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Exactness of the original Grover search algorithm
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It is well-known that when searching one out of four, the original Grover’s search algorithm is exact; that is,
it succeeds with certainty. It is natural to ask the inverse question: If we are not searching one out of four, is
Grover’s algorithm definitely not exact? In this article we give a complete answer to this question through some
rationality results of trigonometric functions.
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I. INTRODUCTION

Grover’s algorithm [1] is one of the most significant
quantum algorithms [2]. It provides a quadratic speedup
for the unsorted database search problem by amplifying the
probability amplitude of the search target. When it was first
discovered, like most quantum algorithms, it was considered a
probabilistic algorithm; that is, it may fail with certain (albeit
small) probability. Currently, several schemes have been
proposed to make this algorithm exact, either by fine-tuning
the amplitude amplification operator [3–6] or by dynamical
modification of the oracle function encoding the database [7].
The study of exact quantum algorithms bears importance in
both practical applications and theoretical research of quantum
information science.

It is straightforward to verify that, when searching one
target out of a database of four entries, the original Grover’s
algorithm is exact; that is, it succeeds with certainty. Is this
the only case of exactness, excluding the trivial search of a
database full of search targets? We provide a rigorous analysis
to confirm this conjecture in this article. Reference [5] derives
an elegant phase condition for the amplitude amplification
operator, which is sufficient to ensure search with certainty.
Unfortunately, the phase shift π in the original Grover’s
algorithm is exactly what is ruled out in the assumption of
this condition (cf. [5, Theorem 1]). So the discussion there
cannot be readily applied. Furthermore, our emphasis here
deals with the opposite direction to that used in [5]. We fix the
phase shift (π ) first, then analyze whether the search is exact
under varying initial success probability.

In the following sections we limit our discussion mostly to
the original Grover’s algorithm, which searches for a single
target. It can be generalized in a straightforward fashion to the
multiple-target case [8,9] with the same essential ingredients.
Similar arguments apply with minimal modification.

II. ORIGINAL GROVER’S ALGORITHM

In this section we briefly review the procedure of the
original Grover’s algorithm. The problem dealt by the original
Grover’s algorithm is as follows: Given an unsorted database
containing N items, N � 1, how does one locate one particular
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target item? Mathematically, the database is represented by an
oracle function f (x), with x ∈ {1,2, . . . ,N}, defined by

f (x) =
{

0 if x �= w

1 if x = w
, (1)

where w is the search target. Grover’s algorithm utilizes the
amplitude amplification operator G = IsI, defined by

I|x〉 = (−1)f (x)|x〉, (2)

or, equivalently,

I = I − 2|w〉〈w|, (3)

and

Is = 2|s〉〈s| − I, (4)

where |s〉 = 1√
N

(
∑N

x=1 |x〉), the uniform superposition (the
average) of all possible basis states, and I is the identity
operator. I is the selective sign-flipping operator, which
selectively flips the sign of the target state |w〉. Is is the
inversion around the average operator, which reflects a given
state vector around |s〉.

The procedure of Grover’s algorithm is as follows:
(1) prepare the initial state vector |s〉;
(2) apply G on |s〉 for an appropriate number of times

(approximately π
4

√
N times if N is very large);

(3) measure the final state, which yields the target state |w〉
with high probability.

The effect of the amplitude amplification operator, G, and
why this algorithm works, can be best explained by a geometric
visualization (see Fig. 1) on the plane spanned by |s〉 and |w〉.
When applied to a state vector |v〉, the selective sign-flipping
operator I flips the sign of the component of |v〉 in the direction
of |w〉, but leaves all other components unchanged. So the pure
effect is a reflection of |v〉 about |w⊥〉, the orthogonal vector to
|w〉. When applied to a state vector |v〉, the inversion around the
average operator Is leaves the component in the direction of
|s〉 unchanged, but flips the signs of all the other components.
So the pure effect is a reflection of |v〉 about |s〉. If we start
from |s〉, one application of G = IsI reflects |s〉 first about
|w⊥〉 and then about |s〉, hence rotates |s〉 toward |w〉 by an
angle of 2θ , where θ is the initial angle between |s〉 and |w⊥〉
with sin θ = cos(π

2 − θ ) = 〈s|w〉 = 1√
N

.
It can be explicitly computed [10, p. 252] that, after n

iterations,

Gn|s〉 = sin[(2n + 1)θ ]|w〉 + cos[(2n + 1)θ ]|w⊥〉. (5)
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FIG. 1. Geometric visualization of Grover’s algorithm.

So the success probability pn is sin2[(2n + 1)θ ]. When n =
π
4θ

− 1
2 , (2n + 1)θ = π

2 , and pn = 1. A measurement after
n steps yields |w〉 with certainty. However, π

4θ
− 1

2 is not
necessarily an integer, so the optimal strategy is choosing n

to be either � π
4θ

− 1
2� or 	 π

4θ
− 1

2
 such that (2n + 1)θ is the
closest to π

2 in order to maximize pn. The consequence is that
pn is close, but not equal, to 1, which explains the probabilistic
nature of the algorithm.

III. EXACTNESS OF THE ORIGINAL
GROVER’S ALGORITHM

In this section we fully resolve the exactness of the original
Grover’s algorithm. Let us start from the special case of
searching one out of four. Now sin θ = 1

2 , θ = π
6 . After one

iteration, p1 = sin(3θ ) = sin π
2 = 1. We can find the target

with certainty after one oracle query (cf. Fig. 2). It is obvious
that in order for the algorithm to be exact, it is necessary for θ

to be a rational multiple of π .
The analysis in the rest of this section is motivated by

[11, Chapter 4] and follows the same line of presentation.
Let us start from a basic result about the rational roots of
polynomials, adapted from [12, Proposition 11, p. 308]. First
we define a polynomial to be monic if its leading coefficient
is 1.

