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Two-dimensional scattering and bound states of polar molecules in bilayers
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Low-energy two-dimensional scattering is particularly sensitive to the existence and the properties of weakly
bound states. We show that interaction potentials V (r) with the vanishing zero-momentum Born approximation
[ drrV(r) = 0leads to an anomalously weak bound state that crucially modifies the two-dimensional scattering
properties. This anomalous case is especially relevant in the context of polar molecules in bilayer arrangements.
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I. INTRODUCTION

Ultracold atomic gases are many-body systems, but most
of their fundamental properties originate from the underlying
two-body problem, given by an interaction potential which is
typically considered as short range. The situation is completely
different in dipolar gases due to the long-range character of
the dipole-dipole interaction [1,2]. Polar molecules with a po-
tentially large electric-dipole moment constitute a particularly
exciting dipolar gas. However, achieving quantum degeneracy
is handicapped by exothermic chemical reactions [3]. The
latter may be avoided by confining the gas in two-dimensional
geometries if the dipoles are polarized perpendicular to the
trap plane, due to the repulsive character of the dipole-dipole
interaction [4].

Bilayer (and in general multilayer) arrangements of polar
molecules offer the possibility of stability against inelastic
reactions and give rise to interlayer pairing due the dipole-
dipole force [5-7]. A dipole in layer 1 interacts with a dipole
in layer 2, where both dipoles are oriented perpendicularly to
the layers, by the potential

Vaa(r) = Up (r* = 2)/(r* + 1) (1)

Here r is the relative in-plane distance between the two dipoles,
the interlayer distance A is set to 1, and U is a positive
dimensionless coupling constant. We have Uy = md? /h*) and
the unit of energy is Eq = ii>/mA?, with m the mass and d the
dipole moment of the molecule. This potential is attractive at
short distances and repulsive at large distances, fulfilling the
peculiar condition f dr rVa(r) = 0 (i.e., its zero-momentum
Born approximation vanishes [7-9]). Interlayer interactions of
a different type may be attained in binary mixtures, where one
of the species is confined in a bilayer while the other moves
freely. The free species mediates a two-dimensional (2D)
interaction with a Ruderman-Kittel-Kasuya- Yosida (RKKY)—
type potential [10], which may as well have a vanishing
zero-momentum Born approximation.

Low-energy 2D scattering, which determines the properties
of 2D quantum gases [11-13], is particularly sensitive to the
existence and properties of weakly bound states. Although
2D scattering [14—18] and weakly bound states [19-21] have
been intensively studied, little is known for the case when
f dr rV(r) = 0. The binding energy for weakly coupled bound
states in this case was calculated in Ref. [19]. However, a
detailed investigation of the binding energy at larger coupling
and of the low-energy scattering properties is still lacking.
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In this Brief Report we discuss the low-energy scattering
and weakly bound states for radial potentials V (r) satisfying
f drrV(r) =0. We extend (using an alternative method)
the expression derived in Ref. [19] for the binding energy
of the weakly bound state. We show that the presence of
this anomalously weak bound state modifies significantly the
scattering amplitude compared to the usual case of potentials
with a nonvanishing zero-momentum Born approximation. As
an example, we specialize for the potential Vyy appearing
in bilayer gases of polar molecules and check the validity
of the obtained analytical expressions using exact numerical
calculations.

This paper is organized as follows. In Sec. II we introduce
the Jost function formalism to study the binding energy of
weakly bound states and evaluate the general expressions for
Vaq. In Sec. III we discuss the modifications introduced in the
two-dimensional scattering properties if [drrV(r) =0 and
study this for Vg4 in detail. Our conclusions are summarized
in Sec. IV.

II. WEAKLY BOUND STATES

Reference [19] studied the bound states of the Schrédinger
equation [—V? 4 V(r)]y = ey for potentials of the form
V(r) = Upv(r), where as above U, denotes a positive di-
mensionless coupling constant characterizing the potential
strength.! For the case of weak coupling (Uy— 0) it
was shown that a shallow bound state always exists if
[ d@rv(r) < 0, but there is no bound state if [ d*r v(r) >
0. Furthermore, it was shown that for f d*r v(r) < 0 the
binding energy of the shallow bound state is of the form
€, ~ —expldmr/ f d*r V(r)], as expected from, e.g., Ref. [22].
However, for our case of interest f d*r v(r) = 0, the binding
energy acquires the anomalous form €, ~ —exp(1 /cU(%),
with

cC = —

= d*r / d*r'v(r)In|r — r'ju(r). )
8

It can be shown that ¢ < 0 for any v(r). For the potential Vgq(r)
appearing in a bilayer system of polar molecules, one obtains

'In Ref. [19] it was assumed that [ d*r(1 + |r|*)|v(r)| < oo, with
5> 0.
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¢ = —1/8, and hence the binding energy becomes
ey ~ —exp (—8/Uy). 3)

However, a numerical calculation of the binding energy (see
below) shows that this result is not very accurate even for very
small Uy. This motivates us to derive a more accurate analytic
expression for the binding energy which remains valid for
larger Uj.

