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Coherent control of atomic excitation using off-resonant strong few-cycle pulses
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We study the dynamics of a two-level system driven by an off-resonance few-cycle pulse which has a phase
jump φ at t = t0, in contrast to many-cycle pulses, under the nonrotating-wave approximation (NRWA). We give
a closed form analytical solution for the evolution of the probability amplitude |Ca(t)| for the upper level. Using
the appropriate pulse parameters like the phase jump φ, jump time t0, pulse width τ , frequency ν, and Rabi
frequency �0 the population transfer after the pulse is gone can be optimized and, for the pulse considered here,
an enhancement factor of 106–108 was obtained.
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Modern pulsed lasers produce bursts of light that are both
ultrashort and ultrastrong, exhibiting durations comparable to
those of molecular vibrations and electric fields rivaling those
near an atomic nucleus [1]. Attosecond lasers, emitting pulses
with only a few optical cycles per pulse [2], hold the promise
of controlling the phase difference between the carrier wave
and its envelope [3].

Of current interest is the interaction between strong
broadband electromagnetic fields and atoms, especially laser
radiation that is tuned far from resonance. Short pulses can
excite coherence on high-frequency transitions that may be
used for efficient generation of extreme ultraviolet (XUV)
radiation [4–6]. Shaped pulses can enhance transient popu-
lation of excited states [7] or create optimal coherence in
two-level systems (TLSs) [8]. Recently, we have found an
analytical solution describing the dynamics of a two-level
atom under the action of laser radiation with an arbitrary pulse
shape and polarization [9]. Furthermore, we have studied two
mechanisms of atomic excitation: multiphoton excitation, and
breaking of adiabaticity [4], and we have shown [10] that the
latter can be more efficient.

The interaction of such ultrashort pulses with a two-level
atom under the rotating-wave approximation does not give
us the complete picture since the variation of the atomic
polarization and population within the optical cycle is not
slow. Thus, we should not neglect the contribution of the
counter-rotating terms in the Hamiltonian while studying
few-cycle-pulse interactions with atomic systems [11–18]. On
the other hand, if the fields are not too strong and the variation
of the atomic polarization and population within the optical
cycle is slow, the rotating-wave approximation (RWA) appears
to be a good approximation.

In this brief report, we study the interaction of few-cycle
pulses (in contrast to many-cycle pulses [19–21]) with a TLS.
These pulses have a phase jump φ at t = t0. Thus, they can be
characterized by the parameters peak Rabi frequency �0, pulse
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width τ , carrier frequency ν, phase jump φ, and jump moment
t0 along with the pulse envelope (which we have considered
Gaussian for the numerical simulation, see Fig. 1). We present
an analytical solution for this problem. Using the appropriate
characterizing parameters, the population transfer can be
optimized and, for the pulse considered here, enhancement
by a factor of 106–108 was obtained [see Fig. 5(b)].

The equation of motion for the probability amplitudes for
the states |a〉 and |b〉 of a two-level atom (TLA) interacting
with a classical field is given as [22]

Ċa = i
℘E(t)

h̄
cos(νt)eiωtCb, (1a)

Ċb = i
℘∗E(t)

h̄
cos(νt)e−iωtCa, (1b)

where h̄ω is the energy difference between two levels, ℘ is
the atomic dipole moment, E(t) = E(t)cos(νt). In the RWA
we let cos(νt)e±iωt → e±i�t/2, where � = ω − ν [23] is
the detuning from resonance. Introducing �(t) = ℘E(t)/h̄,
Eqs. (1) reduces to

Ċa = i
�(t)

2
ei�tCb, (2a)

Ċb = i
�∗(t)

2
e−i�tCa, (2b)

which have an integral of motion |Ca|2 + |Cb|2 = 1. If we
define a function f (t) = Ca(t)/Cb(t), then Eqs. (2) yields the
following Riccati Equation:

ḟ + i
�∗(t)

2
e−i�tf 2 − i

�(t)

2
ei�t = 0. (3)

Then, |Ca(t)| = |f (t)|/
√

1 + |f (t)|2. Alternatively, we can
get a second-order linear differential equation for Ca(t) from
Eqs. (2):

C̈a(t) −
[
i� + �̇(t)

�(t)

]
Ċa(t) + |�(t)|2

4
Ca(t) = 0. (4)

In this article, we will work without the RWA, hence the Riccati
Eq. (3) takes the form

ḟ + i�∗(t)cos(νt)e−iωtf 2 − i�(t)cos(νt)eiωt = 0. (5)
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FIG. 1. (Color online) (a) Two-level atomic system, atomic
transition frequency ω = ωa − ωb, detuning � = ω − ν, and Rabi
frequency �(t) = ℘E(t)/h̄. (b) Few-cycle sine (dashed line) and
cosine (solid line) pulse with Gaussian envelope.

