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Information conservation and entropy change in quantum measurements
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The information transfer in the system-apparatus-environment trio is of fundamental importance for both
the theory and practice of quantum information. Based on a canonical joint purification which encodes the
system, apparatus, and environment as well as their interplay, we establish several basic relations involving
various entropies arising from the most general quantum measurements. Some celebrated results concerning
entropy change and information-disturbance tradeoff are recaptured as particular cases in a unified framework of
information conservation.
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I. INTRODUCTION

The characteristics and nature of information transfer and
entropy change in a quantum measurement are of basic signifi-
cance for quantum theory. This issue was investigated by many
authors [1–10]. In particular, various entropic inequalities
including the Holevo-type bounds [11–18] and information-
disturbance tradeoff [19–29] were established. However, most
investigations in this line ignored the information carried away
by the measuring apparatus and the environment. In order to
gain a deeper understanding of the information change in a
measurement, it is necessary to keep track of the interplay
among the quantum system, the measuring apparatus, and
the environment. For this purpose, we introduce a canonical
joint purification of state and measurement and establish some
relations concerning entropy change in a unified framework.

Consider a general measurement M = {Mµ} described
by a family of quantum operations. Each Mµ can be
expressed in the Kraus form as Mµρ := ∑

s MµsρM
†
µs

with
∑

s M
†
µsMµs � 1 [30]. The completeness of the

measurement then imposes that
∑

µs M
†
µsMµs = 1, which is

equivalent to that {Eµ := ∑
s M

†
µsMµs} constitutes a positive

operator-valued measure (POVM) used in describing the
outcome probabilities. M is also called a quantum instrument,
which is a more general notion than that of a POVM since
it captures not only the outcome probabilities but also the
postmeasurement states [28,30,31]. The measurement M is
efficient (or ideal) if the index set of s degenerates to a single
point [20,32]; that is, each Mµ has a single Kraus operator in
the sense that Mµρ = MµρM†

µ.
After performing the measurement M on a quantum state

ρ, there are two scenarios for the postmeasurement states: In
the selective case, the outcomes constitute a quantum ensemble
{pµ,ρµ} with

pµ := trMµρ, ρµ := 1

pµ

Mµρ.

The outcome labeled by µ occurs with probability pµ and
the corresponding postmeasurement state conditioned on µ is
ρµ. In the nonselective case, the distinction among the various
outcomes is discarded, and the overall postmeasurement state
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representing the state-of-knowledge is

Mρ :=
∑

µ

pµρµ.

The natural questions arise as for the relations among the
various entropies:

S(ρ), S(Mρ),
∑

µ

pµS(ρµ), H (p).

Here S(ρ) := −trρlnρ is the von Neumann entropy, and
H (p) := −∑

µ pµlnpµ denotes the Shannon entropy of p :=
{pµ}. The difference

S(Mρ) −
∑

µ

pµS(ρµ)

is the Holevo quantity of the ensemble {pµ,ρµ}, which is a
key concept in transmitting classical information by quantum
means [11–18]. The difference

S(ρ) −
∑

µ

pµS(ρµ)

is the entropy reduction. In particular, it is of fundamental
importance to estimate the entropy changes

S(Mρ) − S(ρ), S(ρ) −
∑

µ

pµS(ρµ).

Some celebrated results in this respect are as follows.
The first is that M may increase or decrease the entropy;

that is, S(Mρ) − S(ρ) may sometimes be positive and some-
times be negative (of course, sometimes zero). However, when
M is a (Lüders) projective measurement � = {�µ}, then
S(�ρ) − S(ρ) � 0: Any projective measurement increases
entropy [5,33]. More generally, if M preserves the identity
operator 1, then

S(Mρ) − S(ρ) � 0. (1)

This can be readily seen from the monotonicity of quantum
relative entropy [4,9,33],

D(Mρ|Mσ ) � D(ρ|σ ),

by simply taking σ to be the maximally mixed state (propor-
tional to 1). Here D(ρ|σ ) := trρ(lnρ − lnσ ). Conversely, in
order for inequality (1) to be true for any ρ, it is also necessary

1050-2947/2010/82(5)/052103(5) 052103-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.82.052103


SHUNLONG LUO PHYSICAL REVIEW A 82, 052103 (2010)

that M preserves the identity operator since the maximally
mixed state has the maximal entropy.

