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The burgeoning fields of quantum computing and quantum key distribution have created a demand for a quantum
memory. The gradient echo memory scheme is a quantum memory candidate for light storage that can boast
efficiencies approaching unity, as well as the flexibility to work with either two- or three-level atoms. The key to
this scheme is the frequency gradient that is placed across the memory. Currently, the three-level implementation
uses a Zeeman gradient and warm atoms. In this article we model an alternate gradient-creation mechanism—the
ac Stark effect—to provide an improvement in the flexibility of gradient-creation and field-switching times. We
propose this scheme in concert with a move to cold atoms (�1 mK). These temperatures would increase the
storage times possible, and the small ensemble volumes would enable large ac Stark shifts with reasonable laser
power. We find that memory bandwidths on the order of MHz can be produced with experimentally achievable
laser powers and trapping volumes, with high precision in gradient creation and switching times on the order of
nanoseconds possible. By looking at the different decoherence mechanisms present in this system, we determine
that coherence times on the order of tens of milliseconds are possible, as are delay-bandwidth products of
approximately 50 and efficiencies over 90%.
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I. INTRODUCTION

The development of a quantum memory—a device that can
store conjugate quantum variables—is currently being driven
by the field of quantum information processing, a field encom-
passing quantum computing and quantum cryptography. An
ideal quantum memory for these applications would be 100%
efficient, with long and controllable storage times, high storage
bandwidths, delay-bandwidth products, and faithful retrieval
of the stored information.

Their speed and lack of interaction with the environment
make photons an ideal carrier for quantum information;
unfortunately, these same properties make them difficult to
store. In 2004 the first demonstration of mapping quantum
information from light into an atomic ensemble was achieved
[1]. In recent years, much progress has been made toward the
development of an optical quantum memory with techniques
such as electromagnetically induced transparency (EIT) [2,3],
where recall efficiencies of over 40% in atomic ensembles
[4] and storage times of over 1 s in solid-state systems [5]
have been achieved. Another quantum memory candidate is
the atomic-frequency-comb (AFC) scheme, based on photon
echoes, where the realignment of atomic dipoles is required
for the stored light to be re-emitted. Storage of coherent states
with a mean photon number of approximately one has been
demonstrated with AFC [6] and a maximum efficiency of 35%
has been achieved for a fixed storage time on the order of
microseconds (determined by the bandwidth of the system) [7].

The gradient-echo-memory (GEM) technique is also a
photon-echo-based coherent memory. The key ingredient for
GEM is a frequency gradient imposed along the memory, as
illustrated in Fig. 1(a). Not only does this gradient define
the bandwidth of the system and cause re-emission of the
pulse in the forward direction by its reversal [Fig. 1(b)], it
also allows for 100% retrieval of the stored pulse if it is
monotonic [8]. By altering the gradient, spectral manipulation
of the pulse is possible [9]. In two-level solid-state systems, an

efficiency of 69% for GEM has been demonstrated [10]. This
work was carried out using an electric-field (i.e., dc Stark)
gradient created by placing four electrodes at the corners of
the ensemble.

With a two-level system the storage time of GEM will be
limited by the decay rate from the excited state. By moving
to a three-level � system in the far-detuned regime, as shown
in Fig. 2(a), an effective two-level atom is created. This is
known as �-GEM, and apart from the increase in storage times
achievable [11], it also allows for pulse resequencing [12]. The
decay rate of this system is now determined by the ground-state
decoherence rate.

Previous experimental work on �-GEM has used warm
(65◦C–70◦C) gas cells, of length 7.5–20 cm and diameter
2.5 cm, containing 87Rb. This setup has achieved efficiencies
of up to 41% [12] and coherence times of 20 µs. The frequency
shift for the rubidium ensemble was created using a magnetic-
field (i.e., Zeeman) gradient, as alkali-metal elements do not
have a linear dc Stark shift. Using magnetic fields created by
applying currents to solenoids wrapped around the gas cell, as
in the preceding work, there is a lack of precision control over
the gradient. Transient fields, which occur during gradient
switching due to the inductance of the coils, also limit the
switching time and can affect the rephasing process.

One option for improving the gradient creation and control
would be to move away from magnetic fields, and the coils
necessary to create them, to an ac Stark shift. This would
allow for an all-optically controlled quantum memory. This
gradient-creation method was first put forward by Kraus et al.
[13]. Another option for improvement is to move from warm to
cold atoms. Due to the small decoherence rates in cold atomic
ensembles, this would allow for longer storage times and large
on-resonance optical depths, due to the increase in density
of the atoms. Experiments using cold atoms have demon-
strated storage times on the order of milliseconds [14,15].
Implementing these improvements in concert would be
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FIG. 1. (Color online) The GEM scheme. (a) At time t = 0 a pulse
with envelope E(t) enters the atomic ensemble of two-level atoms
with ground state |1〉 and excited state |2〉 and with a linear frequency
gradient η(z) = η(z − L/2) applied across them. (b)(i) At time
t = τ the gradient is switched from η → −η, causing a rephasing
of the atomic dipoles and (ii) a release of the pulse, time reversed,
occurring at time t = 2τ .

beneficial as the ac Stark effect is intensity dependent and cold
atoms can be persuaded to occupy small volumes, reducing
the laser power necessary.