The approximate solution for Eq. (5), in terms of the tip angle
θ , is given as [9]

f (t) = i

∫ t

−∞
dt ′

{[
dθ (t ′)
dt ′

− θ2(t ′)
dθ∗(t ′)

dt ′

]

× exp

[
2
∫ t

t ′
θ (t ′′)θ̇∗(t ′′) dt ′′

]}
, (6)

where the tip angle θ (t) has been defined as

θ (t) =
∫ t

−∞
�(t ′)cos(νt ′)eiωt ′dt ′. (7)

From Eq. (7) we can obtain |Ca(t)| = |f (t)|/
√

1 + |f (t)|2. To
see how well the approximate solution works, we have plotted
the probability amplitude |Ca(∞)| for a complex pulse shape
given by �(t) = �0[sech(αt) + sech(αt − 3)] (see Fig. 2).
The numerical simulation (dashed line) and analytical solution
(solid line) shown in Figs. 2(a) and 2(b) are nearly identical.

A. Pulse with phase jump

In this section we investigate the dynamics of a two-level
atom subjected to a few-cycle pulse with a phase jump at an
arbitrary time t = t0. Let us define the Rabi frequency �(t) for
our model as

�(t) =
{

�−(t) if t < t0,

�+(t) if t � t0,
(8)

where �+(t) = eiφ�−(t) and φ is the phase jump introduced
into the electromagnetic field at t = t0. Equivalently, the tip
angle define by Eq. (7) takes the form

θ (t) =
{

θ−(t) if t < t0,

θ+(t) if t � t0.
(9)

From the definition of the Rabi frequency [Eq. (8)], we can
easily see that θ+ = eiφθ−. The time evolution of our system
is divided into two regimes (−∞,t0) and (t0,∞). In both these
regimes, the functional form of the solutions remains the same.
We can write

fφ(t) =
{

f−(t) if t < t0,

f+(t) if t � t0.
(10)
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FIG. 2. (Color online) Population left in the upper level |a〉 after
applying an �(t) = �0[sech(αt) + sech(αt − 3)] pulse as a function
of the frequency ν/ω obtained by numerical solution of Eqs. (1)
(dots) and using our approximate analytical result Eq. (6) (solid line).
In calculations, we take �0 = 0.04ω and α = 0.075ω. In (a) φ = 0,
whereas in (b) φ = π and t0 = 0.

Equation (6) is the solution for φ = 0 for the initial condition
f (−∞) = 0. Using the same initial condition, we can safely
write

f−(t) = i

∫ t

−∞
dt ′�−(t ′) exp

[
2
∫ t

t ′
ζ−(t ′′) dt ′′

]
, (11)

where

�−(t ′) =
[
dθ−(t ′)

dt ′
− θ2

−(t ′)
dθ∗

−(t ′)
dt ′

]
, (12a)

ζ−(t ′′) = θ−(t ′′)θ̇∗
−(t ′′). (12b)

As the functional form of f+(t) and f−(t) are the same, we
can write

f+(t) = i

∫ t

t0

dt ′�+(t ′) exp

[
2
∫ t

t ′
ζ+(t ′′) dt ′′

]
+ c, (13)

where �+(t ′) = eiφ�−(t ′) and ζ+(t ′) = ζ−(t ′). The constant c

can be obtained by demanding the continuity of fφ(t) at t = t0,
which gives

c = i

∫ t0

−∞
dt ′�−(t ′) exp

[
2
∫ t0

t ′
ζ−(t ′′) dt ′′

]
. (14)

Population transferred to level |a〉 during the interaction
is given as |Ca(∞)|2 = |fφ(∞)|2/[1 + |fφ(∞)|2]. In order to
study the effect of the phase jump φ, let us define a relative
change in the amplitude

rφ(t) =
∣∣∣∣fφ(t) − f (t)

f (t)

∣∣∣∣ . (15)

Using Eqs. (11), (13), and (6) we get

rφ(t) =
∣∣∣∣∣
(eiφ − 1)

∫ t

t0
dt ′�−(t ′) exp

[
2
∫ t

t ′ ζ−(t ′′) dt ′′
]

∫ t

−∞ dt ′�−(t ′) exp
[
2
∫ t

t ′ ζ−(t ′′) dt ′′
]

∣∣∣∣∣ . (16)

The asymptotic value rφ(∞) can be obtained by t → ∞ in
Eq. (16). We can easily see from Eq. (16) that rφ(∞) attains
its maximum value for φ = π .

B. Effect of pulse parameters: numerical analysis

In this section, we discuss the effect of pulse parameters
such as the phase jump time t0, pulse width τ , detuning �, and
peak Rabi frequency �0 on the degree of excitation of the upper
level |a〉. For computational purposes, we have considered
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FIG. 3. (Color online) Effect of jump time t0. (a) Probability
amplitude |Ca(∞)| as a function of the phase jump φ. The phase jump
is introduced at the peak of the Gaussian envelope. (b) The symmetric
influence on the degree of excitation with respect to the position of t0.
The symmetric response is lost for shifted Gaussian input pulses
(c) and (d). For numerical calculations, we chose �0 = 0.875ω,
ν = 0.75ω, α = 0.331ω, and γ = 1.25ω.

a Gaussian pulse of the form �(t) = �0e
−α2t2

where α =
2
√

ln2/τ [τ is the full width at half maximum (FWHM) of the
pulse].

