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Mapping between Hamiltonians with attractive and repulsive potentials on a lattice
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Through a simple and exact analytical derivation, we show that for a particle on a lattice there is a one-to-one
correspondence between the spectrum in the presence of an attractive potential V̂ and its repulsive counterpart
−V̂ . For a Hermitian potential, this result implies that the number of localized states is the same in both attractive
and repulsive cases although these states occur above (below) the band continuum for the repulsive (attractive)
case. For a PT -symmetric potential that is odd under parity, our result implies that, in the PT -unbroken phase,
the energy eigenvalues are symmetric around zero and that the corresponding eigenfunctions are closely related
to each other.
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The energy spectrum of a quantum particle in an attractive
potential V (r) in general consists of discrete eigenvalues for
which the eigenfunctions are localized in real space, and
continuum eigenvalues with non-square-integrable eigenfunc-
tions. The energy spectrum for the corresponding repulsive
potential −V (r) has only continuum eigenvalues [1,2]. This
situation changes dramatically when the particle is confined
to a lattice or, equivalently, is exposed to a periodic potential.
Indeed, repulsively bound two-atom states have been explored
in detail since their experimental discovery in optical lattices
[3,4] and continue to be a source of ongoing work [5]
in the context of the Bose-Hubbard model [6,7]. We note
that in the Bose-Hubbard model the interaction between the
two atoms is short ranged and is tuned via the Feshbach
resonance [3]. However, to our knowledge, the properties of
single-particle states localized in the vicinity of a generic
repulsive potential (defined below) have not been studied.
In another area, localized states in parity + time-reversal
(PT )-symmetric one-dimensional lattice models, too, have
been explored in recent years. These explorations have focused
on the PT symmetry breaking in the presence of attractive
(real) on-site potentials with random PT -symmetric complex
parts [8].

In this Brief Report, through a simple but exact derivation,
we show that for a single particle on a lattice there is a
one-to-one correspondence between its energy spectrum in the
presence of an attractive potential and the repulsive counter-
part, and that the corresponding eigenfunctions have identical
probability distributions. For PT -symmetric potentials that
are odd under parity (and, hence, time reversal), we show that
if the PT symmetry is unbroken, the energy spectrum must
be symmetric around zero.

For the one-dimensional model, let us start with the
Hamiltonian for a particle on a one-dimensional lattice with
only nearest-neighbor hopping energy J > 0,

Ĥ0 = −J
∑

i

(c†i ci+1 + c
†
i+1ci), (1)

where c
†
i and ci are creation and annihilation operators,

respectively, at site i. The external potential is given by V̂ =∑
j Vj c

†
j cj . We define the potential to be attractive provided∑

j Vj < 0 and repulsive if is positive. Let |ψα〉 = ∑
j fα,j |j 〉

be an eigenstate of the Hamiltonian Ĥ+ = Ĥ0 + V̂ with

energy Eα where |j 〉 denotes a single-particle state localized
at site j . The coefficients fα,j obey the recursion relation

−J [fα,j+1 + fα,j−1] + Vjfα,j = Eαfα,j . (2)

We now consider the staggered wave function |φα〉 =∑
j fα,j (−1)j |j 〉. Using Eq. (2), it is straightforward to

show that the staggered wave function satisfies the following
equation:

Ĥ0|φα〉 = (−Eα + V̂ ) |φα〉. (3)

Thus, it is an eigenfunction of the conjugate Hamiltonian
Ĥ− = Ĥ0 − V̂ with eigenvalue −Eα . When V̂ = 0, the energy
spectrum is given by εk = −2J cos(ka) and represents the
well-known continuum band from −2J to 2J where a is the
lattice spacing. In this trivial case, indeed the eigenfunction
|ψk〉 = ∑

j sin(kj )|j 〉 and its staggered counterpart |φk〉 =∑
j sin[(π − k)j ]|j 〉 have energies ±εk , respectively.

Our result shows that if an attractive external potential V̂

has n bound states below its continuum with energies Em

(m = 1, . . . ,n), then the corresponding repulsive potential
−V̂ must have an equal number of bound states above its
continuum with energies −Em. Since the staggered wave
function |φα〉 varies over the lattice length scale a, it is
energetically expensive and ill defined in the continuum
limit a → 0. Physically, in the continuum limit, the absence
of lattice-site scattering centers makes it impossible for a
particle to localize near the repulsive potential. However, on
a lattice, the probability distributions for the two states—a
localized bound state |ψα〉 with energy Eα � −2J in an
attractive potential and the localized bound state |φα〉 with
energy −Eα � +2J in the repulsive potential—are identical.
As a concrete example, we numerically obtain the spectrum
for a lattice with N = 29 sites and a quadratic potential
that vanishes at the ends, Vm = �(m − 1)(N − m)/N2

0 , where
m = 1, . . . ,N , N0 = (N + 1)/2 is the center of the lattice and
VN0 = �. Figure 1 shows the ground-state wave function ψG,m

for the attractive case, �/J = −0.5 [Fig. 1(a)], along with the
highest-energy-state wave function φm for the repulsive case,
�/J = +0.5 [Fig. 1(b)]. It is clear that the two wave functions
are related by φm = (−1)m+1ψG,m.

