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Vacuum-induced Berry phases in single-mode Jaynes-Cummings models
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Motivated by work [Phys. Rev. Lett. 89, 220404 (2002)] for detecting the vacuum-induced Berry phases
with two-mode Jaynes-Cummings models (JCMs), we show here that, for a parameter-dependent single-mode
JCM, certain atom-field states also acquired photon-number-dependent Berry phases after the parameter slowly
changed and eventually returned to its initial value. This geometric effect related to the field quantization still
exists, even if the field is kept in its vacuum state. Specifically, a feasible Ramsey interference experiment with a
cavity quantum electrodynamics system is designed to detect the vacuum-induced Berry phase.
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In 1984, Berry showed that the state of a quantum system
can acquire a purely geometric phase (now called the Berry
phase), in addition to the usual dynamical phase, after slowly
changing and eventually returning to its initial form [1].
Basically, the Berry phase does not depend on the dynamical
properties of the system but only on the topological features
of the parameter space of the evolved system. Up to now, the
Berry phase has been found in various systems, such as spins,
polarized light, atoms, and so on [2]. Also, recent studies have
shown that the geometric phases can be utilized to implement
quantum logic gates for realizing quantum computation [3–5].

Quantized optical fields, as well as their interactions with
atoms, are the main objects in quantum optics. Originally, the
famous Jaynes-Cummings model (JCM) [6] was introduced
to describe the interaction between an undamped two-level
atom and a nondecaying single-mode quantized field, under
the rotating-wave approximation. This model has been widely
generalized to treat various interactions between atoms and
photons. These include, for example, the interaction of
multilevel atoms with multimode quantized fields and various
multiphoton processes in quantum optics [7]. One of the basic
phenomena in quantum optics is that the vacuum of a quantized
field can behave as a physical reality with certain observable
effects. For example, in terms of vacuum fluctuations of the
quantized electromagnetic field [8], certain important quantum
effects, such as Lamb shifts and spontaneous emissions, can be
well explained. Recent works [9,10] indicate that the vacuum
of a quantized optical field could also induce the observable
Berry phases. In order to observe these vacuum-induced
geometric effects, two field modes were introduced [9,10]
to interact with a two-level atom. As a consequence, the
experimental tests are relatively complicated.

In this work, we show that only one field mode interacting
with a two-level atom could be utilized to detect the vacuum-
induced Berry phase. Beginning with a generic model, that
is, the m-quantum JCM, we show how the desirable Berry
phase can be acquired by an evolved quantum state in
a parameter-dependent single-mode JCM. Furthermore, we
design a Ramsey interference device involved with only one
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field mode to detect such a geometric effect related to the field
quantization.

The Hamiltonian of an m-quantum JCM [11], that is,
a two-level system coupled to a quantized mode via an
m-photon process, can be expressed (under the rotating-wave
approximation) as

H = νa†a + ω

2
σz + λm(σ+am + σ−a†m). (1)

Here, a† and a are the creation and annihilation operators of the
cavity field with frequency ν, and σ+, σ−, and σz are the Pauli
operators of the atom. The symbol ω is the transition frequency
of the atom between the excited state |2〉 and ground state
|1〉, and λm is the coupling coefficient between the atom and
cavity mode. Under the time-dependent unitary transformation
Ŝ(t) = exp(i�mσzt/2), this Hamiltonian can be rewritten as

Hm = �m

2
σz + λm(σ+am + σ−a†m), (2)

where �m = ω − mυ is the detuning. The eigenstates of such
a Hamiltonian read

|�−
n 〉 = cos

θnm

2
|1,n + m〉 − sin

θnm

2
|2,n〉 (3)

and

|�+
n 〉 = cos

θnm

2
|2,n〉 + sin

θnm

2
|1,n + m〉, (4)

respectively. Here, {|n〉, n = 0,1,2, . . .} are the num-
ber states of the quantized bosonic field, and θnm =
arccos[�m/

√
�2

m + 4λ2
m(n + m)!/n!].