The second result concerns the positivity of the entropy
reduction first conjectured by Groenewold [2]: For any
projective measurement, it holds that

S(ρ) −
∑

µ

pµS(ρµ) � 0. (2)

This inequality was first proved by Lindblad [5] and further
generalized by Ozawa [8], who identified the conditions for
M such that the foregoing inequality holds.

The main purpose of the present article is to establish some
information conservation relations and to derive significantly
more stringent bounds than inequalities (1) and (2). We
derive various entropic inequalities, information-disturbance
tradeoff, and leakage-disturbance tradeoff relations in a unified
fashion. Apart from their own intrinsic significance for
quantifying Heisenberg’s intuition on the uncertainty principle
from the information perspective, these relations are useful in
practice for quantum communication and quantum estimation.
For example, in quantum cryptography, the eavesdropping
strategies are limited by the information-disturbance tradeoff,
which actually lies at the heart of Biham et al.’s proof of the
unconditional security of the BB84 quantum key distribution
protocol [19].

The article is structured as follows. In Sec. II, we intro-
duce a purification framework which keeps track of all the
information transfer in a quantum measurement. With the help
of this purification scheme, we establish several information
conservation and entropic relations in Sec. III. We discuss the
information-disturbance tradeoff and the leakage-disturbance
tradeoff in Sec. IV. Finally, we summarize the results in Sec. V.

II. PURIFICATION: APPARATUS AND ENVIRONMENT

In order to get deeper relations concerning the entropy
change induced by a measurement, it is necessary to go
beyond M and ρ and to take full account of the information
carried away by the measuring apparatus and the environment.
Thus, in addition to the system space Hb, we introduce an
apparatus space Hc recording the measurement outcomes
and an environment space Hd recording the internal degree
of measurement operations, with orthonormal bases {|µ〉}
and {|s〉}, respectively. With respect to these spaces, we
introduce two auxiliary quantum operations M̄ = {M̄s} and
M̃ = {M̃µ} as

M̄sρ :=
∑
µν

tr(MµsρM†
νs)|µ〉〈ν|, (3)

M̃µρ :=
∑
st

tr(MµsρM
†
µt )|s〉〈t |, (4)

which are maps from the system state space to the apparatus
state space and the environment state space, respectively. The
intuition and motivation for introducing these maps come from
the desire to make manifest some intrinsic characteristics
of M in the apparatus and the environment. We may
describe M̄s and M̃µ in the Stinespring representation [27]
as M̄s = trbAsρA

†
s and M̃µ = trbBµρB†

µ, respectively. Here

As :Hb → Hb ⊗ Hc and Bµ:Hb → Hb ⊗ Hd are defined as

As |φb〉 :=
∑

µ

Mµs |φb〉 ⊗ |µ〉,

Bµ|φb〉 :=
∑

s

Mµs |φb〉 ⊗ |s〉,

respectively. Clearly, A
†
sAs � 1 and B†

µBµ � 1.

While M records the physical effects on the measured
system, M̄ and M̃ keep track of the physical effects on the
apparatus and the environment, respectively. Now in addition
to the entropies related to the original measurementM, we also
have the corresponding entropies S(M̄ρ) and (M̃ρ) induced
by the quantum operations M̄ and M̃, which will be ex-
ploited to establish various inequalities concerning the entropy
change induced by the original measurement M. S(Mρ),
as the entropy of the postmeasurement state, may be called
the measurement entropy [3,6], and following Refs. [7,34],
S(M̄ρ) may be called the exchange entropy. It is also tempting
to call S(M̃ρ) the leaking entropy since it represents the
entropy leaking into the environment. When M is an efficient
measurement, S(M̃ρ) vanishes because M̃ρ is a pure state.

Let ρ be a state on the system space H = Hb with the
spectral decomposition ρ = ∑

j λj |j 〉〈j |, and letM = {Mµ}
be a measurement on H . Let Ha be an auxiliary space which is
a copy of Hb and let Hc ⊗ Hd be the apparatus-environment
space spanned by the orthonormal bases {|µ〉 ⊗ |s〉} which are
used in Eqs. (3) and (4). We introduce the four-partite state

|�abcd〉 :=
∑
jµs

√
λj |j 〉 ⊗ Mµs |j 〉 ⊗ |µ〉 ⊗ |s〉

in Ha ⊗ Hb ⊗ Hc ⊗ Hd, which captures and encodes the
state ρ, the measurement M, the apparatus, and the envi-
ronment as well as their interplay in a single pure state. This
state may be viewed as a joint purification of ρ and M with
very natural and informative characteristics as will be seen,
and it will play a central role in our information-theoretical
analysis of information transfer in quantum measurements.