This article investigates the feasibility of using an ac Stark-
generated frequency gradient for �-GEM in an ensemble of
cold 87Rb atoms. After an overview of GEM theory in Sec. II,
the main body of the article (Sec. III) discusses the proposed
experimental implementation, including the theory behind the
ac Stark shift and how it would apply to the creation of a
frequency gradient across an ensemble of alkali-metal atoms,
as well as the optimal experimental parameters. Finally, factors
that may limit this scheme are discussed in Sec. IV, such as
coherence times and maximum efficiencies possible.

II. GRADIENT ECHO MEMORY THEORY

Consider a collection of N two-level atoms with ground
state |1〉 and excited state |2〉 with a resonant frequency ωo and
excited-state decay rate γ , as shown in Fig. 2(a)(ii). We can
then define atomic operators σ̂ij = |i〉 〈j | and the atom-light
coupling strength between the two levels,

g =
√

ωo

2h̄εoV
µ12, (1)

where µ12 is the dipole transition strength between the two
levels due to the presence of a light field with an interaction
volume V .

If a linear frequency gradient is applied along an ensemble
of atoms of length L, then the detuning from resonance of the
atoms [i.e., the two-photon detuning δ2p—see Fig. 2(a)(ii)]
will be given by δ2p(z) = η(z − L/2). When a light field with
a slowly varying envelope operator Ê(z,t) and center frequency
ωo is sent into such an ensemble, the equations that govern the
storage of the light, in a moving frame at the speed of light
(t → t − z/c) and assuming a weak probe (〈σ̂11〉 ≈ 1), are [8]

∂t σ̂12(z,t) = −[γ /2 + iη(z − L/2)]σ̂12(z,t) + igE(z,t), (2)

∂zÊ(z,t) = i
gN

c
σ̂12(z,t). (3)
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FIG. 2. (Color online) Atomic level structures. (a)(i) The three-
level system used for �-GEM showing the decay rate γ from the
excited state |3〉, the decoherence rate γo between the two ground
states |1〉 and |2〉, the one-photon detuning 
1p , the two-photon
detuning δ2p , and the coupling strength between the two levels g.
In the presence of a strong coupling field with Rabi frequency �c and
weak probe field Ep , this becomes equivalent to the two-level system
shown in (ii), where the effective coupling strength g′ = g�c/
1p .
(b) The level structure of rubidium 87 showing the hyperfine splittings

hfs between F levels for both ground and excited states, as well as
the fine-structure splitting 
fs between the two excited states. Also
shown are the detunings 
J ′,F for a given laser frequency ωl (see
definitions in text).

The efficiency of this writing stage of the memory is given
by εw = 1 − exp(−2πd ′) [16], determined by the effective
optical depth d ′ = g2N/(cη). This assumes that the bandwidth
of the pulse is smaller than the bandwidth of the ensemble
given by Bs = ηL and also that Bs � γ .

To recall the pulse the gradient must be switched from
η → −η. This causes a rephasing of the dipoles and therefore
a time-reversal of the initial storage process, resulting in the
emission of a photon echo from the memory in the forward
direction. If, as shown in Fig. 1, the input pulse enters the
memory at time t = 0 and the field is switched at t = τ , then
the output pulse will be released at t = 2τ . Due to the reversal
process, the output pulse will be a mirror image of the input
pulse with respect to time; that is, Ê(z,t) → Ê(z,−t), as shown
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in Fig. 1(b)(ii). This can also be explained using the polariton
description of the storage process presented in [17].

If the gradient is monotonic along the memory, then the read
efficiency εr = εw to give a total read and write efficiency for
the memory of

εrw = [1 − exp(−2πd ′)]2, (4)

which will approach 100% for large optical depths d ′ → 1.
If the gradient is not monotonic, the pulse will be partially
reabsorbed as it leaves the memory, lowering the recall
efficiency, with a maximum efficiency of 54% possible with
no gradient [18]. Apart from the read-write efficiency, there
is also the storage efficiency εs to consider, which depends
on the decay rate from the excited state and is of the form
εs = exp(−γ t).

In previous work [11,12] we have made use of the well-
known equivalence between a far-detuned � system, with a
strong coupling field and a weak probe field, and a two-level
system. This equivalence is illustrated in Fig. 2(a), showing
the coupling-field Rabi frequency �c, probe field Ep, and the
detuning for both from the excited state 
1p (the one-photon
detuning). The advantage of the � system (with g now
dependent on µ13 for the probe field and µ23 for the coupling
field) over the two-level one is that the decay rate from
this excited state |2〉 is now limited by the decoherence rate
γo 	 γ . For large on-resonance, unbroadened, optical depths
[d = g2NL/(cγ ) � 1], the conditions for this equivalence
are [19]: (i) the system being far-detuned from resonance
|
1p| � dγ and (ii) T γ d � 1, where T is the fastest
time scale of the system, usually dependent on either the
pulse length tp or �c. The equations of motion for the �

system then become equivalent to the two-level equations of
motion except for g → g′ = g�c/
1p. The effective optical
depth for the equivalent two-level system will therefore be

d ′ = g2N

cη

(
�c


1p

)2

. (5)

The memory will remain linear as long as �c 	 
1p and the
weak probe approximation, mentioned previously, hold.

III. ac STARK SHIFT PROPOSAL

The envisaged experiment is shown in Fig. 3(a). The probe
and coupling fields would be created similarly to the method
described in [12], with the coupling field being 6.8 GHz
detuned from the probe to allow both S1/2 ground states of
87Rb to be used (see Sec. III A).

There are three main components to this setup: (i) cold
atom storage, (ii) ac Stark gradient creation, and (iii) switching
(including probe and coupling-field orientations). These are
each discussed in turn after first looking at the structure of
rubidium, which will be used as the storage medium, and the
ac Stark theory.