For the two-particle case, we can generalize this result in a
straightforward manner to treat interparticle interaction Û =∑

ij Ui−j n̂i n̂j where the on-site number operator is given by
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FIG. 1. (Color online) (a) Dimensionless ground-state wave function ψG,m for an attractive quadratic potential Vm = �(m − 1)(N − m)/
N 2

0 , where N = 29 = (2N0 + 1) is the lattice size and �/J = −0.5. As expected for a quadratic potential ground state, ψG,m is a Gaussian with
width x0 = a(N 2

0 t/|�|)1/4 ∼ 4.61. (b) Dimensionless highest-energy-state wave function φm for its repulsive counterpart with �/J = +0.5.
We see that the φm is indeed the staggered version of the ground-state wave function φG,m.

n̂i = c
†
i ci . In the two-particle sector, the recursion relation

satisfied by the relative-coordinate wave function is given by
[6,7]

−JK

(
ψK

α,m+1 + ψK
α,m−1

) + U (rm)ψK
α,m = EK

α ψK
α,m. (4)

Here −π/a � K � π/a is the lattice momentum associated
with the center of mass of the two particles, JK = J cos(Ka)
is the effective hopping energy, rm = am = a(i − j ) is the
distance between the two particles on the lattice located
at sites i and j , and U (rm) is the real-space interaction
between the two particles. Note that for a nonlocal interparticle
interaction U (rm), multiple bound-state ψK

α solutions are
generic, although, in the context of the Bose-Hubbard model,
only one [3] or two [6] have been discussed. If ψK

α is an
eigenfunction of the Hamiltonian Ĥ0 + Û with energy EK

α ,
Eq. (4) implies that the staggered wave function φK

α defined by
φK

α (rm) = (−1)mψK
α (rm) is an eigenfunction of the conjugate

Hamiltonian Ĥ0 − Û with energy −EK
α .

Two-particle bound states in the presence of on-site and
nearest-neighbor repulsive density-density interactions on a
lattice have been extensively investigated [3,5,6]. Our deriva-
tion shows that they are a generic feature of any density-density
interaction on a lattice, and this result is true for square
lattices in higher dimensions. Note that the quantum statistics
of the particles only constrains the relative wave function
ψK

α (rm) to be odd (spinless fermions) or even (bosons or
spin-singlet fermions) under parity; however, it does not
affect the one-to-one correspondence between the spectra
for the two Hamiltonians Ĥ0 ± Û . Thus, two-atom bound
states with attractive and repulsive interactions in optical
lattices (bosons) [3], the donor and acceptor impurity levels in
semiconductors (fermions) [9], as well as the localized phonon
modes (collective bosonic excitation) [10,11] around a soft or
stiff impurity can all be thought of as manifestations of the
correspondence between spectra for Ĥ+ and H−.

The mapping between the two Hamiltonians Ĥ+ and Ĥ− is
valid independent of the properties of the potential V̂ including
its Hermiticity; the on-site potential elements Vj may be
complex. However, for a PT -symmetric potential that is odd

under parity (and, hence, time reversal), V ∗
j = −Vj = V−j , it

follows that Ĥ ∗
+ = Ĥ−, where the asterisk denotes complex

conjugation. Therefore, it follows from Ĥ+|ψα〉 = Eα|ψα〉
that the wave function |ψ∗

α〉 = ∑
j f ∗

α,j |j 〉 is an eigenstate of

the conjugate Hamiltonian Ĥ− with eigenvalue +E∗
α . In the

continuum limit, it has been shown that a wide class of such
potentials, including V (x) = ix3 and V (x) = i sin2n+1(x),
have purely real energy spectra [12,13]. If thePT symmetry is
unbroken, E∗

α = Eα , then it follows that Ĥ−|φα〉 = −Eα|φα〉
and Ĥ−|ψ∗

α〉 = +Eα|ψ∗
α〉.

