

xA − x ′

h̄

]
.

(16)

As is well known, the strength of the coherences, indicated
by the oscillatory behavior of the Wigner function, does not
change due to the unitary free evolution. Therefore, in the
following, we mostly use the interaction picture.2 We can then
use the general formula Eq. (16), with c = 1 and ϕ = 0, to
plot the Wigner function of a state |ψ〉 = |xa,pa〉σ + |xb,pb〉σ
without a collision in Fig. 3(a).

According to Eqs. (12)–(14), a collision with a gas-particle
state |xg,pg〉σg

results in

(xa/b,pa/b,xA/D,pA/D) → (x̄a/b,p̄a/b,x̄A/D,p̄A/D),
(17)

c = 1 → c̄, ϕ = 0 → ϕ̄,

where x̄a = x̄(xg,xa), etc., are given by Eq. (10) and c̄ and ϕ̄

by Eqs. (13) and (14), respectively. The Wigner function after
the collision is plotted in Fig. 3(b).

It is astonishing that, despite choosing a gas particle with
only 4% of the mass of the tracer particle and despite using a
superposition of very close Gaussian wave functions, almost
all coherences are lost after a single collision. If we had sep-
arated the initial Gaussians only slightly more, or had chosen
only a slightly heavier gas particle, the coherences would be
not visible at all, because c̄ in Eq. (13) decreases exponentially
with these parameters. This observation is independent of the
initial momentum and position of the colliding gas particle,
as well as whether the Gaussian wave functions are separated
predominantly in position or momentum. It is therefore fair to
say that, unless the gas particle is much lighter than the tracer
particle, the decoherence rate equals the collision rate.

This result becomes even more pronounced if we average
over different initial gas-particle positions and momenta, and
we study this effect in the following section for extremely light
gas particles, for which the decoherence per collision due to
information exchange of the colliding particles, (1 − c̄), will
be small.

2The time-evolved Wigner function is obtained by replacing x ′ with
(x ′ − p′t/m) in Eq. (16).
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FIG. 4. (Color online) As in Fig. 3, but with different parameters
for the gas particle: pg = −0.2h̄/Å, xg = 500 Å, and mg/m =
0.002.

III. COLLISIONAL DECOHERENCE
FOR LIGHT GAS PARTICLES

In this section, we discuss the more-interesting situation,
when a collision only partially destroys the coherences, which
is the case if the colliding gas particle is extremely light (mass
ratios much smaller than 1%, as we see). Then we need a more
quantitative measure of the decoherence process, which we
develop in what follows.

Figure 4 shows how the Wigner function of a superposition
state changes due to a collision with a light gas particle. The
coherences after the collision are still well resolved. The reason
is that the measurement performed by the colliding gas particle
is so imprecise that it can not distinguish between the two
Gaussian wave functions of the tracer particle.3

The main effect of a collision with a light gas particle is a
shift of the entire Wigner function in phase space. Of particular
interest is that the oscillating part just shifts from (xA,pA) to
(x̄A,p̄A), without acquiring an additional phase shift (i.e., the
relative heights of the oscillating peaks do not change). This
feature can be explained by looking at the argument of the
cosine in Eq. (16). The sum of the first two terms does not
change in a collision, because (xApD − pAxD)/(2h̄) equals
(x̄Ap̄D − p̄Ax̄D)/(2h̄) + ϕ̄, with ϕ̄ taken from Eq. (14). The
third and forth terms account for a phase shift corresponding
to the shift of the Gaussian, that is, xA − x ′ → x̄A − x ′ and
pA − p′ → p̄A − p′.

Of course, if the gas-particle state |xg,pg〉 is taken from a
thermal gas, we have to average over all gas-particle momenta
pg , weighted by the Maxwell-Boltzmann distribution µT (pg),
as well as over all the gas-particle positions xg which can
reach the tracer particle in a given time interval (0,t). Because
each possible combination of xg and pg results in a different
shift of the Wigner function in phase space, it is clear that
this procedure strongly suppresses the oscillations. This is
the decoherence effect we referred to as “phase averaging”
in the Introduction. It can suppress coherences quickly, even
if the measurements which the gas particles perform are very
weak.

