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Optimal reconstruction of the states in qutrit systems
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Based on mutually unbiased measurements, an optimal tomographic scheme for the multiqutrit states is
presented explicitly. Because the reconstruction process of states based on mutually unbiased states is free of
information waste, we refer to our scheme as the optimal scheme. By optimal we mean that the number of the
required conditional operations reaches the minimum in this tomographic scheme for the states of qutrit systems.
Special attention will be paid to how those different mutually unbiased measurements are realized; that is, how
to decompose each transformation that connects each mutually unbiased basis with the standard computational
basis. It is found that all those transformations can be decomposed into several basic implementable single-
and two-qutrit unitary operations. For the three-qutrit system, there exist five different mutually unbiased-bases
structures with different entanglement properties, so we introduce the concept of physical complexity to minimize
the number of nonlocal operations needed over the five different structures. This scheme is helpful for experimental
scientists to realize the most economical reconstruction of quantum states in qutrit systems.

DOI: 10.1103/PhysRevA.82.044102 PACS number(s): 03.65.Wj, 03.65.Ta, 03.65.Ud, 03.67.Mn

I. INTRODUCTION

The quantum state of a system is a fundamental concept
in quantum mechanics, and a quantum state can be described
by a density matrix, which contains all the information one
can obtain about that system. A main task for implementing
quantum computation is to reconstruct the density matrix of an
unknown state, which is called quantum-state reconstruction
or quantum-state tomography [1,2]. The technique was first
developed by Stokes to determine the polarization state of
a light beam [3]. Recently, a minimal qubit tomography
process has been proposed by Řeháček et al. where only
four measurement probabilities are needed to fully determine
a single qubit state rather than the six probabilities needed
in the standard procedure [4]. But the implementation of
this tomography process requires measurements of N -particle
correlations [5]. The statistical reconstruction of biphoton
states based on mutually complementary measurements has
been proposed by Bogdanov et al. [6,7]. Ivanov et al. proposed
a method to determine an unknown mixed qutrit state from
nine independent fluorescence signals [8]. Moreva et al.
paid attention to the experimental problem of realizing the
optimal protocol for polarization ququart-state tomography
[9]. In 2009, Taguchi et al. developed the single-scan to-
mography of spatial three-dimensional (qutrit) states based
on the effect of realistic measurement operators [10]. Allevi
et al. studied the implementation of the reconstruction of
the Wigner function and the density matrix for coherent and
thermal states by switching on or off single-photon avalanche
photodetectors [11].

In order to obtain the full information about the system,
we need to perform a series of measurements on a large
number of identically prepared copies of the system. These
measurement results are not independent of each other, so there
is redundancy in these results in the previously used quantum
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tomography processes [12], which causes resource waste. If
we remove this redundancy completely, the reconstruction
process will become optimal. Thus, designing an optimal set
of measurements to remove the redundancy is of fundamental
significance in quantum information processing.

Mutually unbiased bases (MUBs) have been used in a
variety of topics in quantum mechanics [13–36]. MUBs are
defined by the property that the squared overlap between a
vector in one basis and all basis vectors in the other bases is
equal. That is to say, detection over a particular basis state does
not give any information about the state if it is measured in
another basis. Ivanović first introduced the concept of MUBs to
the problem of quantum-state determination [13] and proved
the existence of such bases in the prime-dimension system
by an explicit construction. It was then shown by Wootters
and Fields that measurements in this special class of bases
[i.e., mutually unbiased measurements (MUMs)] provide a
minimal as well as optimal way to completely specify an
unknown density matrix [14]. They proved that the maximal
numbers of MUBs is d + 1 in a prime-dimension system. This
result also applies to the prime-power-dimension system.

MUBs play a special role in determining quantum states,
such that they form a minimal set of measurement bases and
provides an optimal way to determine a quantum state [13–16],
etc. Recently, an optimal tomographic reconstruction scheme
was proposed by Klimov et al. to determine a state of a
multiqubit quantum system based on MUMs in trapped-ion
systems [37]. However, the use of three-level systems instead
of two-level systems has been proven to be more secure
against a symmetric attack on a quantum key distribution
protocol with MUMs than the currently existing measurement
protocol [38,39]. Quantum tomography in high-dimensional
(qudit) systems has been proposed and the number of required
measurements is d2n − 1 with d being the dimension of the
qudit system and n being the number of qudits [12]. This
tomography process is not an optimal one, and there is a big
redundancy among the measurement results there. To remove
this redundancy, we propose an optimal tomography process
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for qutrit states. This optimal quantum tomography process is
the MUB-based qutrit states tomography, and the number of
required measurements is greatly reduced. A d-dimensional
quantum system is represented by a positive semidefinite
Hermitian matrix ρ with unit trace in d-dimensional Hilbert
space, which is specified by d2 − 1 real parameters. A
nondegenerate measurement performed on such a system
provides d − 1 independent probabilities. Thus, in general,
one requires at least d + 1 different orthogonal measurements
to fully determine an unknown ρ. For n-qutrit tomography,
only 3n + 1 measurements are needed. Through analysis, one
can find that the tomography process for qubit systems cannot
be generalized to the qudit system case in a trivial way. The
MUB-based tomography process for qubit systems proposed
by Klimov et al. cannot be directly applied to qutrit systems
[37]. This is because the entanglement feature of the MUBs of
qubit systems is totally different from that of qutrit systems.
Thus, we will study the physical implementation of an optimal
tomographic scheme for the case of determining the states of
multiqutrit systems based on MUMs.

