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A scheme for complex-valued acquisition of the diffraction imaging with quasimonochromatic incoherent
light is theoretically proposed. The main idea is to project the real and the imaginary parts of a Fraunhofer
diffraction field on intensity distributions, respectively, with the use of a π/2 phase-changing plate. The whole
procedure is iterative algorithm free and needs no a priori knowledge of an arbitrary object. A numerical
experiment and a quantitative confirmation are also given. To our knowledge, it was the first physical proposal
for the complex-valued acquisition of a diffraction imaging by two-dimensional coherent patterns with thermal
illumination.
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I. INTRODUCTION

Based on the fact that Fourier transform keeps unitary
relations between the real and the reciprocal spaces (Fourier
space), the obtained coherent Fraunhofer diffraction patterns
are being called Fourier-transform imaging. To sustain the
unitary quality, great effort has been employed with the use of
iterative algorithms [1–3] to phase the modulus of diffraction
patterns. The applications of this procedure (e.g., Ref. [4]) are
essential for the coherent x-ray diffraction imaging [1,5–11]
and have been extended from x-ray crystallography for
the imaging of noncrystalline materials and single cells as
reviewed in Ref. [12].

In general, a coherent source or a periodic object is needed
to obtain the diffraction patterns. As in the situation where they
were both unavailable, the technique of coincident imaging
(also known as correlation imaging, ghost imaging, etc.), has
recently been suggested as a substitute (e.g., Refs. [13–17]).
The phaseless patterns obtained in this way were reversed to
an amplitude only, and not long ago, a pure-phased object
had been reported [13]. In the works of Refs. [18] and [19],
the authors showed that a ghost-imaging scheme retrieves
amplitude transmittance of objects rather than the intensity
transmittance as the Hanbury-Brown–Twiss-type imaging
scheme does. Based on this feature, Ying et al. realized the
complex retrieval of an object with discrete phase variables
[20] combined with the oversampling method [21] and the
iterative algorithm [1–3]. Yet, ways mentioned previously, to
recover the phase encoded in the diffraction pattern, have to
rely on a support constraint of the objects more (e.g., Ref. [2])
or less (e.g., Ref. [22]). Otherwise, ambiguity would arise.
In 2006, the authors of Ref. [23] reported an experiment
for complex-valued retrieval of a diffraction field with a
pseudothermal source using a ghost diffraction scheme. In
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their work, each pixel of the diffraction field needed a set of
sinusoidal patterns to determine both the amplitude and the
phase.

In this paper, we theoretically propose a scheme for
complex-valued acquisition of a diffraction field with a type
of Fourier transform. The main idea is to project the real and
the imaginary parts, respectively, of the field on intensity
distributions. The whole procedure to sustain the unity is
iterative algorithm free and needs no assumptions on the to-
be-resolved object. The diffraction patterns are to be obtained
under spatially incoherent illumination. In addition, unlike the
coincident imaging, the coherent patterns are carried out by
the intensity itself rather than by the correlation function of
intensity fluctuations.

We propose the experimental setup in Sec. II and the
acquisition procedures in Sec. III. After that, their theoretical
explanations are given in Sec. IV. Then, as an example, a
numerical experiment is demonstrated in Sec. V. For a rigorous
confirmation, the object and the imaging are compared
quantitatively in Sec. VI. Finally, the paper is summarized
in Sec. VII.

II. PROPOSED SCHEME

The proposed scheme is shown in Fig. 1(a). It might be
similar to the Mach-Zehnder interferometer at first glance.
But after modification, its mechanism will be quite different
from its original purpose [24] (p. 348). Fields from the thermal
source are split by a 50-50 beam splitter BS1 to form a two-arm
optical system with equal optical distance from source plane
x to detection planes η2 and η1, where intensity information
would be recorded. At the cross section of both arms before
η2 and η1, the other 50-50 beam splitter BS2 would be placed.
When a situation needs to introduce a phase-shift factor of j , a
π/2 phase-changing plate J would be inserted into the lower
part of the system.