The two-body scattering problem for a radially symmet-
ric potential V(r) in two dimensions is described by the
Schrodinger equation

¢ 14 v K 4
[ (dr2 + rdr) + (r)} () = k“p(r), “)
where all quantities are dimensionless and ¢(r) is the radial
wave function. Only s waves are considered since we are only
interested in low-energy properties. Following Ref. [23], we
employ the Jost function formalism to study the scattering
problem and the shallow bound states. The definition of the
Jost function F(k) in the 2D case may be found in Ref. [23].
The properties of F (k) are similar to those of the Jost function
for the three-dimensional (3D) case [24].
The scattering phase shift §(k) is related to F(k) by

tans(k) = — ) )
Re F(k)
the scattering amplitude is
fl = 200 ©)
1 —itané(k)

and o = (4/k)| f(k)|> = (4/ k) sin” §(k) is the total 2D s-wave
cross section. For complex k, the zeros of the Jost function
on the positive imaginary axis, F (i) = 0 with o > 0, are the
bound states of the potential with binding energy €, = —a?.
The following integral representation of the Jost function

F(k) will be employed:

f(k)=1+ef”/4\/§ / dr/r V() Jokr) folkr),  (7)
0

where fy(k,r) satisfies the integral equation

imkr o
Jolk.r) =/ > Ho(k")+/ ds g(k,r,s)V (s) fo(k,s),

(®)

with
glk,r,ry = %W[lo(kr)Yo(kr/) — Jo(krYYy(kr)].

In the previous expressions Jy, Yy are Bessel functions, and
H is the Hankel function of the first kind.

In the following we are interested in determining the weakly
bound states. To this aim we expand the Jost function for
small k:

.7-'(k)=A1nk+B—i%A, 9)

where A, B are real constants independent of k. These
constants can be represented by infinite series of the form

PHYSICAL REVIEW A 82, 044701 (2010)

A=Y A;, B=1-Y B, The first terms of the A; series
are of the form

Al = —/oodr rv(r), (10)
0

Ay = —/OoafrrV(r)/Oo dssV(s)ln (;), (11)
0 r

whereas those of the B; series are

B, = /Oodr rV(r)In(r) — C, 12)
0

B, = /Oodr rV(r)/OO ds sV(s)In (;) In(s) — G, (13)
0 r

with C; = A; In(e” /2) and y =~ 0.577 the Euler constant.

As mentioned above, the bound states are given by the zeros
of F (k) on the positive imaginary axis. Using (9) with k = i«
we hence obtain the expression of the binding energy:

2 B 14
€, = —€Xp ( A) . (14)
Note that Eq. (14) is valid as long as the binding energy is
small enough such that the logarithmic term dominates the Jost
function. For potentials with f drrV(r) <0, it is sufficient
to take A ~ A; and B =~ 1, recovering the expression €, ~
expldrw/ [ d*rV(r)] for small U.

However, for the case of potentials such that f drrV(r) =
0, we have A; = 0, and the first nonvanishing termis A & A,
B ~ 1, providing an alternative derivation of Eq. (3). A more
precise formula is obtained by including higher-order terms,

1-B—By—---
ebz—exp<—2 ! 2 )

15)
A+ Ayt

For the case of the interlayer dipole-dipole potential Vyq,
the integrals can be carried out analytically to find a corrected
expression for the binding energy

8 Us (5
dd 0 e
€, =~ —exp{—— |:1 —Uy+ — <— ~|—ln—):|}. (16)
Ug 4 \2 2

Figure 1 compares the numerical result for the binding
energy for Vg4 (obtained directly from the 2D Schrédinger
equation) with the analytical expressions of Egs. (3) and
(16). Note that whereas Eq. (3) provides a relative inaccurate
approximation even at rather low Uj, the newly derived
expression (16) is in excellent agreement with the numerics,
all the way to Uy < 1.2.

Finally, we note that for large U, the binding energy for
Vaa can be determined by a variational calculation, giving
[25] egd ~ —2Uy + 4/3Uy/2 — 15/4, which coincides with
the numerics only for Uy 2, 5.

III. SCATTERING PHASE SHIFT

We have shown above that the Jost function formalism is
particularly useful for the analysis of weakly bound states. In

2We always assume A # 0. The exceptional case A = 0 (cf. [23])
is the two-dimensional analog of zero-energy resonance in three
dimensions.
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FIG. 1. (Color online) Binding energy for V44 as a function of
the dipole strength Uy calculated numerically (dots), from Egs. (16)
(solid) and (3) (dashed).

this section we employ this formalism for the study of 2D
scattering and in particular for the calculation of the s-wave
scattering phase shift (k).