From the experimental point of view, the physical com-
plexity is a key point for the implementation of a scheme.
Here, for multiqutrit quantum tomography, the physical com-
plexity mainly comes from the entanglement bases; namely,
the number of two-qutrit conditional operations needed to
decompose these entangled bases. In addition, there exists
many different MUBs with different entanglement properties
in multiqutrit system. Thus, the physical complexity of the
quantum tomography process here depends on the entan-
glement structure of the MUBs used, and it becomes very
important to optimize the quantum tomography process over
all possible MUB entanglement structures of the system.

This article is arranged as follows. In the next section
we introduce the MUBs in a d-dimensional system [d = pn

(p �= 2)] and show how to reconstruct an unknown state by
MUMs. Here, p is a prime. Section III briefly reviews the
general method of reconstructing a qutrit state, where the
number of measurements is 8. However, the MUB-based
qutrit tomography proposed here only needs 4 measurements,
which means the number of measurements is reduced. Here,
the measurement reduction for the single-qutrit case is not
obvious, so in Sec. IV we extend the one-qutrit case to
two-qutrit systems. For the two-qutrit system, the number of
measurements is only 10 for determining all the elements of
the density operator rather than 34 − 1 = 80 measurements
in the scheme proposed in Ref. [12]. This means a great
reduction in experimental complexity. Thus, we conclude that
the optimal measurements on the unknown qutrit states are
the MUMs. In Sec. V, we discuss the physical complexity
for implementing the MUMs in three-qutrit systems, and give
the optimal MUB for the qutrit system quantum tomography
process with minimized physical complexity. The last section
is the conclusion.

II. MUTUALLY UNBIASED BASES AND MUTUALLY
UNBIASED MEASUREMENTS

As shown by Wootters and Fields [14] and Klappenecker
and Rötteler [19], in finite-field language, the first MUB in a
quantum system of dimension d = pn (p �= 2) is the standard

basis B0 given by the vector (a(0)
k )l = δkl, k,l ∈ �pn , where

the superscript denotes the basis, k the vector in the basis,
l the component, and �pn is the field with pn elements. The
other d MUBs are denoted by Br and consist of vectors (a(r)

k )l
defined by [14] (a(r)

k )l = (1/
√

d)ωT r (rl2+kl), r,k,l ∈ �pn, r �=
0. Here, ω = exp(2πi/p) and T rθ = θ + θp + θp2 + · · · +
θpn−1

. The set of mutually unbiased projectors can be given by
P

(r)
k = |a(r)

k 〉〈a(r)
k |. It is worth noticing that |a(r)

k 〉 contains the
computational basis B0. Here, Tr(P (s)

j P
(r)
k ) = (1/d)(1 − δsr +

dδsrδjk). Then the measurement probabilities given by ω
(r)
k =

Tr(P (r)
k ρ) completely determine the unknown density operator

of a d-dimensional system [13]: ρ = �d
r=0�

d−1
k=0 ω

(r)
k P

(r)
k − I.

For instance, in a qutrit system, there are three MUBs
besides the computational basis B0 = {|0〉,|1〉,|2〉} in the
following form with ω = exp(2πi/3):

B1 :
{∣∣a(1)

0

〉 = (1/
√

3) (|0〉 + |1〉 + |2〉) ,
∣∣a(1)

1

〉 = (1/
√

3) (|0〉 + ω|1〉 + ω∗|2〉), (1a)
∣∣a(1)

2

〉 = (1/
√

3) (|0〉 + ω∗|1〉 + ω|2〉)};

B2 :
{∣∣a(2)

0

〉 = (1/
√

3) (ω|0〉 + |1〉 + |2〉),
∣∣a(2)

1

〉 = (1/
√

3) (|0〉 + ω|1〉 + |2〉), (1b)
∣∣a(2)

2

〉 = (1/
√

3) (|0〉 + |1〉 + ω|2〉)};

B3 :
{∣∣a(3)

0

〉 = (1/
√

3) (ω∗|0〉 + |1〉 + |2〉),
∣∣a(3)

1

〉 = (1/
√

3) (|0〉 + ω∗|1〉 + |2〉), (1c)
∣∣a(3)

2

〉 = (1/
√

3) (|0〉 + |1〉 + ω∗|2〉)}.