Following Fuentes-Guridi et al. [9], we introduce a
phase-shift operation U [φ(t)] = exp[−iφ(t)a†a] to change the
Hamiltonian (2) to the following parameter-dependent form:

Hm(φ) = �m

2
σz + λm(σ+ameimφ + σ−a†me−imφ). (5)

Obviously, such a φ-dependent Hamiltonian describes a two-
level atom interacting (via an m-photon process) with a
quantized field mode. Here, the phase parameter φ(t) changes
with the time t and can be changed slowly from 0 to 2π ,
generating a cyclic path in the parameter space during the
evolution. As a consequence, if the system begins with one
of its eigenstates, |�+

n 〉 or |�−
n 〉, then it returns to this state
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FIG. 1. (Color online) The curves, going from bottom to top,
and indicated in color by blue, red, green, and black, represent
the vacuum-induced Berry phase of m = 1 (m = 2, m = 3, m = 4),
respectively.

but acquires a geometric phase (besides the dynamical one not
shown here):

γ+ = i

∫
c

dφ〈�+
n |U †(φ)

d

dφ
U (φ)|�+

n 〉
= mπ (1 − cos θnm) + 2πn (6)

or

γ− = i

∫
c

dφ〈�−
n |U †(φ)

d

dφ
U (φ)|�−

n 〉
= −mπ (1 − cos θnm) + 2π (n + m). (7)

The geometric phase acquired here depends on the photon
number n. Physically, this nontrivial quantum effect can be
measured by using an interference procedure between the
eigenstate |�+

0 〉 (or |�+
0 〉) and the ground state |1,0〉, for

which no geometric phase is acquired. Typically, if the system
begins with the state |2,0〉 = cos θ0m/2|�+

0 〉 − sin θ0m/2|�−
0 〉,

that is, the field is in a vacuum state, this adiabatic operation
performed on the degrees of freedom of the field still yields a
Berry phase

γ0m = m
π

2
(1 − cos 2θ0m) = m

�m

4
, (8)

with the solid angle �m = 2π [1 − cos(2θ0m)]. Figure 1 shows
how the vacuum-induced Berry phase varies with the param-
eter �m/λm. Through adiabatic evolution, the initial state |2〉
coupling to vacuum mode in cavity acquires a geometric phase.
In this case, the atom-field entanglement in the eigenstates
(3), (4) cannot be neglected [9]. Note that the expression
(8) cannot be interpreted only as a geometric phase of the
two-level system, as the origin of the geometric phase is
related to the vacuum fluctuation of the field. Clearly, for a
common �m/λm ≡ �/λ, the more quantum m corresponds
to the greater vacuum-induced Berry phase. Basically, the
photon-dependent Berry phase shown in Eqs. (6) and (7) is
due to the performance of the field quantization. Thus, even
the photon number of the field is 0, and the geometric phase
is still nontrivially induced. Any classical correspondence of
such a phenomenon does not exist.

FIG. 2. (Color online) An experimental Ramsey interference
setup [10] for observing the Berry phase generated in the one-mode
JCM. Here, an atom is emitted from the source O; flies sequentially
across the first Ramsey zone R1, high-Q quantized cavity C (wherein
the cavity is kept in the vacuum state and the desirable vacuum-
induced Berry phase is generated by a classical driving from E), and
the second Ramsey zone R2; and then is finally detected in I . The
information of the vacuum-induced Berry phase is extracted by the
measured atomic probability.

Berry phases related to field quantization could be measured
with the usual one-photon JCMs, which has been experimen-
tally demonstrated in the well-known cavity QED systems.
Indeed, various quantum properties [12] of the radiation field
interacting with atoms have been successfully demonstrated
with these systems. Typically, a cavity QED experiment [10]
involved with two quantized bosonic modes has been proposed
to test the geometric phases generated in a two-mode JCM. In
what follows, we show that a cavity QED system involving
only one quantized bosonic mode could also be utilized to
test this vacuum-induced Berry phase. Our proposed setup for
such a test is shown in Fig. 2, wherein an atom is emitted from
the source O; flies sequentially across R1, C, and R2; and is
finally detected in I .

