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Tensor network decompositions in the presence of a global symmetry
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Tensor network decompositions offer an efficient description of certain many-body states of a lattice system
and are the basis of a wealth of numerical simulation algorithms. We discuss how to incorporate a global
symmetry, given by a compact, completely reducible group G, in tensor network decompositions and algorithms.
This is achieved by considering tensors that are invariant under the action of the group G. Each symmetric
tensor decomposes into two types of tensors: degeneracy tensors, containing all the degrees of freedom,
and structural tensors, which only depend on the symmetry group. In numerical calculations, the use of
symmetric tensors ensures the preservation of the symmetry, allows selection of a specific symmetry sector,
and significantly reduces computational costs. On the other hand, the resulting tensor network can be interpreted
as a superposition of exponentially many spin networks. Spin networks are used extensively in loop quantum
gravity, where they represent states of quantum geometry. Our work highlights their importance in the context
of tensor network algorithms as well, thus setting the stage for cross-fertilization between these two areas of
research.
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Locality and symmetry are pivotal concepts in the for-
mulation of physical theories. In a quantum many-body
system, locality implies that the dynamics are governed by a
Hamiltonian H that decomposes as the sum of terms involving
only a small number of particles and whose strength decays
with the distance between the particles. In turn, a symmetry of
the Hamiltonian H allows us to organize the kinematic space
of the theory according to the irreducible representations of
the symmetry group.

Both symmetry and locality can be exploited to obtain a
more compact description of many-body states and to reduce
computational costs in numerical simulations. In the case of
symmetries, this has long been understood. Space symmetries,
such as invariance under translations or rotations, as well as
internal symmetries, such as particle number conservation or
spin isotropy, divide the Hilbert space of the theory into sectors
labeled by quantum numbers or charges. The Hamiltonian H is
by definition block-diagonal in these sectors. If, for instance,
the ground state is known to have zero momentum, it can
be obtained by just diagonalizing the (comparatively small)
zero-momentum block of H .

In recent times, the far-reaching implications of locality for
our ability to describe many-body systems have also started
to unfold. The local character of the Hamiltonian H limits
the amount of entanglement that low-energy states may have,
and in a lattice system, restrictions on entanglement can be
exploited to succinctly describe these states with a tensor
network (TN) decomposition. Examples of TN decomposi-
tions include matrix product states (MPS’s) [1], projected
entangled-pair states [2], and the multiscale entanglement
renormalization ansatz (MERA) [3]. It is important to note that
in a lattice made of N sites, where the Hilbert space dimension
grows exponentially with N , TN decompositions often offer an
efficient description (with costs that scale roughly as N ). This
allows for scalable simulations of quantum lattice systems,
even in cases that are beyond the reach of standard Monte
Carlo sampling techniques. As an example, the MERA has
been recently used to investigate ground states of frustrated
antiferromagnets [4].

In this article we investigate how to incorporate a global
symmetry into a TN, so as to be able to simultaneously exploit
both the locality and the symmetries of physical Hamiltonians
to describe many-body states. Specifically, in order to represent
a symmetric state that has a limited amount of entanglement,
we use a TN made of symmetric tensors. This leads to
an approximate, efficient decomposition that preserves the
symmetry exactly. Moreover, a more compressed description
is obtained by breaking each symmetric tensor into several
degeneracy tensors (containing all the degrees of freedom of
the original tensor) and structural tensors (completely fixed
by the symmetry). This decomposition leads to a substantial
reduction in computational costs and reveals a connection
between TN algorithms and the formalism of spin networks [5]
used in loop quantum gravity [6].

In the case of an MPS, global symmetries have already
been studied by many authors (see, e.g., [1,7]) in the context of
both one-dimensional quantum systems and two-dimensional
(2D) classical systems. An MPS is a trivalent TN (i.e.,
each tensor has at most three indices) and symmetries are
comparatively easy to characterize. The present analysis
applies to the more challenging case of a generic TN
decomposition (where tensors typically have more than three
indices).