A. Rubidium structure

Rubidium was used for previous experimental work as it
provides a convenient working wavelength for the memory.
Rubidium 87, as with all alkali-metal atoms, has a well-
known structure with, in this case, two hyperfine ground
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FIG. 3. (Color online) The experiment. (a) Envisioned setup for
�-GEM experiment using cold atoms and an ac Stark gradient. Rb,
atomic ensemble of rubidium 87; 50:50, 50:50 beam splitter; PBS,
polarizing beam splitter; PC, Pockels cell; BSh, beam shaper; HD,
heterodyne detector. The polarizations of the ac Stark and trapping
fields are assumed to be linear, while optimal probe and coupling-field
polarizations are discussed in Sec. III E. (b) Side-on view of the
cylindrical atomic ensemble showing the direction of the intensity
gradient I (z) and radius R. (c)(i) Gaussian and (ii) linear intensity
profiles for the ac Stark field per unit power over the ensemble. Here
L has been taken to be 1 cm and R = 10 µm, determined by the
radius of the trapping laser.

states S1/2,F = 1,2 and both a D1 and a D2 transition,
which correspond to P1/2 and P3/2 levels, respectively, with
wavelengths of 795 and 780 nm [20]. This structure is shown
in Fig. 2(b), containing the hyperfine structure splittings 
hfs

and 
′
hfs(J

′) for the ground and excited states, respectively, as
well as the fine structure splitting 
hf between the two excited
states.

The decay rate for the excited states J ′ of 87Rb is γ /2π ≈
6 MHz, giving an excited-state lifetime of approximately
30 ns. Also, the hyperfine splitting 
hfs/2π = 6.8 GHz for the
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ground states and 
′
hfs(3/2)/2π = 500 MHz, 
′

hfs(1/2)/2π =
800 MHz for the excited states, with fine structure splitting

fs/2π = 7 THz.

B. ac Stark shift theory

When light of intensity I (r,z), frequency ωl , and polariza-
tion q = 0,±1 [corresponding to linear, right (+) and left (−)
circular polarizations, respectively] is shone onto an atom,
there will be a change in energy of the internal states. This
is known as the ac Stark effect. For alkali-metal atoms, with
structure as shown in Fig. 2(b), this effect can be calculated
for a given ground state |gi〉 = |1/2,F,mF 〉 from second-order
time-dependent perturbation theory to be [21]

UF,mF
(ωl,q,I ) = I (r,z)

2cεoh̄

∑
a

|〈a|er̂ · εq |gi〉|2
ωl − ωagi

, (6)

where the sum is over all excited states |a〉 = |J ′,F ′,m′
F 〉

and ωagi
is the frequency of the transition between |a〉 and

|gi〉, allowing us to define the detuning as 
 = ωl − ωagi
.

This formula uses the rotating wave approximation, which
is valid for detunings much smaller than the frequency of
the transition; that is, ωl − ωagi

	 ωl + ωagi
. For simplicity,

we can write the preceding equation as UF,mF
(
,q,I ) =

ŪF,mF
(
,q)I (r,z), where ŪF,mF

is the change in energy per
unit intensity. An approximation to Eq. (6), in the limit of

 � 
′

hfs, is given by [22]

UF,mF
(
,q,I )

� πc2γ I (r,z)

2ω3
o

(
2 + qgF mF


3/2,F

+ 1 − qgF mF


1/2,F

)
, (7)

where γ and ωo are the averaged values of the two excited
levels, gF is the Lande factor (g1 = −0.5, g2 = −g1), and

J ′,F is the detuning from the S1/2 level (F = 1,2) to either
J ′ = 1/2,3/2 levels, as illustrated in Fig. 2(b). This energy
shift will remain linear in the limit U 	 h̄
hfs.

Apart from changing the energies of the atomic levels, there
is the possibility that the atoms will absorb and then re-emit
the light. This scattering of light by the atoms will affect not
only the coherence time τcoh achievable with the ensemble, but
also the lifetime τtrap of any trap that is used to contain them
(see Sec. III C). The scattering rate for a given ground state
will be determined by [23]

F,mF
(ωl,q,I ) = I (r,z)

6πε2
oh̄

3c4

∑
gf

(ωl − ωf i)
3

×
∣∣∣∣∣
∑
a,qsc

〈gf |er̂ · εqsc |a〉〈a|er̂ · εq |gi〉
ωagi

− ωl

∣∣∣∣∣
2

,

(8)

again in the rotating wave approximation, where |gf 〉 is the
final state (which cannot be higher in energy than Egi

+ h̄ωl by
conservation of energy), ωf i is the frequency of the transition
from state |gi〉 to |gf 〉 (negative if |gf 〉 is lower in energy than
|gi〉), qsc is the polarization of the scattered photon, and ωagi

is the frequency of the transition between states |gi〉 and |a〉.