III. RECONSTRUCTION PROCESS FOR AN
ARBITRARY SINGLE QUTRIT STATE

An unknown single qutrit state can be expressed as [12,40]
ρ = (1/3)

∑8
j=0 rjλj

, where λ0 is an identity operator and the
other λ

j
are the SU(3) generators [41]. The general method

to reconstruct the qutrit state is to measure the expectation
values of the λ operators [12], where rj = 〈λ

j
〉 = Tr[ρλ

j
].

Thus, one will find that the number of required measurements
is 8. However, if we choose the MUMs to determine the
qutrit state, the number of MUMs needed is only 4 rather
than the 8 of Ref. [12]. The four optimal set of MUBs have
been presented by Eqs. (1a), (1b), and (1c) plus the standard
computational basis in the preceding section. Each of the
three MUBs in Eqs. (1a), (1b), and (1c) is related with the
standard computational basis by a unitary transformation.
These transformations have been listed in Table I. Here, F

denotes the Fourier transformation

F |j 〉 = (1/
√

3)
2∑

l=0

exp (2πilj/3) |l〉; j = 0,1,2, (2)

R denotes a phase operation

R = |0〉〈0| + ω|1〉〈1| + ω|2〉〈2|, (3)

and the controlled gate is

X|i〉|j 〉 = |i〉|j � i〉, (4)
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TABLE I. Transformations connecting the MUBs with the stan-
dard computational basis for a qutrit system based on Fourier
transforms and the phase operations.

Basis Transformation

2 F −1

3 F −1R

4 F −1R−1

where � denotes the difference j − i modulo 3. If there are
n qutrits, the number of MUMs is 3n + 1, which is far less than
the 32n − 1 in Ref. [12]. In other words, the use of MUMs can
represent a considerable reduction in the operations and time
required for performing the full state determination [37].

IV. RECONSTRUCTION PROCESS FOR AN
ARBITRARY TWO-QUTRIT STATE

If we further extend the one-qutrit case to the two-
qutrit case, the density matrix can be expressed as ρ12 =
(1/9)

∑8
j,k=0 rjkλj

⊗ λ
k
, where rjk = 〈λ

j
⊗ λ

k
〉. If we use

the general method in Ref. [12] to fully determine the state,
d2n − 1 = 34 − 1 = 80 measurements will be needed. So
many measurements will inevitably introduce redundant state
information, which is obviously a resource waste. So here we
will take advantage of the MUMs to reconstruct the two-qutrit
state. It is easy to find that the nine elements of �9 (finite
field) are {0,α,2α,1,1 + α,1 + 2α,2,2 + α,2 + 2α} by using
the irreducible polynomials θ2 + θ + 2 = 0 [14]. Here we use
the representation {|0〉,|α〉,|2α〉, . . . ,|2 + 2α〉} as the standard
basis.

One can find that there will be only d2 + 1 = 32 + 1 = 10
MUMs to be done, which is much less than the 80 of Ref. [12].
This means that the operations and time needed for the entire
state determination is greatly reduced. The decompositions
for all the MUBs of the two-qutrit system have been listed in
Table II.

TABLE II. Decompositions of MUBs for the two-qutrit system
based on Fourier transformations, phase operations, and controlled-
NOT gates (X12) [42] with the first particle as source and the second
as target. The subscript denotes the ith particle; i = 1,2.

Basis Decompositions

2 F −1
1 F −1

2

3 F −1
1 R1F

−1
2 R2

4 F −1
1 X12F

−1
2 R−1

2

5 F −1
1 X−1

12 R1F
−1
2 R−1

2

6 F −1
1 X−1

12 F −1
2 R−1

1

7 F −1
1 R−1

1 F −1
2 R−1

2

8 F −1
1 X−1

12 F −1
2 R2

9 F −1
1 R−1

1 X12F
−1
2 R2

10 F −1
1 R1X12F

−1
2

TABLE III. Decompositions of MUBs (0,12,16) for three-qutrit
system.