Initially, the atom is assumed to be prepared in the upper
level |2〉 in the source O and then emitted. After the first
Ramsey zone R1, the state of the atom reads

|�1〉 = cos

(
�R1τ1

2

)
|2〉 + i sin

(
�R1τ1

2

)
|1〉, (9)

with τ1 being the time spent by the atom inside the zone R1.
During the atom flies across the high-Q quantized cavity

C, the parameter-dependent Hamiltonian (5) can be obtained.
For example, a Raman configuration shown in Fig. 3 is
utilized to achieve the φ-dependent one-photon JCM. Here,
an auxiliary external classical laser beam E(t) is applied
to drive the transition |2〉 ↔ |3〉 with the Rabi frequency

FIG. 3. Schematic diagram of a three-level atom interacting with
a quantized field in C cavity (see Fig. 2), which induces the transitions
|3〉 ↔ |1〉 with Rabi frequency g. In addition, a classical laser field
driving the transition |3〉 ↔ |2〉 (with Rabi frequency �L = �0e

iφ)
is applied to produce the desirable φ-dependent single-mode JCM.

045801-2



BRIEF REPORTS PHYSICAL REVIEW A 82, 045801 (2010)

�L = �0 exp(iφ), while the quantized cavity mode (a, a†)
couples to the transition |1〉 ↔ |3〉 with the strength g. The
Hamiltonian describing such a configuration in the interaction
picture reads (h̄ ≡ 1) (see, e.g., [13])

Hint = �Lσ32e
−iδt + gσ31ae−iδt + H.c., (10)

with δ being the detuning. Generally, the corresponding time-
evolution operator can be formally expressed as

UI (t) = 1 − i

∫ t

0
dt ′HI (t ′)

−
∫ t

0
dt ′HI (t ′)

∫ t

0
dt ′′HI (t ′′) + · · · . (11)

Under the so-called large-detuning limit, that is, δ � g,�0,
the second-order contribution to UI (t) is significantly more
important than the first-order one. This is because the former
involves terms linear in time, whereas the latter involves terms
that are just oscillatory or constant in time. Therefore, we
can retain only the second-order terms and rewrite the time-
evolution operator (14) as

UI (t) ≈ 1 − i

{
�2

L

δ
σ22 + g2

δ
aa†σ11

+ �0g

δ
[σ21aeiφ + σ12a

†e−iφ]

}
t = 1 − iHeff t, (12)

with an effective Hamiltonian

Heff = �2
0

δ
σ22 + g2

δ
aa†σ11

+ λ1[σ21aeiφ + σ12a
†e−iφ], λ1 = �0g

δ
. (13)

Obviously, this effective Hamiltonian is equivalent (apart from
the unimportant Stark shifts) to the φ-dependent Hamiltonian
(5) with m = 1. Therefore, after passing the cavity vacuum
wherein the driving parameter φ changes from 0 to 2π , the
atom undergoes the following evolution:

|�1〉 −→ |�2(τ1)〉 = eiγ01+iξ cos

(
�R1τ1

2

)
|2〉

+ i sin

(
�R1τ1

2

)
e−iξ |1〉. (14)

Here, γ01 = �1/4 is the vacuum-induced Berry phase acquired
in the pass of the cavity, and ξ = λ1τ, with τ being the time
during which the atom stayed in the cavity.

Furthermore, after passing the second Ramsey zone R2, the
atom evolves to the state

|�2〉 −→ |�3(τ1,τ2)〉 = c1(τ1,τ2)|1〉 + c2(τ1,τ2)|2〉, (15)

with

c1(τ1,τ2) = e−iξ i sin

(
�R1τ1

2

)
cos

(
�R2τ2

2

)

+ eiγ01+iξ i cos

(
�R1τ1

2

)
sin

(
�R2τ2

2

)
,

c2(τ1,τ2) = eiγ01+iξ cos

(
�R2τ2

2

)
cos

(
�R1τ1

2

)

− e−iξ sin

(
�R2τ2

2

)
sin

(
�R1τ1

2

)
.