The preceding equation can be further simplified for alkali-
metal atoms if the detuning is much greater than the excited-
state hyperfine splitting 
′

hfs to give

F,mF
(ωl,q,I ) = I (r,z)

6πε2
oh̄

3c4

∑
gf

(ωl − ωf i)
3

×
∣∣∣∣A1/2,gi


1/2,F

+ A3/2,gi


3/2,F

∣∣∣∣
2

= ̄F,mF
(
,q)I (r,z), (9)

where ̄F,mF
is the scattering rate per unit intensity and

AJ ′,gi
≡

∑
a,qsc

〈gf |er̂ · εqsc |a〉〈a|er̂ · εq |gi〉 (10)

for all states |a〉 within the level J ′. As can be seen from
the preceding equations, ̄F,mF

∝ 1/
2 while ŪF,mF
∝ 1/


and, therefore, in the context of laser trapping, increasing
the detuning for a constant trap depth will increase both τcoh

and τtrap.
Here we are interested in the energy splitting (and therefore

frequency splitting h
ν = 
U ) along an ensemble of atoms.
This will determine the bandwidth of the system Bs . The
splitting per unit intensity between two adjacent mF states
in the same F level can be defined to be

δ̄F (
,|q|) ≡ 1/h|ŪF,0(
,q) − ŪF,1(
,q)|, (11)

with the total magnitude of the splitting given by
δF (
,|q|,I ) = δ̄F (
,|q|)I (r,z). Combining the preceding
equation with Eq. (7), we obtain

δ̄F (
,|q|) = πc2γ

2ω3
oh

∣∣∣∣ qgF


1/2,F

∣∣∣∣
(

1 − 
1/2,F


3/2,F

)
. (12)

The frequency splitting between the mF = 0 states of the
F = 1 and 2 levels can similarly be found to be

δ̄1,2(
) ≡ 1

h
[Ū1,0(
) − Ū2,0(
)]

= πc2γ

2ω3
oh

(
2(
3/2,1 − 
3/2,2)


3/2,2
3/2,1
+ 
1/2,1 − 
1/2,2


1/2,2
1/2,1

)

= πc2γ
hfs

2ω3
oh

(
2


3/2,2
3/2,1
+ 1


1/2,2
1/2,1

)
. (13)

These frequency splittings are illustrated in Fig. 4(a) with the
polarization taken to be q = 1 (i.e., right circularly polarized)
as, if linear polarization were to be used, δ̄F = 0.

If, as was the case in [12], one mF state in each of the
hyperfine levels is used for the ground states |1〉 and |2〉 from
Fig. 2(a), then we can define the total splitting in terms of δ̄F

and δ̄1,2 to be

δ̄t (
,q) ≡ δ̄1,2(
) − q[m2δ̄2(
,|q|) + m1δ̄1(
,|q|)]. (14)

Figure 4(b) shows the absolute value of δt for m2 = −m1 =
−1 and the relative contributions from the three preceding
terms as a function of detuning for q = 1. As can be seen, at
large detunings 
1/2,F � 
hfs the splitting between mF levels
becomes approximately equal (i.e., δ̄1 ∼ δ̄2) and the relative
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FIG. 4. (Color online) Frequency splitting. (a) Illustration of δF

splitting for the mF = ±1,0 states of the F = 1,2 levels. This is
assuming a polarization of q = 1 for the ac Stark field. δ1,2 is the
difference between the splittings of the two mF = 0 states of the res-
pective levels from their original positions. (b) Log-log plot of (i) δ̄1,
(ii) δ̄2 + δ̄1, and (iii) δ̄t = δ̄2 + δ̄1 + δ̄1,2 as a function of detuning

1/2,2/2π . The dashed line shows a fit to δ̄t for small detunings
where δ̄t ∝ 1/
. These traces were calculated using Eq. (6).

contribution of δ̄1,2 → 0. This behavior can be explained from
Eqs. (12) and (13) as 
J ′,1 � 
J ′,2 for 
1/2,F � 
hfs.

From Eq. (14) we can calculate the field gradient to
be η(z) � 2πδ̄t∂zI (r,z), assuming negligible change for the
intensity in the transverse (r) direction. Using this equation
for η allows the system bandwidth to be expressed in terms of
δ̄t and I as follows:

Bs(
,|q|I ) = 1

2π

∫ L

0
|η(
,q,I )| dz

= |δ̄t (
,q) [I (z = L) − I (z = 0)] |. (15)

C. Atom trapping

One of the most common methods of cooling atoms to
milliKelvin temperatures is a magneto-optical trap (MOT).
It would seem an obvious suggestion to also use the MOT
to confine the atoms during the memory process. However,
a MOT has six circularly polarized beams detuned a few γ

below resonance and a magnetic field gradient on the order
of 1 G cm−1 [24,25]. The scattering rates associated with
these beams and the mF splitting that would occur due to
the magnetic field rule out the use of a MOT when storing
information in an ensemble of atoms for �-GEM. If the MOT is
turned off, however, the atoms are free to diffuse away from the
interaction area and, though storage of light with a coherence
time of 1 ms has been achieved using this method [15], if longer
storage times are to be achieved, another form of trapping must
be used.

One way to achieve this trapping is to use a far-off
resonance, red-detuned laser to create a dipole trap. This
trapping field must be π polarized and detuned on the order of

fs or higher so as not to affect the different mF splitting, and
therefore the gradient, along or across the ensemble. Achieving
π polarization requires the addition of a constant dc magnetic
field to create a quantization axis. Such a beam, tightly focused
and collimated, should provide sufficient trapping in the radial
direction but much weaker trapping along the ensemble, as
Ft = −∇(Ut ) = −Ūt∇(I (r,z)) and ∂rI � ∂zI . The radius of
the ensemble will then become approximately equal to the
waist of the trapping laser wt , which can be reduced down
to the order of 10 µm. This is desirable for our system as
a reduction in area for the ac Stark gradient-creating laser
(AacStark � 2Lwt ) will lead to an increase in the intensity, and
therefore bandwidth, for a given power (see Sec. III D 2).
Realistic experimental parameters give L = 1 cm [26,27]. To
obtain the longest storage times possible, the dipole laser
should be detuned far from resonance. Assuming an easily
obtainable experimental wavelength of λt = 1064 nm and a
waist of wt = 10 µm, a trap of depth Ut = 1 mK is achievable
with a power of 1.5 W, giving a maximum scattering rate of
t = 4 s−1 [28].