Put ρabcd := |�abcd〉〈�abcd |, then the various reduced one-
partite states are just

ρa = ρ, ρb = Mρ, ρc = M̄ρ, ρd = M̃ρ.

Thus the measurements M̄ and M̃ are put on an equal footing
with the original measurement M in the sense that they all
constitute one-partite marginal states of the joint purification
and have the physical significance for recording the impact
of the original measurement M on the apparatus and the
environment, respectively.

The various reduced tripartite states of ρabcd are

ρabc :=
∑

s

qs

∣∣ϒabc
s

〉 〈
ϒabc

s

∣∣,
ρabd =

∑
µ

pµ

∣∣	abd
µ

〉 〈
	abd

µ

∣∣,
ρacd =

∑
jkµνst

qjkµνst |j 〉〈k| ⊗ |µ〉〈ν| ⊗ |s〉〈t |,

ρbcd =
∑

j

λj

∣∣
bcd
j

〉 〈

bcd

j

∣∣,
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where qs := tr
∑

µ MµsρM
†
µs and

qjkµνst := √
λjλktr(Mµs |j 〉〈k|M†

νt ),∣∣ϒabc
s

〉
:=

∑
jµ

√
λj |j 〉 ⊗ 1√

q
s

Mµs |j 〉 ⊗ |µ〉,

∣∣	abd
µ

〉
:=

∑
js

√
λj |j 〉 ⊗ 1√

p
u

Mµs |j 〉 ⊗ |s〉,
∣∣
bcd

j

〉
:=

∑
µs

Mµs |j 〉 ⊗ |µ〉 ⊗ |s〉.

These states are basic ingredients in characterizing information
conservation in quantum measurements.

III. ENTROPIC RELATIONS

Now we investigate entropic relations arising from the
interplay between the state, the measurement, the appara-
tus, and the environment. Since ρabcd is a pure state, we
have S(ρa) = S(ρbcd ), S(ρb) = S(ρacd ), S(ρc) = S(ρabd ),
and S(ρd ) = S(ρabc). Noting that ρa = ρ, ρb = Mρ, ρc =
M̄ρ, and ρd = M̃ρ, we immediately obtain the following
identities, which may be interpreted as concrete realizations
for information conservation.

Proposition 1. It holds that

S(ρ) = S

⎛
⎝∑

j

λj

∣∣
bcd
j

〉 〈

bcd

j

∣∣
⎞
⎠ ,

S(Mρ) = S

( ∑
jkµνst

qjkµνst |j 〉〈k| ⊗ |µ〉〈ν| ⊗ |s〉〈t |
)

,

S(M̄ρ) = S

(∑
µ

pµ

∣∣	abd
µ

〉 〈
	abd

µ

∣∣) ,

S(M̃ρ) = S

(∑
s

qs

∣∣ϒabc
s

〉 〈
ϒabc

s

∣∣) .

These information conservation formulas, apart from their
own interests, allow us to systematically derive entropic
inequalities when combined with the monotonicity of quantum
relative entropy. For example, from the last two equations, it
immediately follows that

S(M̄ρ) � H (p), S(M̃ρ) � H (q).

Concerning the entropy change under any nonselective
measurement, we have the following results.

Proposition 2. It holds that

S(ρ) � S(Mρ) + S(M̄ρ) + S(M̃ρ), (5)

S(ρ) � S(Mρ) − S(M̄ρ) − S(M̃ρ). (6)

In particular, if M is efficient, then S(M̃ρ) = 0 and conse-
quently [7,18]

S(Mρ) − S(M̄ρ) � S(ρ) � S(Mρ) + S(M̄ρ). (7)

To prove inequality (5), noting that ρbcd has three marginal
states ρb = Mρ, ρc = M̄ρ, and ρd = M̄ρ, by the subaddi-
tivity of the von Neumann entropy, we immediately have

S(ρ) = S(ρa) = S(ρbcd ) � S(ρb) + S(ρc) + S(ρd )

= S(Mρ) + S(M̄ρ) + S(M̃ρ).

Similarly, inequality (6) follows from

S(Mρ) = S(ρb) = S(ρacd ) � S(ρa) + S(ρc) + S(ρd )

= S(ρ) + S(M̃ρ) + S(M̄ρ).