3This can also be seen from the Kraus operators, which represent the
transformation of the tracer-particle state due to a collision. The Kraus
operators are derived in [14] and consist of the Glauber displacement
operator with a small correction representing a weak phase-space
measurement.

Let us close this preliminary discussion with a note
regarding the collision rate. In the limit of a small mass ratio α,
the tracer particle will be very localized compared to the gas
particles, in both position and velocity, as is evident from
Eq. (7). Therefore, we do not have to use the full rate operator
formalism developed in [14], but we can simply assume that
the tracer particle is reasonably localized somewhere near the
origin, and a gas particle collides with the tracer particle during
a time interval (0,t) exactly if

0 < −xgmg/pg < t (18)

is satisfied.

A. Position decoherence

To study position decoherence, we consider an initial
tracer-particle state |xa,p〉σ + |xb,p〉σ . An example of the
corresponding Wigner function is plotted in Fig. 5(a). The

FIG. 5. (Color online) (a) The Wigner function for the tracer
particle before a collision. (c), (e), (g) The average Wigner function
after one collision with a gas particle at temperature kBT = 0.2, 0.5,
and 1.5h̄2/(mÅ

2
), respectively. (d), (f), (h) The change of the

Wigner function due to a collision at temperature kBT = 0.2, 0.5,
and 1.5h̄2/(mÅ

2
), respectively. (b) The relative change of the

Wigner function at the origin due to a collision. This serves
as a quantitative measure of the decoherence per collision. The
solid line is the first-order expansion in temperature [Eq. (27)].
Parameters are xa = 20, xb = −20 Å, pa = pb = 0, σ = 4 Å, and
mg/m = 10−4.
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Wigner function after a collision with a gas-particle state
|xg,pg〉σg

is obtained following Sec. II, but to study the
decoherence due to a thermal gas, we average over dif-
ferent initial positions xg and momenta pg of the gas
particle.

The Wigner function Wρ1 after a collision, averaged over
200 pairs (xg,pg) taken from an appropriate distribution (see
later in this article), is shown in Figs. 5(c), 5(e), and 5(g)
for the respective temperatures T = 0.2, 0.5, and 1.5. The
corresponding changes of the Wigner function from the initial
one [Fig. 5(a)] are shown Figs. 5(d), 5(f), and 5(g).

As a quantitative measure of coherence, we use the height
of the maximum peak of the oscillations. In particular, the
relative change of the maximum peak serves as decoherence
per collision, and is plotted over the temperature T in
Fig. 5(b).

In the following, we derive an expression for the decoher-
ence per collision. In the limit of a light gas particle we can use
c̄ ≈ 1 and concentrate on the cosine of the Wigner function
[Eq. (16)],

cos

[
ϕ − pxD

2h̄
+ xD

p − p′

h̄

]
, (19)

where we used pD = 0 and pA = p for our choice of the initial
cat state.

As noted earlier, a collision does not change the sum
ϕ − pxD/(2h̄). Further, we use 1 + α ≈ 1 in the limit of
light gas particles, which leads to x̄D ≈ xD and p̄ ≈ p + 2pg .
Therefore, we find the oscillating term of the Wigner function
Wρ1 after a collision by averaging over

cos

[
ϕ − pxD

2h̄
+ xD

p + 2pg − p′

h̄

]
. (20)

In particular, we use the reduction of the maximum of
the oscillations as a quantitative measure of decoherence.
Because this maximum before a collision is at p′ given by
ϕ − pxD/(2h̄) + xD(p − p′)/h̄ = 0, we substitute this into
Eq. (20), and the coherences after one collision are then
obtained by averaging over

cos

(
2xDpg

h̄

)
. (21)

We see that the relative phase 2pgxD/h̄ added by the
collision depends solely on the momentum of the colliding gas
particle, and we need the momentum probability distribution
of the colliding gas particles to perform the averaging over
Eq. (21).

According to Eq. (3), the probability density of finding
a gas particle in the state |xg,pg〉σg

is given by ngµT (pg),
where ng is the particle density of the gas. Knowing that a
gas particle of momentum pg collides with the tracer particle
exactly if the position xg satisfies Eq. (18), we can write the nor-
malized momentum probability distribution of a colliding gas
particle:

C(pg) = |pg|
2mgkBT

exp

(
− p2

g

2mgkBT

)
. (22)

Note that this distribution does not depend on the length of the
considered time interval (0,t). This will lead to a decoherence

per collision (and therefore to a decoherence rate) which is
independent of the considered time interval, as should be
expected in a Markovian process.