Note there are two modifications that lead the to-
tal scheme to differ mainly from the Mach-Zehnder

1050-2947/2010/82(4)/043839(9) 043839-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.82.043839


MINGHUI ZHANG, JIANFEI XU, XIANFU WANG, AND QING WEI PHYSICAL REVIEW A 82, 043839 (2010)

-

FIG. 1. (Color online) (a) The proposed scheme for the setup.
There are two modifications that lead the total scheme to differ mainly
from the Mach-Zehnder interferometer. One is that it uses deflection
and rotation devices rather than plane mirrors to guide the optical
path in both upper and lower parts, shown as L and M . Among them,
L can be an Abbe-Koenig prism, and M can be an ordinary prismatic
lens. The other is that the half-wave loss of reflection occurs only on
the upper side of BS2’s surface, while it occurs (or does not occur)
on both sides of BS1; (b) Abbe-Koenig prism, an example of the
deflection and rotation device L in (a).

interferometer. The first one is that it uses deflection and
rotation devices (L and M) rather than plane mirrors, to guide
the optical path. Among them, for example, L can be an
Abbe-Koenig prism [Fig. 1(b)], and M can be an ordinary
prismatic lens. The second modification is that the half-wave
loss of reflection manages to occur only on the upper side of
BS2’s surface, while it occurs (or does not occur) on both sides
of BS1.

For simplicity, we use the same letter to describe both the
planes and the coordinate variables on them in the following
paragraphs. The object with complex transmittance of f (ξ )
is placed at plane ξ . In one optical path, the optical distance
from plane x to plane ξ , and from plane ξ to plane η1 are d1 and
d2, respectively; in the other optical path, the optical distance
from plane x to plane η2 is d. The setup is shown in Fig. 1(a).
The equal optical length of the two arms requires that

d = d1 + d2. (1)

III. ACQUISITION PROCEDURE

The object with complex transmittance of f (ξ ) is placed at
plane ξ as Fig. 1(a) shows. Before and after the phase-changing
plate J is inserted, the intensity distributions Ĩk(ηk)
and Ĩ ′

k(ηk) in both arms would be recorded. The subscripts
k = 1,2, refer to planes η1 and η2, respectively. Then, the
complex Fourier transform of the object’s transmittance can
simply be concluded as equation,

F {f (ξ )} = F

(
2η

λd2

)
∝ Ĩ ′

1(η1) − Ĩ ′
2(η2)

2
+ j

Ĩ2(η2) − Ĩ1(η1)

2
(2)

gives.

IV. THEORY

We assume the source is quasimonochromatic with a mean
wavelength of λ. For simplicity, only one transverse dimension
is considered, although the generalization for two transverse
dimensions is straightforward. To illustrate the procedure
clearly, we first suppose that we had not facilitated the beam
splitter BS2 and J in Fig. 1. Under the narrow-band condition,
the amplitude impulse response is still valid for instantaneous
values of field strength, so the E2 on η2 and the E1 on η1 at
time t fulfill [25]

E2(η2,t) =
√

ejkd

jλd

∫
x

E0(x,t − τ )ejk[(η2−x)2/2d] dx, (3)

and

E1(η1,t) =
√

ejkd2

jλd2

∫
ξ

[√
ejkd1

jλd1

∫
x

E0(x ′,t − τ )

× ejk[(ξ−x ′)2/2d1] dx ′
]
f (ξ )ejk[(η1−ξ )2/2d2] dξ, (4)

respectively, under the Fresnel approximation. In the equa-
tions, E0 means field strength in the source plane, and τ refers
to the time interval during which the optical fields propagate
from source to detection planes. We have to make it clear
here, that the transmittance function of the deflection and
rotation devices, L and M did not appear in Eqs. (3) and
(4) because they only introduce a phase factor of a plane
wave to the detection areas, so the setup can be arranged
to cancel them just by adjusting the tilt angles of planes η1

and η2.
Suppose that the thermal source is totally spatially incoher-

ent [26] with evenly distributed intensity I0. This assumption
equals

〈E∗
0 (x,t − τ )E(x ′,t − τ )〉 = I0δ(x − x ′), (5)

in which 〈· · ·〉 means the time average during the detector
integration period. As for a thermal light, which was an
ensemble of a large number of independent radiating units and
in which each individual radiates by spontaneous radiation
randomly and independently, the model can approximately be
viewed as totally chaotic in spatial. So, the Dirac-δ-function
form of Eq. (5) can be thought of as appropriate to describe the
most laboratory-available thermal source. If the source surface
is large enough, the mutual intensity between planes η1 and η2

can be derived from Eqs. (1) to (5) as

〈E∗
2 (η2,t)E1(η1,t)〉
= j

I0

λd2
ejk[(η2

1−η2
2)/2d2]