Basis Decompositions

1 F −1
2 X23F

−1
1 F −1

3

2 F −1
1 R−1

1 F −1
2 R−1

2 X23F
−1
3 R−1

3

3 F −1
1 X13R3

4 F −1
2 R2X

−1
23 F −1

1 X12R2F
−1
3

5 F −1
1 X−1

12 F −1
3

6 F −1
2 R2X23F

−1
1 R1X

−1
13 R3F

−1
3 R3

7 F −1
2 X−1

23 R−1
3 F −1

1 R−1
1 X−1

12 R−1
3

8 F −1
1 R−1

1 X−1
13 F −1

2 R2F
−1
3 R−1

3

9 F −1
1 X−1

13 F −1
2 R2X

−1
23 F −1

3 R3

10 F −1
1 R2X12X

−1
13 F −1

2

11 F −1
1 R1X

−1
12 F −1

2 R2X
−1
23 F −1

3

12 F −1
1 R−1

1 X13X
−1
12 F −1

2 F −1
3 R−1

3

13 F −1
1 X12F

−1
2 R−1

2 X−1
23 F −1

3 R−1
3

14 F −1
1 R1X12F

−1
2 X23F

−1
3 R3

15 F −1
2 R2X23

16 F −1
1 R1X13F

−1
2 R2X23F

−1
3 R−1

3

17 F −1
1 R−1

1 X13F
−1
2 F −1

3

18 F −1
1 R−1

1 X−1
13 F −1

2 R−1
2 X−1

23 R3F
−1
3 R−1

3

19 F −1
1 R1X

−1
13 F −1

2 R−1
2 F −1

3 R3

20 F −1
1 X12F

−1
3 R−1

3

21 F −1
1 R−1

1 X−1
12 F −1

2 R2F
−1
3 R3

22 F −1
1 X−1

12 F −1
2 X−1

23 F −1
3 R3

23 F −1
1 R−1

1 X13F
−1
2 R−1

2 X−1
23

24 F −1
1 R−1

1 X−1
13 F −1

2 X23R3F
−1
3

25 F −1
1 R1X

−1
12 X−1

23 F −1
2 R−1

2

26 F −1
1 R1X12X

−1
23 F −1

2 R−1
2 F −1

3

27 F −1
1 R−1

1 X12F
−1
2 R2

28 F −1
1 R1F

−1
2 X−1

23

V. THE PHYSICAL COMPLEXITY FOR IMPLEMENTING
THE MUMS IN THE THREE-QUTRIT SYSTEM

In general, the fidelity of single logic gates can be greater
than 99%, but nonlocal gates have a relatively lower fidelity.
The fidelity of a practical controlled-NOT (CNOT) gate can reach
a value up to 0.926 for trapped-ion systems in the laboratory
[43]. Klimov et al. have introduced the concept of the physical
complexity of each set of MUBs as a function of the number of
nonlocal gates needed for implementing the MUMs [37]. Here,
the fidelity value of the CNOT gates for qubit systems also can
be used to evaluate the physical complexity of the MUBs of
qutrit systems. The reason we can affirm this is because of the
following point. Although the systems involved here are three-
state systems, all the operations used in our reconstruction
process can be decomposed into effective two-state operations.
Thus, the complexity of the current tomography scheme is
proportional to the number of the nonlocal gates used (C ∝ 6)
for two-qutrit systems. As shown in Ref. [44], the only MUB
structure for a two-qutrit system is (4,6), where 4 is the number
of the separable bases and 6 is the number of the bipartite
entangled bases.
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However, in the three-qutrit case there are five
sets of MUBs with different structures; namely,
{(0,12,16), (1,9,18), (2,6,20), (3,3,22), (4,0,24)} [21,44]. It
is easy to see that the (0,12,16) set of MUBs has the minimum
physical complexity. We say that the optimal set of the
MUBs is (0,12,16). The decompositions of the MUBs in the
three-qutrit case for (0,12,16) are listed in Table III. Thus,
the set of MUBs (0,12,16) has a complexity C ∝ 44, which is
a very significant value for experimental realizations.

For the multiqutrit system (n > 3), it is not easy to get all
the sets of MUBs, and it is even more difficult to get the explicit
decompositions of the optimal set of MUBs. Nevertheless, the
results for the two-qutrit and three-qutrit cases have provided
the experimentalists valuable references.

VI. CONCLUSION

We have explicitly presented an optimal tomographic
scheme for single-qutrit states, two-qutrit states, and three-
qutrit states based on MUMs. Because the MUB-based state re-
construction process is free of information waste, the minimal

number of required conditional operations are needed. Thus,
we call our qutrit tomographic scheme the optimal scheme.
Here, we explicitly decompose each measurement into several
basic single- and two-qutrit operations. Furthermore, all these
basic operations have been proven implementable [42]. The
physical complexity of a set of MUBs also has been calculated,
which is an important threshold in experiments. We hope these
decompositions can help experimental scientists to realize the
most economical reconstruction of quantum states in qutrit
systems in the laboratory.
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