Lemma 1. Let f (x) = xn + an−1x
n−1 + · · · + a1x + a0 be

a monic polynomial with integer coefficients. Then every
rational root of f (x) is an integer.

π
3

|w〉 = IsI|s〉

I|s〉

|s〉

|w⊥〉π
6

FIG. 2. Geometric visualization when searching one out of four.

Proof. Suppose x = A
B

, with A and B being relative prime
and B > 0, is a rational root of f (x). Thus,

An

Bn
+ an−1

An−1

Bn−1
+ · · · + a1

A

B
+ a0 = 0, (6)

An + an−1A
n−1B + · · · + a1ABn−1 + a0B

n = 0, (7)

B(an−1A
n−1 + · · · + a1ABn−2 + a0B

n−1) = −An. (8)

From (8), we have B | An, but A and B are relatively prime,
so B = 1. Therefore, x = A is an integer. �

The following rationality result of trigonometric functions
is adapted from [13]. We use Q to denote the set of rational
numbers.

Lemma 2. There exists a sequence of monic polynomials
fn with integer coefficients such that fn(2 cos φ) = 2 cos(nφ),
for all n = 1, 2, . . . .

Proof. Let us construct this sequence of polynomi-
als inductively by f0(x) = 2, f1(x) = x, and fn(x) =
xfn−1(x) − fn−2(x). Clearly all fn’s except f0 are monic
and all their coefficients are integers. Also, f0 and f1

satisfy the cosine property. Assume that fn(2 cos φ) =
2 cos(nφ) for all indices up to n. It is easy to ver-
ify that fn+1(2 cos φ) = 2 cos φ fn(2 cos φ) − fn−1(2 cos φ) =
4 cos φ cos(nφ) − 2 cos[(n − 1)φ] = 2 cos[(n + 1)φ], which
completes the induction proof. �

Theorem 1. The only rational values for cos(rπ ) with r ∈ Q
are 0, ± 1

2 , and ±1.
Proof. If r ∈ Q, there exists a non-negative integer n such

that nr is an integer. Let fn be the polynomial constructed in
Lemma 2. fn[2 cos(rπ )] = 2 cos(nrπ ) = ±2, so 2 cos(rπ ) is
a root of the polynomial fn(x) ± 2. Lemma 1 tells us that if
2 cos(rπ ) is a rational number, then 2 cos(rπ ) has to be an
integer, that is, 0, ±1, or ±2. Hence, the only rational values
of cos(rπ ) are 0, ± 1

2 , and ±1. �
Now we are in the position to prove our main result.
Main Theorem 1. Excluding the trivial search of a database

full of search targets, the original Grover’s algorithm is exact
if and only if searching one out of four.

Proof. In order to succeed with certainty after a number of
iterations, the geometric interpretation of Grover’s algorithm
imposes the restriction that the angle θ must be a rational
multiple of π , that is, of the form rπ , where r ∈ Q. On the
other hand, sin2 θ = 1

N
( t
N

in the multitarget case, where
t is the number of targets) is a rational number, and so
is cos(2θ ) = 1 − 2 sin2 θ = 1 − 2

N
(1 − 2t

N
in the multitarget

case). However, the only possible rational values of cos(2θ )
are 0, ± 1

2 , and ±1, when θ = rπ , r ∈ Q. Let us analyze these
five values one by one.

(1) When cos(2θ ) = 1, sin2 θ = 0. This is the trivial search
for a nonexisting target.

(2) When cos(2θ ) = −1, sin2 θ = 1. This is the trivial
search of a database where all the entries are targets.

(3) When cos(2θ ) = 0, sin2 θ = 1
2 , and θ = π

4 . The suc-
cess probability after n iteration is sin2[(2n + 1)θ ] =
sin2 (2n+1)π

4 = 1
2 , which is never 1.

(4) When cos(2θ ) = − 1
2 , sin2 θ = 3

4 , and θ = π
3 . The

success probability after n iteration is sin2(2n + 1)θ =
sin2 (2n+1)π

3 , which is never 1 (0 if 3 | 2n + 1 and 3
4 if

3 � 2n + 1).
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(5) When cos(2θ ) = 1
2 , sin2 θ = 1

4 , so θ = π
6 . This is the

familiar case of searching one out of four. One iteration yields
the search target with certainty.
Out of these, the exactness result in this theorem follows
naturally. �

As the final remark, if postmeasurement processing is
allowed, there is one more special case where exactness can
be achieved. When there are three search targets in a database
with four entries, the success probability is 0 after one iteration
(cf. Case 4 in the proof of Main Theorem 1 with n = 1). If
we measure at this point, we are bound to discover the only
nontarget in the database. To complete the search successfully,
choosing any of the other three entries will do. However, this
strategy cannot be extended to similar scaled-up three out
of four cases. If there are more than one nontargets, we can
determine and rule out only one of them after the measurement.
Choosing any of the remaining entries does not necessarily
yield a target anymore.

IV. DISCUSSION

We have rigorously shown that searching one out of four is
the only nontrivial case where the original Grover’s algorithm
is exact. It would be interesting to generalize the same kind
of reasoning to the generalized Grover’s search with arbitrary
phase shifts, in particular the phase shifts of the form rπ

with r ∈ Q, since they are easier to implement in practice.
We conjecture that a thorough analysis based on rationality
observations will provide us with similar results.
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