We finally find for the coherences after one collision with
a thermal gas particle,〈

cos

(
2xDpg

h̄

)〉
C(pg )

=
∫ ∞

0
dpg

pg

mgkBT
exp

( −p2
g

2mgkBT

)
cos

(
2xDpg

h̄

)
(23)

= 1 − 2xD

h̄

∫ ∞

0
dpg exp

( −p2
g

2mgkBT

)
sin

(
2xDpg

h̄

)
, (24)

where we used integration by parts. We deduce for the
decoherence per collision of position superposition states

decoherence

collision
= 2xD

√
2mgkBT

h̄

∫ ∞

0
du e−u2

× sin

(
2xD

√
2mgkBT

h̄
u

)
, (25)

or for the decoherence rate

Dx = 4xDngkBT√
πh̄

∫ ∞

0
du e−u2

sin

(
2xD

√
2mgkBT

h̄
u

)
. (26)

An interesting limit to consider is 2xD

√
2mgkBT � h̄, in

which the decoherence per collision is small. This situation
corresponds to either a small position separation xD or a small
average momentum transfer

√
2mgkBT and was studied in the

seminal work of Joos and Zeh [3]. The integrals in Eqs. (25)
and (26) can then be carried out and we find

decoherence

collision
= 4mgkBT

h̄2 x2
D, (27)

Dx = 8ng
√

mg(kBT )3/2

√
2πh̄2

x2
D. (28)

The decoherence rate Dx agrees up to some constant with the
one found by [3] for three-dimensional collisions.

The decoherence per collision [Eq. (25)] is plotted over
temperature in Fig. 6(a) for the same parameters as in
Fig. 5(b), but for higher temperatures. It might come as a
surprise that the decoherence rate exceeds the collision rate
for xD

√
2mgkBT /h̄ >∼ 1. The reason is that in this regime the

Wigner function after a collision shows oscillations, which
are out of phase with the oscillations of the initial Wigner
function, as shown in Fig. 6(b). Therefore, if we write the
actual (interaction picture) Wigner function after some small
time t as

Wρ(t) = (1 − Rt)Wρ0 + RtWρ1 , (29)

where R is the collision rate Eq. (6), and ρ0 and ρ1 are
the density operators corresponding to no collision and one
collision, respectively, then the oscillations in Wρ0 and Wρ1

interfere destructively. These out-of-phase coherences in turn
can be understood by noting that the momentum distribution

052104-6



COLLISIONAL DECOHERENCE OF A TRACER PARTICLE . . . PHYSICAL REVIEW A 82, 052104 (2010)

FIG. 6. (Color online) (a) The decoherence per collision plotted
over the temperature, for parameters as in Fig. 5, but for larger
temperatures. The dots are from the numerical Wigner function at
the origin, and the line is from Eq. (24). The small discrepancy is
due to the neglected spreading of the Gaussians due to the averaging
process. (b) The Wigner function after a collision at temperature
kBT = 7 h̄2/(mÅ

2
) shows oscillations in opposite phase to the initial

Wigner function [see Fig. 5(a)]. This leads to a decoherence rate
which exceeds the collision rate.

of the colliding particles [Eq. (22)] is not peaked at pg = 0,
but rather at pg = ±√

2mgkBT .
Having found the decoherence per collision due to phase

averaging, we can draw a quantitative comparison with the
decoherence per collision due to information exchange, which
is 1 − c̄ ≈ αx2

D/σ 2. Because of the first inequality of (4),
this decoherence effect is indeed negligible if the density and
temperature of the gas are such that it can be considered an
ideal Boltzmann gas. This is also true in the regime discussed
in Sec. II, because phase averaging is sufficient to remove any
coherences in a single collision.

We note that it is often stated in the literature [3,18] that,
if the separation xD of two interfering wave packets is larger
than the thermal wavelength � = h̄/

√
2πmgkBT of the gas,

then a colliding gas particle can distinguish between the two
interfering wave packets, therefore removing their coherences.
In finding that the decoherence rate is about the collision rate
if xD >∼

√
π�, we confirm the latter part of this statement, but

we also show that the loss of coherence is by no means related
to a measurement performed by the gas particle, but due to
classical phase averaging resulting from the randomness of
the momentum transfer.