We consider a lattice L made of N sites, where each site is
described by a complex vector space V of finite dimension d.
A pure state |�〉 ∈ V⊗N of the lattice can be expanded as

|�〉 =
d∑

i1,i2,...,iN =1

(�)i1i2...iN |i1,i2, . . . ,iN 〉, (1)

where |is〉 denotes a basis ofV for site s ∈ L. For our purposes,
a TN decomposition for |�〉 consists of a set of tensors T (v) and
a network pattern or graph characterized by a set of vertices
and a set of directed edges. Each tensor T (v) sits at a vertex
v of the graph, and is connected with neighboring tensors
by bond indices according to the edges of the graph. The
graph also contains N open edges, corresponding to the N

physical indices i1,i2, . . . ,iN . The dN coefficients (�)i1i2...iN
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FIG. 1. (Color online) (i) Four-site state � expressed in terms
of a tensor network made of three tensors connected according to a
directed graph. (ii) Invariance of tensor T in Eq. (7). (iii) Invariance
of a tensor network of symmetric tensors, Eq. (3).

are expressed as [Fig. 1(i)]

(�)i1i2...iN = tTr

(⊗
v

T (v)

)
, (2)

namely, as the tensor product of the tensors T (v) on all the
vertices v, where the tensor trace tTr contracts all bond indices,
so that only the physical indices i1,i2, . . . ,iN remain on the
right-hand side of Eq. (2).

We also introduce a compact, completely reducible group
G. This includes finite groups as well as Lie groups such as
O(n), SO(n), U(n), and SU(n). Let U : G → L(V ) be a unitary
matrix representation of G on the space V of one site, so that
for each g ∈ G, Ug : V → V denotes a unitary matrix and
Ug1g2 = Ug1Ug2 . Here we are interested in states |�〉 that are
invariant under transformations of the form U⊗N

g [8],

(Ug)⊗N |�〉 = |�〉, ∀ g ∈ G. (3)

The space V of one site decomposes as the direct sum of
irreducible representations (irreps) of G,

V ∼=
⊕

a

daV
a ∼=

⊕
a

(Da ⊗ V a), (4)

where V a denotes the irrep labeled with charge a and da is
the number of times V a appears in V . We denote by a = 0
the charge corresponding to the trivial irrep, so that V 0 ∼=
C and Ua

g = 1. In Eq. (4) we have also rewritten the same
decomposition in terms of a da-dimensional degeneracy space
Da . We choose a local basis |i〉 = |a,αa,ma〉 in V , where
αa labels states within the degeneracy space Da (i.e., αa =
1, . . . ,da) and ma labels states within irrep V a . In this basis,
Ug reads

Ug =
⊕

a

(
Ia ⊗ Ua

g

)
. (5)

Recall that an operator M : V → V that commutes with the
group, [M,Ug] = 0 for all g ∈ G, decomposes as [9]

M =
⊕

a

(Ma ⊗ Ĩa) (6)

FIG. 2. (Color online) Decomposition of tensors with one to four
indices. The sums in (iv) run over the intermediate indices (e,εe,qe)
and (f,ζf ,rf ) in Eqs. (11) and (12).

(Schur’s lemma). Our goal is to characterize a TN made of
symmetric tensors, namely, tensors that are invariant under the
simultaneous action of G on all their indices. A symmetric
tensor T with, for example, two outgoing indices i and j and
one incoming index k, fulfills [Fig. 1(ii)]∑

ijk

(Ug)i ′i(Vg)j ′j (T )ijk(W †
g )kk′ = (T )i ′j ′k′, ∀ g ∈ G, (7)

where U , V , and W denote unitary matrix representations
of G. Clearly, this choice guarantees that Eq. (3) is satisfied
[Fig. 1(iii)]. Standard group representation theory results [9]
imply that each symmetric tensor can be further decomposed in
such a way that the degrees of freedom that are not fixed by the
symmetry can be isolated (Fig. 2). Next we discuss the cases of
tensors with a small number of indices. Recall that an index i of
a tensor is associated with a vector space that decomposes as in
Eq. (4); therefore, we can write i = (a,αa,ma), j = (b,βb,nb),
k = (c,γc,oc), and so on.

One leg. A tensor T with only one index i is invariant only
if G acts on it trivially, so the only relevant irrep is a = 0, and
the index i = α0 labels states within the degeneracy space V 0.