∫
ξ

f (ξ )e−j2π[(η1−η2)/λd2]ξ dξ

= j
I0

λd2
ejk[(η2

1−η2
2)/2d2]F{f (ξ )}|[(η1−η2)/λd2]

∝ jF

(
η1 − η2

λd2

)
. (6)

Where F(· · ·) refers to F{f (ξ )}, the Fourier transform
of f (ξ ).
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Then, with the beam splitter BS2 facilitated, the instanta-
neous value of fields in planes η1 and η2 turn out to become
(we use tildes to denote situations when BS2 is facilitated):

Ẽ2(η2,t) = 1√
2

[E2(η2,t) − E1(η1,t)] , (7)

and

Ẽ1(η1,t) = 1√
2

[E2(η2,t) + E1(η1,t)] . (8)

On the right-hand sides of Eqs. (7) and (8), the two E1(η1,t)’s
with opposite signs, due to half-wave loss, only occur on the
upper side of BS2.

As we know, any recorded intensity information must
be a time average of the instantaneous intensity due to the
fact that the detector integration time is usually extremely
long compared with the coherent time of the optical field
(Ref. [25], p. 132). Hence, the corresponding intensity dis-
tributions recorded on planes η1 and η2 are as

Ĩ2(η2) = 〈Ẽ∗
2 (η2,t)Ẽ2(η2,t)〉 = 1

2 [〈|E2(η2,t)|2〉
− 2 Re 〈E∗

2 (η2,t)E1(η1,t)〉 + 〈|E1(η1,t)|2〉], (9)

and

Ĩ1(η1) = 〈Ẽ�
1(η1,t)Ẽ1(η1,t)〉 = 1

2 [〈|E2(η2,t)|2〉
+ 2 Re 〈E∗

2 (η2,t)E1(η1,t)〉 + 〈|E1(η1,t)|2〉] (10)

as represented. From the two preceding equations, we can
see that the real part of Eq. (6) is being embedded in the
intensity information on both plane η1 and plane η2 and can
be extracted by subtracting the two equal backgrounds by
means of

Re 〈E∗
2 (η2,t)E1(η1,t)〉 = Ĩ1(η1) − Ĩ2(η2)

2
. (11)

Furthermore, the linearity of Eq. (6) indicates that, if a phase
shift of ϕ is introduced in the lower part of the scheme shown as
Fig. 1, consequently, a phase factor of e−jϕ would be multiplied
on the right-hand side of the equation. Following this thought,
if we inserted a phase-changing plate J into the lower part of
the system to introduce a phase shift of π/2, consequently, the
complex vector, which stands for Eq. (6), would rotate at an
angle of −π/2. Hence, the imaginary part of Eq. (6) can also
be retrieved in a way similar to Eq. (11) as

Im 〈E∗
2 (η2,t)E1(η1,t)〉 = Ĩ ′

1(η1) − Ĩ ′
2(η2)

2
(12)

gives. Note that we use deflection and rotation devices (L and
M) instead of plane mirrors, to guide the optical path. This
arrangement leads to a centrosymmetry between coordinates

in planes η1 and η2 [i.e., η1 = −η2(
	= η)], so,

η1 − η2 = 2η. (13)

Comparing Eqs. (6) and (11)–(13), we see the complex-
valued acquisition of an object’s diffraction imaging with this
type of Fourier transform can be achieved by the proposed
scheme; and, thus, the procedure can be written in one equation
as Eq. (2) presented.