To increase the trapping in the z direction, one solution
is to split the trapping field, using a 50:50 beam splitter, and
send it into the ensemble from both directions to create a
standing wave trap, with trapping maxima occurring at λt/2,
the difference in detuning between two sites being


δt = 2πBsλt

2L
, (16)

assuming a linear intensity profile.
Dipole traps have already been used for pulse storage, with

storage times up to a few milliseconds achieved [29].

D. Gradient creation

1. Wavelength selection

A critical parameter that must be determined is the
wavelength of the ac Stark laser to be used, as this will set
a limit on the maximum frequency splitting possible for a
given laser power and intensity distribution, as well as the
scattering rate of the system. To optimize the wavelength, we
must balance the desired behavior (i.e., frequency splitting)
with the undesired effect of light scattering by the atoms
determined by ̄F,mF

. It will be assumed that the ac Stark field
will be circularly polarized to maximize δ̄t for large detunings
(see Sec. III B).

From Eq. (12) we can see that the splitting, and therefore
bandwidth, depends not only on 1/
 but also on the ratio
of 
1/2,F /
3/2,F . As the detuning becomes large compared
to 
fs, 
1/2,F /
3/2,F → 1 as 
3/2,F = 
1/2,F + 
fs, and
therefore the bracketed term in Eq. (12) heads to zero. This
means that δ̄F will head toward zero faster than 1/
 for large
detunings. This can be seen from the difference in Fig. 4(b)
between δ̄t and the dashed line, which shows the path δ̄t would
take if it had only a 1/
 dependence. This deviation occurs
on the order of THz detuning and is important as it leads to
Fig. 5. This shows the scattering rates of different mF states of
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FIG. 5. (Color online) The scattering rate required to produce
a 1-MHz frequency splitting, for all mF states of the F = 2 level,
as a function of detuning 
1/2,2/2π (solid lines, left scale). Also
shown is the intensity of the ac Stark field required to produce the
1-MHz splitting (dashed line, right scale). These were calculated
using Eqs. (6) and (8) without using the rotating wave approximation.

the F = 2 level for a bandwidth of 1 MHz, assuming the same
splitting arrangement used for Fig. 4(b) and q = 1, that is,

2,mF
(
,1) = 106̄2,mF

(
,1)

δ̄t (
,1)
, (17)

with the corresponding intensity profile also shown [28].
From this figure it can be seen that the behavior for the

mF = 0,−1,−2 levels is similar to that described for laser
trapping in Sec. III B, that is, decreasing scattering rate with
increasing detuning for a set trap depth. However, for mF = 1
a minimum for the scattering rate is present at approximately
5 THz, with the scattering rate flattening out until 20 THz
when it starts to decrease again. The mF = 2 state shows
even more peculiar behavior, with a maximum appearing at
approximately 20 THz. A positive slope indicates that δ̄t

is decreasing faster than ̄. This is to do in part with the
dependence of δ̄t on 
1/2,F /
3/2,F discussed earlier, as well as
the relative strengths of A3/2,gi

and A1/2,gi
and the levels which

are allowed to contribute to ̄. All scattering rates converge at
detunings much larger than 
fs.

The scattering rate for the F = 1 states are approximately
the same in magnitude but for the opposite mF state, with the
mF = −1 ground state containing this minima. In both cases,
the unusual behavior occurs for the states which are raised in
energy with respect to mF = 0.

Due to the small probe approximation mentioned in Sec. II,
most of the population will remain in the F = 1 state during the
storage and retrieval processes. It would therefore be advan-
tageous to make use of the minima and the F = 1,mF = − 1
state as, though lower scattering rates can be achieved at
much larger detunings, the laser intensities required become
impractical. For instance, to achieve the same, or smaller,
scattering rate than at the minima (approximately 11 s−1)
requires a detuning greater than 40 THz. At this detuning,
it requires nearly 10 times the laser intensity to achieve the
same bandwidth as at the minima. For the minima detuning
δ̄1 � δ̄2 � 50 Hz W−1 cm2 and δ̄1,2 	 δ̄F .

2. Beam shaping

The optimal intensity distribution—that which gives the
maximum bandwidth for a given power Po—depends first on
the orientation of the ensemble. As discussed in Sec. III C, the
ensemble will be cylindrical with L = 1 cm and R = wt =
10 µm.

One of the simplest intensity profiles to produce is a focused
Gaussian, where

IG(r ′,y) = Ioexp
[−2r ′2/w2

o

]
, (18)

with wo the waist of the beam occurring at position y = 0
(the center of the ensemble, assuming the ac Stark field is
propagating along the y axis), Io the maximum intensity, and
r ′ the radial component in the x-z plane. The only constraint
on the ac Stark beam shape is that it is monotonic along
the ensemble (see Sec. II). In the case of a Gaussian beam,
this means that over half the power will be lost, limiting
the total splitting possible for a given laser power, with
Io = 2Po/(πw2

o).
To use the largest fraction of the beam possible, we can

set wo = 2L/3 so that if the center of the beam is at z = 0,
approximately 99% of the remaining intensity will fall on the
ensemble. Figure 3(c)(i) shows this intensity profile along and
across the ensemble for unit power. As the slope η is not linear,
different frequency components will be stored with different
efficiencies, as can be seen from Eq. (5). In the case described
previously, where R 	 L, the frequency change along the
x direction for a set z position will be negligible.