Two legs. Schur’s lemma [9] establishes that a symmetric
tensor T with one outgoing index i and one incoming index j

decomposes as [cf. Eq. (6)]

(T )ij = (P ab)αaβb
(Qab)manb

, Qab = δabδmanb
. (8)

Thus, for fixed values of the charges a and b, (T )ij breaks into
a degeneracy tensor P ab (where only a = b is relevant) and
another tensor Qab. P ab contains all the degrees of freedom
of T that are not fixed by the symmetry, whereas Qab is
completely determined byG. Another combination of outgoing
and incoming indices, for example, two incoming indices,
leads to a different form for tensor Qab.

Three legs. The tensor product of two irreps with charges a

and b can be decomposed as the direct sum of irreps,

V a ⊗ V b ∼=
⊕

c

Nc
abV

c, (9)

where Nc
ab denotes the number of copies of V c that appear

in the tensor product. For notational simplicity, from now on
we assume that G is multiplicity-free [10], that is, Nc

ab � 1,
and denote by (Qabc)manboc

the change of basis between the
product basis |a,ma〉 ⊗ |b,nb〉 and the coupled basis |c,oc〉.
The Wigner-Eckart theorem states that a symmetric tensor T
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with, for example, two outgoing indices i,j and one incoming
index k, decomposes as

(T )ijk = (P abc)αaβbγc
(Qabc)manboc

. (10)

As before, for fixed values of the charges a,b, and c, (T )ijk

factorizes into degeneracy tensors P abc with all the degrees
of freedom and structural tensors Qabc (the Clebsch-Gordan
coefficients) completely determined by the group G. An
analogous decomposition with different Qabc holds for other
combinations of incoming and outgoing indices.

Four legs. The tensor product of three irrepsV a ⊗ V b ⊗ V c

may contain several copies of an irrep V d . Let e be the charge
that results from fusing a and b, V a ⊗ V b = ⊕

e Ne
abV

e. We
can use the values of e for which Ne

abN
d
ec �= 0 (i.e., such that a

and b fuse to e and e and c fuse to d) to label the different copies
of V d that appear in V a ⊗ V b ⊗ V c. Let (Qabcd

e )manbocpdqe

denote the change of basis between the product basis |ama〉 ⊗
|bnb〉 ⊗ |coc〉 and the coupled basis |dpd ; e〉 obtained by fusing
to the intermediate basis |eqe〉 ∈ V e. Then a symmetric tensor
T with three outgoing indices i, j, and k and one incoming
index l = (d,δd,pd ) decomposes as

(T )ijkl =
∑

e,εe,qe

(
P abcd

e

)
αaβbγcδd εe

(
Qabcd

e

)
manbocpdqe

, (11)

where the sum is over all relevant values of the intermediate
indices (e,εe,qe). Alternatively, T can be decomposed as

(T )ijkl =
∑

f,ζf ,rf

(
P̃ abcd

f

)
αaβbγcδd ζf

(
Q̃abcd

f

)
manbocpd rf

, (12)

where (Q̃abcd
f )manbocpd

denotes the change of basis to another
coupled basis |dpd ; f 〉 of V d obtained by fusing first b and
c into f , and then a and f into d, involving a different set
of intermediate indices (f,ζf ,rf ). The two coupled bases are
related by a unitary transformation given by the 6-index tensor
F [e.g., the 6-j symbols for G = SU(2)] such that

Q̃abcd
f =

∑
e

(
Fabc

d

)e

f
Qabcd

e . (13)

Since Eqs. (11) and (12) represent the same tensor T , the
degeneracy tensors P and P̃ are related by

P̃ abcd
f =

∑
e

(
Fabc

d

∗)e

f
P abcd

e . (14)

More generally, a symmetric tensor T with t indices is =
(as,αas

,mas
), where s = 1, . . . ,t , decomposes as

(T )i1i2...it =
∑ (

P a1...at

e1...et ′
)
αa1 ...αat ,αe1 ...αe

t ′

× (
Qa1...at

e1...et ′
)
ma1 ...mat ,me1 ...me

t ′
, (15)

where the sum is over the intermediate indices
(ek,αek

,mek
),k = 1, . . . ,t ′. The degeneracy tensors P a1···at

e1···et ′
contain all the degrees of freedom of T , whereas the structural
tensors Qa1···at

e1···et ′ are completely determined by the symmetry.
Here e1,e2, . . . ,et ′ are intermediate charges that decorate the
inner branches of a trivalent tree used to label a basis in the
space of intertwining operators between the tensor products of
incoming and outgoing irreps. A different choice of tree will
produce different sets of tensors P̃ and Q̃, related to P and Q

by F-moves [11].