The main result showing the effect of relative position of t0,
with respect to the peak of the pulse, on the atomic excitation is
shown in Figs. 3 and 7(a) where we have shown the dynamics
of the two-level atom interacting with a few-cycle pulse with
a phase jump. In Fig. 3(a), we have one such scenario with
φ = π/2. Here, the phase jump is introduced in the field
at the peak of the Gaussian envelope (i.e., t0 = 0) and the
probability amplitude |Ca(∞)| is plotted against the phase
jump φ. Interestingly, the difference in the maximum and
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FIG. 4. (Color online) Effect of α. (a) Probability amplitude
|Ca(∞)| varies in the range from 10−5 ∼ 0.7. (b) Plot of |Ca(∞)|
against normalized pulse width γ τ for fixed ω, ν, and �0, and three
combinations of the phase jump: φ = 0, π/2, and π . (c) The temporal
evolution for the three combinations used in (b). For numerical
simulation we chose �0 = 0.875ω, ν = 0.75ω, γ = 1.25ω, and
α = 0.331ω.
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FIG. 5. (Color online) (a) Temporal behavior of |Ca| for different
combinations of φ. (b) Plot of |Ca(∞)| against ν/ω. For numerical
simulation we chose �0 = 0.875ω, t0 = 0,γ = 1.25ω, and α =
0.331ω.

the minimum values corresponds to �φ = π . The symmetric
nature of the atomic excitation is observed in Fig. 3(b) and in
the contour plot in Fig. 7(a). With the shifted Gaussian pulse
� = �0e

−α2(t±ts )2
[see Figs. 3(c) and 3(d)], the symmetry is

lost. Also the effect of the phase jump becomes significant
for t0 within the FWHM of the pulse and gradually decreases
when t0 is close to the tail of the pulse. An identical system
response, for γ t0 ≈ 10, is observed for the three combinations
of the phase jump: φ = 0, π/2, and π .

While investigating the effect of few-cycle pulses on
atomic systems, the parameter α plays an important role for
a given value of the carrier frequency ν. It determines the
number of cycles of the field in the pulse. The main results
showing the effect of α or the pulse width τ is given in Fig. 4
and in the contour plot in Fig. 7(b). If we look at the inset of
Fig. 4(a), we see that the probability amplitude |Ca(∞)| varies
in the range from 10−5 ∼ 0.7. In Fig. 4(b), we have used three
combinations of the phase jump φ (φ = 0, π/2, and π ) to
study the effect of α on the degree of excitation. For a smaller
pulse width (2 � γ τ � 15), φ = π/2 creates more excitation
than φ = 0 or π .

In order to study the effect of the detuning �, we have
plotted the response of the system in terms of |Ca(∞)| for
the three combinations of φ. Figure 5(a) shows the temporal
behavior, while Fig. 5(b) gives information about the steady-
state population. The probability amplitude |Ca(∞)| varies in
the range from 4.4 × 10−4 ∼ 0.4 for φ = 0 and 5 × 10−5 ∼
0.9 for φ = π . When |Ca(∞)| is ∼4.4 × 10−4 for φ = 0, we
have |Ca(∞)| ∼ 1 for φ = π ; thus we have an enhancement
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FIG. 6. (Color online) (a) Temporal behavior of |Ca | for differ-
ence combination of φ. (b) Plot of |Ca(∞)| against �0. For numerical
simulation in (b), we chose a shifted Gaussian pulse with ts =
1, ν = 0.75ω, t0 = 0,γ = 1.25ω, and α = 0.331ω. �0 = 0.875ω

for (a).
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FIG. 7. (Color online) Contour plot showing the effect of pulse
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the phase jump time t0 is symmetric with respect to t0, as shown in (a).
The parameters used are �0 = 0.875ω, ν = 0.75ω, γ = 1.25ω,t0 =
0, and α = 0.331ω as required appropriately. For (c), we used α =
0.110ω.

by a factor of 106–108 in the population transfer by introducing
a phase jump of π at the peak of the envelope function.

The effect of the peak Rabi frequency �0 on the degree
of excitation of the upper level is shown in Fig. 6 and
in the contour plot Fig. 7(d). Whereas Fig. 6(a) shows
the temporal behavior of |Ca|, Fig. 6(b) gives information
about the population left in the upper level after the pulse
is gone. We see that, for some choices of �0, φ = 0 has
the maximum effect whereas for other choices, φ = π/2 is
dominant.

In conclusion, we have studied few-cycle pulses, with a
phase jump φ at t = t0, interacting with a two-level atom.
This interaction is investigated without the rotating-wave
approximation and we present an approximate solution for
the probability amplitude Ca(t) of the upper level. The
approximate solution not only works well with multicycle
pulses [9], but it is also in excellent agreement for few-cycles
pulses (see Fig. 2). Using the appropriate pulse parameters
φ, t0, α, and �0 the population transfer, after the pulse is
gone, can be optimized and, for the pulse considered here, an
enhancement factor of 106–108 was obtained [see Fig. 5(b)].
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