If one of the experimentally simplest intensity profiles for
the ac Stark beam is the one described previously, then one of
the most efficient will be one that covers only the ensemble,
decreasing linearly from maximum intensity Io at one end to 0
at the other and with no change in intensity in the x direction.
Such an intensity profile will be of the form

IL(r ′,y) = Io(1 − z/L), |x| � R = 0, |x| > R (19)

over the length of the ensemble 0 � z � L. In this case Io =
Po/(LR) and therefore the maximum intensity, and bandwidth,
achievable will be over 500 times larger than a Gaussian beam
with the same power due to the smaller area the beam occupies.
This can be seen from Fig. 3(c)(ii), which shows the intensity
profile IL for unit power along and across the ensemble.

To change an initially Gaussian beam to one with an
intensity profile like that from Eq. (19) requires a beam
shaper. These devices [for instance, deformable mirrors, phase
plates, or liquid-crystal spatial light modulators (LCSLMs)]
can be highly efficient (ε > 0.9) and can be used to create
nearly any desired beam shape with resolution on the order
of 1000 × 1000 pixels for LCSLMs. This not only provides
us with a method for optimizing the ac Stark laser intensity
profile, but would also allow for spectral manipulation of the
pulse to be carried out with the ability to produce complex
gradients and switching arrangements such as those described
in [9].

E. Switching protocols

There are two components that make up the switching
protocol: which mF states within the two F levels are to be
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used and the method for switching the ac Stark field. These
will be discussed in turn.

1. Selecting mF levels

Selection rules determine which mF states of the two
different levels can be used, depending on the polarizations
of the probe and coupling fields (qp and qc, respectively), with
the total change in angular momentum being given by


mF = m2 − m1 = qp − qc. (20)

As m1 = −1 has already been decided upon as state |1〉 (see
Sec. III D 1), the preceding equation can be rearranged to give

m2 = −1 + qp − qc. (21)

We can determine the probe and coupling polarizations that
will produce this maximum splitting by substituting the
preceding relationship into Eq. (14) to give

δ̄t = δ̄1,2 + q[δ̄1 − (−1 + qp − qc)δ̄2]

� qδ̄F (2 + qc − qp), (22)

with the approximations δ̄1 � δ̄2 � δ̄1,2 and |q| �= 0 discussed
previously. This reveals that δ̄t can range from 0 to 3δ̄F

(remembering |m2| � 2) with the latter being possible for
either qc = 1,qp = 0 or qc = 0,qp = −1.

Using the previous value of δ̄F determined in Sec. III D 1,
this would give a system bandwidth of Bs = 150 Hz W−1 cm2.
If we combine this value with the maximum intensity achiev-
able with the intensity profile IL, we find Bs = 150 kHz W−1

and therefore system bandwidths on the order of 1 MHz would
be obtainable with less than 10 W of ac Stark laser power
using the optimal detuning. Also, using one of the preceding
optimal level schemes with δt = 3δF , the scattering rate per
1-MHz splitting given in Eq. (17), which was calculated using
δt = 2δF , will be reduced as the intensity required to reach the
same bandwidth will be reduced by a factor of 2/3.

The polarizations for the probe and coupling fields mean
that they cannot be completely separated on a polarizing beam
splitter. To detect only the probe at the end of the memory a
frequency-selective measurement, such as heterodyne detec-
tion, could be used.

2. Field-switching method

To cause rephasing of the atomic dipoles, we must be
able to invert the detunings of the atoms. If we make the
same assumption as in previous sections, that is, |q| = 1, two
switching methods become readily apparent.

The first method involves reversing the intensity profile
along the ensemble I (z) → I (L − z). This is equivalent to the
field-switching method used in [8,11,12] in that by reversing
the intensity profile about the center of the trap (z = L/2) the
detunings are also reversed about this point, that is, δt (z) →
δt (L − z). The intensity profiles for this method of switching
are shown in Fig. 6(a-i), with the corresponding frequency
gradients shown in Fig. 6(a-ii). This process involves no
change in frequency of the stored pulse with respect to the
input pulse.

The second method involves switching the polarization of
the field q → −q while keeping the same intensity gradient,

as shown in Fig. 6(b-i). This is a slightly more complicated
process as the detunings are no longer reversed around the
center of the ensemble, with δt (z) → −δt (z). This method still
results in an echo being produced. However, the stored pulse
will now be frequency shifted with respect to the input pulse, as
can be seen from the corresponding frequency gradients shown
in Fig. 6(b-ii). This is because a switch from δt (z) → −δt (z) is
equivalent to a switch about the center and an offset of δt,max
being added. In a three-level system, this frequency shift can
be overcome by altering the coupling-field frequency in such
a way as to cancel the initial shift. It should also be noted
that δ̄1,2 will not contribute to δ̄t for this switching method as
it only depends on the detuning and intensity of the ac Stark
laser, both of which will be constant.

This second switching method would suggest itself as
the easiest to implement as all that is required to switch η

would be a Pockels cell, which has switching times down
to nanoseconds. It would not, however, allow for different
frequency gradients and therefore filtering or manipulation of
the pulse. Apart from this, if the second switching method
is used, then the minima for the scattering rate found in
Sec. III D 1 will apply for only either the read or the write
stages of the memory. This is because, if the polarization is
reversed, the scattering behavior of the levels will be reversed
[i.e., ̄2,1(q = −1) → ̄2,−1(q = 1)].