FIG. 3. (Color online) A TN for a symmetric state |�〉 ∈ V⊗N

of lattice L (Fig. 1) is expressed as a linear superposition of spin
networks. The sum runs over the intermediate indices that carry
charges e and f (shown explicitly) as well as all indices shared
by two tensors.

We can now investigate how the TN decomposes if we write
each of its tensors T in the (P,Q) form of Eq. (15) (see Fig. 3).
For any fixed value of all the charges, the whole TN factorizes
into two terms. The first one is a TN of degeneracy tensors.
The second one is a directed graph with edges labeled by irreps
of G and vertices labeled by intertwining operators. This is
nothing other than a spin network [5], a well-known object in
mathematical physics and, especially, in loop quantum gravity
[6], where it is used to describe states of quantum geometry.
Accordingly, a symmetric TN for the state |�〉 ∈ V⊗N of a
lattice L of N sites can be regarded as a linear superposition
of spin networks with N open edges. The number of spin
networks in the linear superposition grows exponentially with
the size of the TN. The expansion coefficients are given by the
degeneracy tensors.

Computationally, the present characterization of a sym-
metric TN is of interest for several reasons. First of all, it
allows us to describe a state |�〉⊗N with specific quantum
numbers, which are preserved exactly during approximate
numerical simulations. Let us consider as an example the
group U(1), with charge n corresponding to particle number
(n = 0,±1,±2,. . .), and the group SU(2), with charge j corre-
sponding to the spin (j = 0,1/2,1,3/2, . . .). The symmetric
TN can be used to describe a state with, for example,
zero particles (n = 0) and zero spin (j = 0), respectively
or, more generally, covariant states with any value of n and
j [8].

Second, the (P,Q)-decomposition (15) concentrates all
the degrees of freedom of a symmetric tensor T in the
degeneracy tensors P , producing a more compact description.
For instance, for the U(1) and SU(2) groups, an approximation
of the ground state of the antiferromagnetic Heisenberg spin- 1

2
chain with a MERA of bond dimension χ = 21 requires five
and thirty-five times fewer parameters than with nonsymmetric
tensors, respectively [12,13].

In addition, the (P,Q)-decomposition (15) lowers the cost
of simulations significantly. Consider the multiplication of two
tensors (Fig. 4) that is central to most TN algorithms. Cost
reductions come from two fronts:

(i) Block-sparse matrices. The most costly step in multiply-
ing two tensors T ′ and T ′′ consists of multiplying two matrices
M ′ and M ′′ obtained from T ′ and T ′′. These matrices are of
the form of Eq. (6), and therefore their multiplication can be
done blockwise:

M = M ′M ′′ =
⊕

a

[(M ′aM ′′a) ⊗ Ĩa]. (16)
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FIG. 4. (Color online) Product of two symmetric tensors. Only
the intermediate charges d , e, and f are explicitly shown. Additional
sums apply to all indices shared by two tensors. The computation
involves evaluating spin networks.

(ii) Precomputation. Given a (P,Q)-decomposition of tensor
T , another (P̃ ,Q̃)-decomposition (as required, e.g., to obtain
matrices M ′ and M ′′) involves a linear map 	:

P̃ = 	(P ). (17)

This map 	, of which Eq. (14) is an example, is completely
determined by the symmetry. In those TN algorithms that
proceed by repeating a sequence of manipulations, map 	

can be computed once and stored in memory for repeated
usage.

A more detailed explanation of algorithmic details, as well
as practical examples of the gains obtained using invariant
tensors, is presented in Refs. [12] and [13] for the groups
U(1) and SU(2), respectively. Reference [4] exploited the U(1)
symmetry in a 2D MERA calculation that involved tensors
with up to twelve indices.

Finally, the connection between symmetric TNs and spin
networks allows us to import into the context of TN algorithm
techniques developed to evaluate spin networks in loop
quantum gravity. Such techniques can be used, for example,
to compute the linear map 	 of Eq. (17). Conversely, TN
algorithms may also prove useful in loop quantum gravity,
since they allow the efficient manipulation of superpositions
of an exponentially large number of spin networks, for
example.
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