If the two Ramsey zones are properly set such that the
condition �R1τ1 = �R2τ2 = π/2 is exactly satisfied, then the
probability of detecting the atom in its upper level |2〉 in I is

P2 = |c2(τ1,τ2)|2 = 1 − cos(γ01 + 2ξ )

2
. (16)

If ξ = nπ is set inside the cavity, this probability can be further
simplified to

P̃2 = 1 − cos(γ01)

2
, (17)

which is directly related to the Berry phase acquired by the
atom flying across the high-Q quantized cavity C. Therefore,
the Berry phase generated in the one-photon JCM could be
observed by the Ramsey interference method.

Experimentally, the one-photon Rabi frequency is set as
g/2π 	 50 kHz [14,15]. This implies that if the solid angle is
required to be �1 = π , then the parameter θ01 should be set to
satisfy the condition cos 2θ01 = 1/2. Since the parameter θ01

is determined by θ01 = arccos[�1/
√

�2
1 + 4λ2

1], with �1 =
(�2

0 − g2)/δ, λ1 = �0g/δ, the Rabi frequency of the applied
classical driving should be designed as �0/2π 	 173 kHz. On
the other hand, in order to satisfy the large-detuning condition
required, that is, δ � g,�0, we may typically set δ = 3�0

yielding λ1/2π 	 15 kHz. This means that the atom-field
interaction cam perform ten complete Rabi cycles during an
effective atom-cavity interaction time of 0.6 ms [8]. This
interaction time is manifestly shorter than the decay time
(1 ms) of the cavity (see, e.g., [14]).

We now discuss how the dissipation of the cavity influences
the observable effect of the vacuum-induced geometric phase.
Following [16], the effective Hamiltonian of the atom-cavity
system becomes H̃eff = H − i�n̂/2. With the same procedure,
we can prove that through a cyclic and adiabatic evolution the
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FIG. 4. (Color online) Experimental predictions to observe the
vacuum-induced Berry phase by measuring P2, the probability of the
atom being detected in the state |2〉. This probability is a function of
the controllable parameter ξ related to the atom interacting with the
cavity. Here, the second solid (blue) curve corresponds to the Ramsey
interferometry without Berry phase, while the first solid (red) curve
shows the situation in which a geometric phase shift (π/4) is induced.
Additionally, the dashed (black) curve shows that in the presence of
the cavity decay � = 1 kHz, the P2 is little influenced.
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acquired geometric phase reads

γ d
01 = π

2

(
1 − Re

(�1 − i�/2)2 − 4λ2
1

(�1 − i�/2)2 + 4λ2
1

)
. (18)

Since �/R should be a perturbation quantity, we can expand
this geometric to the second order in �/R,R = √

�2
01 + 4λ2

1 ,
and then obtain

γ d
01 ≈ γ01 + π

4

cos2 θ01

8 sin2 θ01 + 16 sin4 θ01 + cos4 θ01

(
�

R

)2

.

(19)

Consequently, the probability of the atom being detected in the
state |2〉 is changed to be P̃ d

2 = [1 − cos(γ d
01)]/2. Notice that in

the case of low decoherence, the lowest order correction of the
expected geometric phase is only quadratic in �/R, suggesting
that the field decoherence may not play such an important
role in the proposed experiment. This can be numerically
verified from the comparison in the Fig. 4: after considering
the presence of a typical cavity dissipation � = 1 kHz [17], the
probability of the atom being detected in the state |2〉 (the black
line) is almost unchanged. This means that the experimental

detection of the vacuum-induced Berry phase in JCM with the
Ramsey interference is feasible, even in presence of the cavity
losses.

In summary, we have calculated the Berry phase of the m-
quantum JCM and proposed an experimental setup to observe
and measure such a geometric phase induced by the vacuum
field in a one-photon single-mode JCM. Basically, geometric
phases acquired by the atom-field system are dependent on the
number of photons in the field. This is different from those
attained in the semiclassical counterpart. Our results show
also that, for a common �m/λm ≡ �/λ, the more quantum
m corresponds to the larger vacuum-induced Berry phase. A
Ramsey interference experiment with cavity QED is designed
to detect the vacuum-induced Berry phase.
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