B. Momentum decoherence

In this subsection, we show that the decoherence of
momentum superposition states is not a direct process. Instead,
two coherent wave packets with momentum separation pD

will, after some time, acquire a position separation xD =
pDt/m, which then leads to position decoherence. Any direct
momentum decoherence will turn out to be negligible in a
high-temperature, low-density gas.

We consider the initial tracer-particle state |x,pa〉σ +
|x,pb〉σ , whose Wigner function is plotted in Fig. 7(a). Again,
the main source of decoherence will be phase averaging.
Contrary to the previous subsection, where the relative phase
of the two Gaussian wave packets after a collision depended
on the initial momentum of the colliding gas particle, for
momentum decoherence this phase depends on the initial

FIG. 7. (Color online) (a) The Wigner function for the tracer
particle before a collision. (c), (e), (g) The average Wigner function
after one collision with a gas particle within a time interval (0,t)
at temperature T , with t = 20 mÅ

2
/h̄, kBT = 0.5h̄2/(mÅ

2
) in (c);

t = 50 mÅ
2
/h̄, kBT = 0.5h̄2/(mÅ

2
) in (e); t = 20 mÅ

2
/h̄, kBT =

3h̄2/(mÅ
2
) in (g). (d), (f), (h) The corresponding change of the Wigner

function due to a collision. (b) The relative change of the Wigner
function at the origin due to a collision as function of the time interval
for kBT = 0.5h̄2/(mÅ

2
) as well as kBT = 1h̄2/(mÅ

2
). The dots are

from the numerical Wigner function, and the lines are from Eq. (33).
Parameters are xa = xb = 0, pa = −pb = 1.2h̄/Å, σ = 4 Å, and
mg/m = 10−4.

position of the colliding gas particle.4 As the variation of the
initial position of a colliding gas particle is increased, the more
decoherence per collision we will find. For a given gas-particle
momenta pg , the gas-particle position can be anywhere within
the interval (−pgt/mg,0). Therefore, the decoherence per
collision will not only depend on the temperature T (for
the distribution of pg), but also on the considered time
interval. In Figs. 7(c)–7(h), the effects of a collision on
the Wigner function is shown for different temperatures and
time intervals. The time dependence of the decoherence per
collision is shown in Fig. 7(b). As a result, it is not possible

4This can be spelled out in a more intuitive way by saying that
the acquired relative phase depends on the actual time of collision
t ′ ∈ (0,t), multiplied by the momentum of the colliding gas particle.
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to define a time-independent decoherence rate for momentum
superpositions. We provide a physical interpretation at the end
of this subsection and first give a mathematical explanation of
these results.

For this purpose, we consider again the oscillating cosine
within the Wigner function Eq. (16),

cos

[
ϕ + xpD

2h̄
− pD

x − x ′

h̄

]
, (30)

at its maximum ϕ + xpD/(2h̄) − pD(x − x ′)/h̄ = 0. As dis-
cussed before, a collision does not change the sum ϕ +
xpD/(2h̄) in the cosine, and we only have to consider the
change of x to x + 2αxg in the last term of the cosine.
Therefore, we find the decoherence per collision by aver-
aging over cos(2αxgpD/h̄). Here we need the normalized
probability distribution C̃(xg) of the initial position of the
colliding gas particle, which is obtained from the probability
density ngµT (pg) by integration over all pg , for which a
gas particle with position xg can reach the tracer particle
(i.e., −xg ≷ pgt/mg ≷ ∓ ∞, where the upper sign is for
positive xg),

C̃(xg) ∝ ng√
2πmgkBT

∫ ∞

|xg |mg/t

dpg exp

(
− p2

g

2mgkBT

)
.

The distribution is normalized either by integration over xg

or directly by dividing by the collision probability Rt . After
substituting u = pg/

√
2mgkBT , we find

C̃(xg) =
√

mg

t
√

2kBT

∫ ∞

|xg |√mg

t
√

2kB T

du e−u2
, (31)

and therefore〈
cos

(
2αpDxg

h̄

)〉
C̃(xg )

=
√

mg

t
√

2kBT

∫ ∞

−∞
dxg cos

(
2αpDxg

h̄

) ∫ ∞

|xg |√mg

t
√

2kB T

du e−u2

= mh̄

t
√

2mgkBT pD

∫ ∞

0
du e−u2

sin

(
2t

√
2mgkBT pD

mh̄
u

)
.