The first switching method would allow for different
gradients but involves much longer switching times (on the
order of milliseconds for LCSLMs). The combination of beam
shapers (BShs) and Pockels cells (PCs) shown in Fig. 3(a)
allows for flexibility in beam shaping and fast switching times.
If no spatial filtering is desired, then only PC2 and BSh1 are
needed, with the beam shaper determining the shape of the
gradient and the polarization switch causing the rephasing of
the atoms. To allow different gradients to be used, an extra
Pockels cell PC1 and beam shaper BSh2 can be used. In this
case, the second gradient can be prepared in advance and PC1
used to select which beam shaper to use. The acousto-optic
modulator (AOM) can be used to switch the ac Stark beam
on or off to decrease the scattering rate due to this field (see
following section).

IV. LIMITING FACTORS

A. Time scales

One main advantage of moving from warm to cold atoms is
the extended storage times that can be achieved. There are two
time scales of importance to our memory: (i) the trap lifetime
τtrap and (ii) the coherence time τcoh.

The trap lifetime depends on both the scattering rate
of the trapping laser, as well as the rate of interatomic
collisions. These will also affect the coherence time. Using
the trap parameters from Sec. III C gives a coherence time of
approximately 1/t = 250 ms. Coupling the trap scattering
rate with the recoil energy per emission Erec = (h̄k)2/2m [22],
where m is the mass of rubidium and k is the wave vector of
the transition (here taken to be the D2 transition), gives the
trap lifetime for a given depth Ut to be

τtrap = mUt

h̄2k2t

. (23)
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FIG. 6. (Color online) Switching methods. (a-i) Intensity profile per unit power and (a-ii) corresponding frequency splitting along the
ensemble for switching method 1, with initial (solid line) and final (dashed line) gradients shown. Here the polarization of the ac Stark field
q = 1 for both initial and final gradients. (b-i) Intensity profile per unit power and (b-ii) corresponding frequency splitting for switching
method 2, with initial (solid line) and final (dashed line) gradients shown. Here the initial polarization of the ac Stark field is q = 1, while the
final polarization is q = −1. This causes a frequency offset to the gradient of −δt,max. Both (a) and (b) use the linear intensity profile IL [see
Eq. (19)] and the maximum δ̄t � 3δ̄F .

Using this equation and trap parameters determined previously
(see Sec. II), we find that the trap lifetime will be on the order
of 10 s and should therefore not affect the coherence time of
the system (see the following).

Another effect that must be considered is the inelastic
collision rate between the atoms in the trap, as this will also
cause a loss of coherence as well as trap population if the atoms
are not all situated in the F = 1 level. The collision rate in cold
atoms has been studied in depth (see, for example, [24,30–32])
with the collisional loss rate of the trap being given by

dN

dt
= −αN − β

∫
n2(r,t) d3r, (24)

where n(r,t) is the density profile of atoms. As can be seen
from the preceding equation there are two components to the
decay: one due to background gas collisions with coefficient α

being determined by the background gas pressure; and one due
to inelastic collisions between atoms in the trap with coeffi-
cient β. 1/α for a dipole trap can, in general, be approximated
to 1 s for a trap pressure of 3 × 10−9 mbar [22].

β is perhaps more interesting as it can give an indication
of the time between inelastic collisions of the Rb atoms
themselves. By using low trap-laser intensities, the rate of
hyperfine changing collisions has been estimated to be between
βhcc = 10−11 and 10−10 cm3 s−1 [30,32]. βhcc will be a lower
bound on the total collision rate (as there are also nonhyperfine
changing collisions to take into account) but will be used
to give an approximate rate of collisions. Here we will take
βhcc = 5 × 10−11 cm3 s−1. For the densities we are expecting
(n ≈ 1011 atoms cm−3), and assuming a constant density

within the trapping volume for simplicity, Eq. (24) will give
an initial, and maximum, collision rate of βn � 30 s−1.

Apart from the two sources of decoherence mentioned
previously, which will also affect the trap lifetime, there are
two others that must be considered, namely, the scattering rate
due to the ac Stark field as well as the coupling field. The
scattering rate for the ac Stark field can be determined as a
function of system bandwidth Bs similarly to Eq. (17) to be

ac(
) = ̄1,−1(
,1)

δ̄t (
)
Bs . (25)

For the optimal detuning of 
1/2,2/2π = 5 THz discovered in
Sec. III D 1 for the F = 1,mF = −1 state with q = 1, this
simplifies to ac � 7 × 10−6Bs for δ̄t � 3δ̄F .

The optical depth of the system depends on the Rabi
frequency of the coupling field �c and the one-photon
detuning 
1p, as was shown in Eq. (5). It therefore makes
sense to express the effect of the coupling field on the
ground state in terms of these two parameters by using the
relation between coupling-field intensity Ic and Rabi frequency
Ic = 2h̄2ε0c�

2
c/µ

2
23 to give

c(
1p,�c) = 2h̄2ε0c

µ2
23

̄1,−1(
1p − 
hfs,qc)�2
c . (26)

For pulses much longer than 1 µs and |�c/
1p| � 0.001, then
c � ac.

The total scattering rate for the system is simply the sum
of the individual rates. The ac Stark and coupling fields
are only needed during the reading and writing phases of

043847-8



ac STARK GRADIENT ECHO MEMORY IN COLD ATOMS PHYSICAL REVIEW A 82, 043847 (2010)

the memory process, which each last for a minimum period
determined by the pulse length, that is, tr/w � tp, for single
pulses but will become longer for multiple pulse storage. If
we define a background scattering rate bg to include all the
decoherence effects that are constantly present, i.e. scattering
from the trapping laser, collisions and loss from the trap, and
a read-or-write scattering rate of rw = ac + c, then we can
determine the total storage efficiency to be

εs(tp,τ ) � exp(−2tprw) exp[−(2tp + ts)bg], (27)

where ts is the time the pulse is stored in the memory.