It should be emphasized that inequalities (5), (6), and (7)
still hold when the four entropies S(ρ),S(Mρ), S(M̄ρ), and
S(M̃ρ) are arbitrarily permutated. The proofs are completely
similar.

Concerning the entropy change under any selective quan-
tum measurement, we have the following inequalities which
refine the Groenewold-Lindblad-Ozawa result [2,5,8] and
inequality (9) in Ref. [18].

Proposition 3. It holds that

−S(M̃ρ) � S(ρ)−
∑

µ

pµS(ρµ) � S(M̃ρ) + S(M̄ρ). (8)

In particular, if M is efficient, then

0 � S(ρ) −
∑

µ

pµS(ρµ) � S(M̄ρ). (9)

To establish the first inequality in (8), consider ρbc =∑
µνs MµsρM

†
νs ⊗ |µ〉〈ν| and the projective measurement

� = {1b ⊗ |µ〉〈µ|} (which is of course efficient), we have
�̄ρbc = ∑

µν πµν |µ〉〈ν| with

πµν = tr(1b ⊗ |µ〉〈µ|)ρbc(1b ⊗ |ν〉〈ν|) = δµνpµ,

and thus S(�̄ρbc) = H (p) and S(�̃ρbc) = 0. Now applying
inequality (6) to the state ρbc and the measurement �, we have

S(ρbc) � S(�ρbc) − S(�̄ρbc)

= S

(∑
µ

pµρµ ⊗ |µ〉〈µ|
)

− S(�̄ρbc)

=
∑

µ

pµS(ρµ) + H (p) − H (p)

=
∑

µ

pµS(ρµ).

The desired result follows by noting that

S(ρbc) = S(ρad ) � S(ρa) + S(ρd ) = S(ρ) + S(M̃ρ).

To prove the second inequality in (8), put ρabd
µ := |	abd

µ 〉
〈	abd

µ |, then
∑

µ pµρabd
µ := ρabd and the various reduced

states satisfy ρb
µ = ρµ and∑

µ

pµρa
µ = ρa = ρ,

∑
µ

pµρb
µ =Mρ,

∑
µ

pµρd
µ =M̃ρ.
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Now the desired inequality follows from

S(M̄ρ) = S

(∑
µ

pµρabd
µ

)

=
∑

µ

pµD
(
ρabd

µ

∣∣ρabd
) (

since ρabd
µ is pure

)
�

∑
µ

pµD
(
ρa

µ

∣∣ρa
)

= S(ρ) −
∑

µ

pµS
(
ρa

µ

)
= S(ρ) −

∑
µ

pµS
(
ρbd

µ

) (
since ρabd

µ is pure
)

� S(ρ) −
∑

µ

pµ

[
S
(
ρb

µ

) + S
(
ρd

µ

)]
� S(ρ) −

∑
µ

pµS(ρµ) − S(M̃ρ).

Concerning the entropy change relating selective and
nonselective measurements, we have the following result,
which extends inequality (8) in Ref. [18] to the general
measurement case.

Proposition 4. It holds that

S(Mρ) −
∑

µ

pµS(ρµ) � S(M̄ρ).

This follows readily from

S(M̄ρ) =
∑

µ

pµD
(
ρabd

µ

∣∣ρabd
)

�
∑

µ

pµD
(
ρb

µ

∣∣ρb
)

= S(Mρ) −
∑

µ

pµS
(
ρb

µ

) = S(Mρ) −
∑

µ

pµS(ρµ).

IV. INFORMATION, DISTURBANCE, LEAKAGE

With the purpose of quantifying the information-
disturbance-leakage relations, we investigate the distribution
of correlations, as quantified by the quantum mutual informa-
tion, among various bipartite states reduced from the overall
state ρabcd . Recall that the total correlations in the bipartite
state ρab is well quantified by the quantum mutual information
[9,35]

I (ρab) := S(ρa) + S(ρb) − S(ρab).

We also need the conditional quantum mutual information

I (ρabc|ρc) := S(ρac|ρc) + S(ρbc|ρc) − S(ρabc|ρc),

which is non-negative by the strong subadditivity of the
von Neumann entropy. Here S(ρac|ρc) := S(ρac) − S(ρc) and
S(ρabc|ρc) := S(ρabc) − S(ρc) are the conditional quantum
entropies.