(32)

Because this function represents the coherences after one
collision, we have to subtract it from unity to obtain the
decoherence per collision

decoherence

collision

= 1 − mh̄

t
√

2mgkBT pD

∫ ∞

0
du e−u2

sin

(
2t

√
2mgkBT pD

mh̄
u

)
(33)

≈ 4mgkBT

3h̄2

(
tpD

m

)2

. (34)

The solid lines in Fig. 7(b) are taken from Eq. (33) and agree
well with the data (dots) obtained from the numerical Wigner
functions directly. The approximation in Eq. (34) is valid if
the decoherence per collision is small.

Similar to position decoherence, we see from Eq. (34)
that momentum decoherence due to information exchange
(1 − c̄ ≈ ασ 2p2

D/h̄2) is negligible [unless for temperatures
and times so small, that relation (11) is violated]. Hence, we
established that also momentum decoherence is due to phase
averaging.

At first, the increase of the decoherence rate with the con-
sidered time interval seems to be at odds with the uniformity
in time in the following sense: If we split a time interval
(0,t) into subintervals (0,t/N ), (t/N,2t/N ), . . . ,(t − t/N,t),
the decoherence rate of the entire interval should be the
averaged decoherence rate of all the subintervals. If we now
assume that the decoherence rate for each subinterval is
the same (“uniformity in time”), we would be led to the
conclusion that the decoherence rate for the interval (0,t)
equals the decoherence rate for the subinterval (0,t/N ), clearly
contradicting Eqs. (33) and (34).

In the preceding argument, we made the following
conceptual error: By assuming the same decoherence
rate for each subinterval, we implied the same initial cat
state at the beginning of each subinterval. Instead, by
the time the nth subinterval starts, the cat state evolved
to U (nt/N ) (|x,pa〉σ + |x,pb〉σ ) and acquired a position
separation xD = pD(nt/N )/m. Therefore, we have to add
position decoherence for all but the first subintervals.

In the limit N → ∞, there is no momentum decoher-
ence in the infinitely small subintervals at all, but instead,
a continuously increasing position decoherence according
to Eq. (25), with xD(t ′) = pDt ′/m. Indeed, substituting
this time-dependent position separation into Eq. (25) and
averaging over all times t ′ ∈ (0,t), one exactly recovers
Eq. (33).5

In other words, the decoherence which an initial cat state
|x,pa〉 + |x,pb〉 experiences during a time interval (0,t) is
perfectly explained by position decoherence of the evolving
state U (t ′) (|x,pa〉 + |x,pb〉). This leads us to the physical
interpretation that momentum decoherence is not a direct
process, but results indirectly from position decoherence due to
position separation which the tracer particle acquires over time.

IV. CONCLUSIONS FROM THE STUDY
OF DECOHERENCE

We showed previously [14] that in one-dimensional col-
lisional decoherence, the quantity measured by a colliding
gas particle does not only depend on physical parameters
like density and temperature, but also on the choice of
decomposition Eq. (3) of the density operator of a thermal
gas particle. It is therefore reassuring to find in this article,
that measurement effects as a source of decoherence are
negligible in the high-temperature, low-density limit, where
Eq. (3) is valid. The reason is that measurement effects are
small compared to phase averaging effects, which arise from
a random relative phase added to a superposition state during
the collision process.

We further arrive at a neat interpretation of the decoherence
process of a superposition of two Gaussian wave packets.

5This is easier shown by recovering Eq. (32) from Eq. (23).
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The decoherence due to a collision depends on the position
separation of the two Gaussian wave packets at the time of the
collision. In contrast, there is no direct decoherence due to the
momentum separation pD of the two coherent wave packets.
Instead, over time, the momentum separation changes the
position separation according to xD(t) = xD + tpD/m. This
leads to an indirect influence of pD on the decoherence rate,
which, if there is no initial position separation, is described by
Eq. (33).

Further work is required to see whether this drastic change
in the understanding of the collisional decoherence process
also applies to three-dimensional systems.
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