B. Efficiency

There are three main experimental factors that will affect
the storage efficiency of this system: the number of atoms
N initially present in the MOT, the loading efficiency from
the MOT to the dipole trap εL, and the size of the gradient
which is applied |η(z)| = 2πBs/L. Substituting these values

εt
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FIG. 7. (Color online) Memory efficiency. (a) Total efficiency
of the �-GEM memory as a function of pulse length tp for
storage times of ts = tp and different ratios of |�c/
1p| = (i) 0.01,
(ii) 0.003, and (iii) 0.001. (b) Total efficiency for storage of pulses
of length tp = 20 µs as a function of normalized storage time ts/tp
for (i) single pulse and (ii) multiple-pulse storage, with |�c/
1p| =
0.02. For all traces 
1p = −2π × 2 GHz, 
ac = −2π × 5 THz,
Bs = BG = 9

√
2/(πtp), qc = 1, qp = 0, g = 2π × 1.5 MHz, N =

2.5 × 106 atoms, εL = 0.4, L = 1 cm, and R = 10 µm.

into Eqs. (5) and (4) gives the read-or-write efficiency of the
system:

εrw =
{

1 − exp

[
− g2εLNL

cBs

(
�c


pc

)2 ]}2

. (28)

To investigate the maximum efficiency as a function of storage
time, we assume, to maximize optical depth and minimize
scattering, that the bandwidth of the system is equal to the
bandwidth of the pulse; that is, Bs = Bp. For Gaussian pulses
we can define the pulse bandwidth to be BG = 9

√
2/(πtp),

assuming 99% of the electric field is stored in the memory.
Figure 7(a) shows the total efficiency εt = εrwεs for different
values of �c/
1p, with storage time ts = tp, and using
Bs = BG.

As can be seen from the figure, for each ratio of �c/
1p

and storage time there is a maximum efficiency. This is a
combination of two effects: first the increase in optical depth
as the pulse length increases due to the smaller bandwidths
required and extra decoherence that will occur as the storage
time increases. The decoherence is greater for larger values
of �c/
1p due to the increase in rw this entails, and this
can also be seen from Fig. 7(a). In this regime, however, the
main source of decoherence is the atomic collisions, with an
approximate coherence time of 30 ms.

For short pulses (tp 	 1 ms) and large values of
|�c/
1p| � 0.02 efficiencies approach unity as optical depths
will be high and the background decoherence effects will
be negligible. This is therefore a good regime in which to
investigate the delay-bandwidth product (DBP) of the memory.
Here we define DBP ≡ ts/tp, as this will give an indication of
the number of pulses (or bits) that can be stored in the memory
at one time.

Figure 7(b) shows εt for (i) single- and (ii) multiple-pulse
storage with tp = 20 µs. The difference between the two is
that, for multiple-pulse storage, the coupling and ac Stark fields
are left on at all times, while this is not the case for single-pulse
storage. As can be seen, single-pulse storage with efficiency
greater than 90% (dashed line) occurs up to approximately
ts = 130tp. For multiple-pulse storage, this drops to 50 pulses
due to the extra coupling-field scattering, while 350 can
be stored above the classical efficiency limit of εt = 0.5.
Currently, a maximum of four-pulse storage has been achieved
with �-GEM with εt � 1 [12]. To store pulses of 20 µs length
requires a system bandwidth of approximately 200 kHz and
therefore an ac Stark laser power of less than 2 W in the
optimized regime.

V. CONCLUSIONS

We have made two proposals to improve the current
experimental implementation of �-GEM. First is a new
method of gradient creation using the ac Stark effect. Second
is a move from warm to cold atoms, along with the longer
coherence times this entails.

This article investigated the experimental viability of these
proposals. First, the trapping mechanism was investigated and
it was determined that a far-detuned standing-wave dipole trap
would not interfere with the ac Stark gradient and have a
lifetime on the order of seconds, while providing a small
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area for the ac Stark laser. It was found that there is an
optimal detuning for the ac Stark field of approximately 5 THz
to minimize scattering and maximize bandwidth. With this
detuning, and an optimized beam shape and level scheme,
a bandwidth of 150 kHz W−1 could be created. Different
methods for gradient switching were investigated and a scheme
devised that would allow a switch between any two arbitrary
gradients on the order of nanoseconds using Pockels cells.

Finally, factors that would limit the system such as
scattering due to the trapping, coupling, and ac Stark lasers,
as well as collisions between atoms, were examined. These
were combined with the read-or-write efficiency to model the
total system efficiency as a function of storage time and it was
seen that for long pulses (tp � 1 ms), the coherence time was
limited by the atomic collisions to be on the order of tens of ms.
It was also found that for short pulses (tp 	 1 ms), efficiencies

approach unity and 50 pulses could be stored in the memory at
one time with efficiency greater than 90%. The ac Stark laser
power required to produce the necessary memory bandwidth
to store these pulses would be less than 2 W in the optimized
regime.

We therefore conclude that using an ac Stark gradient with
cold atoms is an experimentally viable option for improving
the �-GEM system in terms of gradient creation, switching,
and manipulation, as well as storage times and time-bandwidth
products achievable using cold atoms.
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