An approximate expression of the Jost function F(k) for
small Uy is obtained by iterating twice the integral equation (8).
Note that we keep all orders in k. The resulting scattering phase
shift follows from the relation (5):

— 51y (k) — NTZ[IJJ,JY(k) — Ly (k)]

tan 8(k) = - - , a7
— ZLy(k) — Z[ Ly (k) — 315, (K)]
where we have introduced the notation
o0
Irg = / drrV(Ir)F(r)G(r), (18)
0

IrG Po = /mdr rV(r)F(r)G(r)/oods sV(s)P(s)QO(s),
0 r
(19)

and J, Y stand for Jy(kr) and Yy(kr).

For small k it is possible to simplify Eq. (17). Employing
the logarithmic expression (9), the relation (5), and the
expression for the binding energy (14), we recover the well
known logarithmic expression (see, e.g., [12])

1k
tancS(k):(—ln—) , (20)

T el

characteristic of 2D scattering, which relates the scattering
shift and the binding energy of the weakly bound state.
However, for the case f dr rV(r) = 0 the binding energy ||
can become anomalously small, and hence the expression at
the right-hand side of Eq. (20) can become very small for
reasonable k. In this case, it is not any more the leading term
for the low-energy scattering.

On the other hand, for large enough k and small Uy, the
first integral I;;(k) in Eq. (17) dominates, and we recover,
as expected for sufficiently large k, the Born approximation.
Therefore, formula (17) interpolates smoothly between the
correct low-energy and the correct high-energy behavior. This
suggests that it may be valid, at least qualitatively, even for
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FIG. 2. (Color online) Scattering phase shift for V4 as a function
of k for different U, calculated numerically (dots) compared to
the logarithmic behavior (20) for Uy = 1.0 (dash-dotted, green), to
formula (17) for Uy = 0.6 (solid, orange), and to the second Born
approximation (21) for Uy = 0.6 and U, = 0.2 (dashed, cyan).

large Uy. By expanding Eq. (17) in powers of Uy, one recovers
the Born series, which reads to second order:

b4 w2
tan8(k) = ——I_]_]— —I]]Jy. (21)
2 2

It is interesting to discuss these results for the case of
the interlayer dipole-dipole potential V3. We have computed
the scattering phase shift numerically from the Schrédinger
equation and compared it to the results of Eq. (17), obtaining
that Eq. (17) provides the correct scattering phase shift with
excellent accuracy, at least in the range 0.03 < k£ < 5 and
0.05 < Up < 2.0. Hence Eq. (17) is a good approximation
not only for Uy « 1, but also for Uy ~ 1. Of course, if the
interactions are too large (Up > 1), the contributions from
higher iterations of the integral equation (8) become more
important and Eq. (17) loses its accuracy.

Figure 2 compares the numerical results for the scattering
phase shift for Vyq with the limiting cases provided by
expressions (20) and (21) for small £ and different values
of Uy. It is seen that for Uy ~ 1, the scattering phase shift is
best approximated by the logarithmic expression (20), and
for Uy < 1 by the second Born approximation (21). For
intermediate values of Uy none of the limiting cases is accurate
and the full expression (17) must be used. We sketch in Fig. 3
qualitatively the regimes of k and Uj,, where the logarithm
(20), the first Born approximation (22), and the second Born
approximation (21) are good approximations, as obtained by
comparison with the numerical solution. Note that, excluding
unreasonably small k, the logarithmic form (20) is just valid
for k < 1 and the window 0.7 < Up < 2.0.

Finally, we note that the first Born approximation for Vg
can be evaluated exactly analytically,

dd T 4k
tan § (k):_EUO —;—2/([14(2/{)—11(2/()] , (22)

where L, is the modified Struve function. The second Born
approximation (21) can be expanded for small k

tan 8%(k) ~ 2Uok — mUok® + SUG £ - -+, (23)
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FIG. 3. (Color online) Qualitative sketch of the regimes of k and
Uy where the scattering phase shift for V44 can be approximated by the
logarithm Eq. (20) (green), the Born approximation Eq. (22) (yellow),
and the second Born approximation Eq. (21) (orange).

which gives a maximum in the scattering phase shift at k ~
1/m as observed in the numerical results.

IV. CONCLUSIONS

In conclusion, two-dimensional radial interaction potentials
V(r) with a vanishing zero-momentum Born approximation,
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[ drrV(r) = 0,resultin interesting physics crucially different
from purely attractive or purely repulsive potentials. Using
the Jost function formalism, we have derived an expres-
sion for the binding energy as a function of the potential
strength Uy, which remains accurate for a wide regime of
Up values. Moreover, we have investigated the scattering
amplitude in different parameter regimes. In particular, we
have shown a significant deviation of the scattering behavior
in comparison with potentials with [ drrV(r) # 0 due to
the anomalously low binding energy of the weakly bound
state.

These results are of particular importance in the physics
of two-dimensional systems, and more specifically on two-
dimensional ultracold gases. Standard theories, in particular
the theory of BCS-BEC crossover [12,13], are based on the
fact that the scattering amplitude possesses the logarithmic
dependence (20). These results are therefore modified if the
potential has a vanishing zero-momentum Born approxima-
tion. This has particularly important consequences for the
properties of a gas of polar Fermi molecules confined in a
bilayer geometry, including interlayer pairing [7].
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