This explicit construction of wave functions with equal and
opposite energies implies that for any arbitraryPT -symmetric
potential that is odd under parity, if the PT symmetry is not
broken, the energy spectrum must be symmetric around zero.
It also shows that the corresponding wave functions in the two
cases have components that are simply related: [+Eα,f ∗

α,j ] ↔
[−Eα,fα,j (−1)j ]. As an example, we consider the simplest
“finite lattice” with two points. (Our result is equally applicable
to a finite lattice.) The Hamiltonian in this case is given by
Ĥ− = −J σ̂x + iγ σ̂z, where (σx,σz) are the Pauli matrices
in the site-index space [14] and a real γ ensures that the
potential is odd under parity as well as time reversal. The
eigenvalues in this case are given by E± = ±

√
J 2 − γ 2. Thus,

the PT symmetry in this case is not broken as long as γ � J .
The corresponding (unnormalized) eigenfunctions1 are given
by [14]

|±〉 =
(

1

±e∓iθ

)
, (5)

where θ = arctan(γ /
√

J 2 − γ 2) is real when γ � J . There-
fore, in the PT -unbroken phase, the eigenvectors for positive
and negative energies indeed are related by f−,j = (−1)j f ∗

+,j ,
where j = 0,1.

1We consider unnormalized eigenvectors to avoid the subtleties
associated with the CPT inner product [14] that are irrelevant for our
result.
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Our result, through a one-to-one mapping between
attractive and repulsive potentials on a lattice, shows that
localized states in repulsive potentials are ubiquitous. These
states can be explored via local measurements. In contrast
to the bound states with energies below the continuum band,
these localized states with energies above the continuum

band will decay into the continnum states. They may
thus provide a useful spectroscopic tool in optical lattices
as well as engineered electronic materials with a small
bandwidth.

Note added in proof. Recently, we became aware of a related
paper [15].

[1] L. D. Landau and E. M. Lifschitz, Quantum Mechanics
(Butterworth-Heinemann, San Francisco, CA, 2005).

[2] Here we only consider a nonrelativistic system and thus ignore
the question of bound states in the Dirac equation with a repulsive
potential: H. Brysk and P. F. Zweifel, Phys. Rev. C 23, 968
(1981); H. Tezuka, Jpn. J. Indust. App. Math. 14, 39 (1997).

[3] K. Winker, G. Thalhammer, F. Lang, R. Grimm, J. Hecker
Denschlag, A. J. Daley, A. Kantian, H. P. Buchler, and P. Zoller,
Nature (London) 441, 853 (2006).

[4] L. Fallani and M. Inguscio, Nature (London) 441, 820 (2006).
[5] S. M. Mahajan and A. Thyagaraja, J. Phys. A 39, L667

(2006).
[6] M. Valiente and D. Petrosyan, J. Phys. B 41, 161002 (2008);

42, 121001 (2009).

[7] Y.-M. Wang and J.-Q. Liang, Phys. Rev. A 81, 045601 (2010).
[8] O. Bendix, R. Fleischmann, T. Kottos, and B. Shapiro, Phys.

Rev. Lett. 103, 030402 (2009).
[9] P. Y. Yu and M. Cardona, Fundamentals of Semiconductors

(Springer, New York, 1996).
[10] K.-Q. Chen, X.-H. Wang, and B.-Y. Gu, Phys. Rev. B 62, 9919

(2000).
[11] S. Mizuno, Phys. Rev. B 65, 193302 (2002).
[12] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998).
[13] C. M. Bender, G. V. Dunne, and P. N. Meisinger, Phys. Lett. A

252, 272 (1999).
[14] C. M. Bender, D. C. Brody, and H. F. Jones, Phys. Rev. Lett. 89,

270401 (2002).
[15] M. Valiente, Phys. Rev. A 81, 042102 (2010).

044101-3

http://dx.doi.org/10.1103/PhysRevC.23.968
http://dx.doi.org/10.1103/PhysRevC.23.968
http://dx.doi.org/10.1007/BF03167309
http://dx.doi.org/10.1038/nature04918
http://dx.doi.org/10.1038/441820a
http://dx.doi.org/10.1088/0305-4470/39/47/L01
http://dx.doi.org/10.1088/0305-4470/39/47/L01
http://dx.doi.org/10.1088/0953-4075/41/16/161002
http://dx.doi.org/10.1088/0953-4075/42/12/121001
http://dx.doi.org/10.1088/0953-4075/42/12/121001
http://dx.doi.org/10.1103/PhysRevA.81.045601
http://dx.doi.org/10.1103/PhysRevLett.103.030402
http://dx.doi.org/10.1103/PhysRevLett.103.030402
http://dx.doi.org/10.1103/PhysRevB.62.9919
http://dx.doi.org/10.1103/PhysRevB.62.9919
http://dx.doi.org/10.1103/PhysRevB.65.193302
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1016/S0375-9601(98)00960-8
http://dx.doi.org/10.1016/S0375-9601(98)00960-8
http://dx.doi.org/10.1103/PhysRevLett.89.270401
http://dx.doi.org/10.1103/PhysRevLett.89.270401
http://dx.doi.org/10.1103/PhysRevA.81.042102