Let |ab〉 := ∑
j

√
λj |j 〉 ⊗ |j 〉 be the canonical purifica-

tion of ρ. Define the map M:Hb → Hb ⊗ Hc ⊗ Hd as

M|φb〉 :=
∑
µs

Mµs |φb〉 ⊗ |µ〉 ⊗ |s〉,

then |�abcd〉 = (1 ⊗ M) (|ab〉). We gauge the information
gain of the measurement M by

G(ρ,M) := I (ρac).

The physical intuition behind this is that the reference system
Ha, as an image ghost of Hb, records the initial quantum state
ρ = ρb faithfully through |ab〉, and the correlation quantity
I (ρac) records the information generated by the measurement
M in the apparatus Hc about the original state ρ = ρa and thus
represents the information flow from ρ to the apparatus. This
is in the original spirit of von Neumann when he considered a
quantum measurement as the creation of correlations between
the system and the apparatus [36].

Similarly, the disturbance to the quantum state ρ may be
quantified by the decreasing of quantum mutual information
between the auxiliary system Ha and the measured system
Hb as

D(ρ,M) := I (|ab〉〈ab|) − I (ρab),

which is equivalent to that introduced by Maccone in terms of
S(ρ) − Ic(ρ,M) from an axiomatic approach combined with
heuristic quantum communication considerations [25]. Here
Ic(ρ,M) := S(Mρ) − S(ρab) is the coherent information
[37,38]. Our definition seems more straightforward and
intuitive. Interestingly, D(ρ,M) can also be rewritten as

D(ρ,M) = I (ρa:cd ) = S(ρa) + S(ρcd ) − S(ρacd ),

which turns out also to be equivalent to the measure of
disturbance defined by Buscemi et al. via a generalization
of the notion of coherent information loss for quantum
communication [28]. This can be seen from

I (|ab〉〈ab|) − I (ρab) = S(ρa) + S(ρab) − S(ρb)

= S(ρa) + S(ρcd ) − S(ρacd ).

Consequently, D(ρ,M) unifies the seemingly different ap-
proaches of Maccone [25] and Buscemi et al. [28] in our
setting. We further define the information leakage

L(ρ,M) := I (ρad ),

which is the information that leaks out to the environment.
The inefficiency of the measurement M may be charac-
terized by this quantity: When M is efficient, L(ρ,M)
vanishes.

To summarize more transparently the physical significance
of the information gain G, the disturbance D, and the leakage
L in a unified fashion, recall that the detailed measurement
characteristics of M are encoded in the four-partite state
|�abcd〉 = (1 ⊗ M)|ab〉. This resulting state stems from the
action of the measurement process on the initial purification of
the state ρ which bears no relation to the apparatus space Hc

and the environment space Hd ; that is, the initial correlations
between the purified system and both the apparatus and the
environment vanish. Consequently, the emerging correlation
G(ρ,M) = I (ρac) between ρa = ρ and the apparatus is
just the information gained by the measurement, and the
emerging correlation L(ρ,M) = I (ρad ) between the state
ρa = ρ and the environment is just the information carried
away by the environment (thus may be interpreted as the
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information leakage to the environment). Finally, since the
initial correlation between ρa and ρb is I (|ab〉〈ab|), and
after the measurement, the correlation between ρa and ρb is
I (ρab), the loss D(ρ,M) = I (|ab〉〈ab|) − I (ρab) due to the
measurement may be naturally interpreted as a figure of merit
quantifying the disturbance caused by M.

In this context, we recover the information-disturbance
balance relation

G(ρ,M) + I (ρacd |ρc) = D(ρ,M)

due to Buscemi et al. [28]. In particular, since I (ρacd |ρc) � 0,
we see that the information gain is always dominated by
the disturbance. Similarly, we have the leakage-disturbance
relation

L(ρ,M) + I (ρacd |ρd ) = D(ρ,M).

These relations may be useful in quantum cryptographic
analysis.

V. SUMMARY

By exploiting a powerful joint purification of state and
measurement, we have obtained some information conserva-
tion relations for quantum states under general measurements.
Based on these relations, we have derived various inequalities
for entropy change under both selective and nonselective
measurements in a unified framework. Some fundamental
entropic inequalities are recaptured as particular instances. The
joint purification scheme may also be useful in other contexts
such as the study of quantum cryptography. It will be desirable
to further explore the consequence and implications of these
entropic relations for practical issues.
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