V. A NUMERICAL EXPERIMENT

In Sec. IV, we have theoretically analyzed that the method
worked with objects so long as their Fourier transform or gen-
eralized Fourier transform existed, and no other requirement
was needed. So, the suggestion fit for those arbitrary objects
rather than for a special one. Without sacrificing the generality,
we conceived an object of a complex-valued transmittance:

f (ξ ) =
{

(1 + cos 0.05ξ ) + j

[
rect

(
ξ + 150

105

)
+ rect

(
ξ − 150

105

)]}
rect

(
ξ

1000

)
, (14)

in which space parameters in plane ξ use micrometer (µm)
units. It is well known that if this object was supposed to
be transformed by a so-called 2-f system (or f -f system)
[27] with λ = 0.532 µm and f = 75 000 µm, the real and the
imaginary parts of its Fourier-transform field as a function of
space coordinates η would be

Re {F {f (ξ )}} = 500 sinc

[
1000

(
η

λf
+ 0.05

2π

)]
+ 1000 sinc

(
1000

η

λf

)
+ 500 sinc

[
1000

(
η

λf
− 0.05

2π

)]
, (15)

and

Im {F {f (ξ )}} = 210 sinc

(
105

η

λf

)
cos

(
300π

η

λf

)
, (16)

as Fig. 2 shows. Equations (15) and (16) were generally
recognized as the object’s function described in the Fourier
space.

Based on the theory of statistical optics, we numerically
simulated the dynamic process of the whole acquisition pro-
cedure under the setup scheme of Fig. 1. We summarized the
detailed description here, although a similar model had been
described in Ref. [28]. The random process of the thermal light
was simulated as an ensemble E0 of a set of time series. Among
E0, each sample function E0(k,t) = a(k,t)ejθ(k,t) stands for the
complex-field strength of the kth radiating unit on the source
plane x at time t . As every radiating unit is independent,
this model will be in accord with Eq. (5) automatically.
The fluctuations for the thermal source fulfill the complex
circular Gaussian random process with zero mean; this
feature is simulated by commanding the amplitude a(k,t) to
obey Rayleigh distribution in [0,+∞) and the phase θ (k,t)
to obey uniform distribution in [0,2π ) [26]. The propagation
of the fields was simulated according to Fresnel diffraction
theory [25]. In the numerical experiment, the mean wavelength
of the thermal light was selected to be λ = 0.532 µm; the
source’s linear dimension was set to l = 1 cm. For the setup,
d1, d2, and d are set to 6, 7.5, and 13.5 cm. According
to the van Cittert-Zernike theorem, the liner dimension of
the coherent area will be 	x ≈ λd1

l
= 0.532 µm × 60 mm

1 cm =
3.19 µm, which was larger than zero and much smaller than
the feature size of 105 µm of the object. Hence, Eq. (5)
is a good approximation. With ensembles of instantaneous
values of Ẽ2(η2,tn) and Ẽ1(η1,tn) (n = 1,2, . . . ,N ) generated
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FIG. 2. (Color online) The (a) real [Eq. (15)] and (b) imaginary [Eq. (16)] parts of the Fourier transform as a function of the space
coordinates η. They were recognized as the object functions described in the Fourier space and were supposed to be transformed by a 2-f
system.

by the procedure before, the recorded intensities on both planes
ηk (k = 1,2) would be obtained numerically by

Ĩk(ηk) =
∑N

n=1 Ĩk (ηk,tn)

N
=

∑N
n=1 Ẽ∗

k (ηk,tn) Ẽk (ηk,tn)

N (17)
(k = 1,2; n = 1,2, . . . ,N )

In the equation and also in the following paragraph, N refers to
the numbers of the frames of instantaneous intensity Ĩk (ηk,tn),
which are to be averaged by the detector’s time integration.

The recorded intensities obtained in both planes η1 and η2

were brought out in Fig. 3; they were the averaged results of
N = 20 000 frames of instantaneous intensities by Eq. (17).
Figures 3(a) and 3(a′) are intensity recorded in plane η2 before

FIG. 3. (Color online) Numerical results of recorded intensity, which averaged N = 20 000 frames of instantaneous intensities. The left
and right columns, respectively, are related to recorded intensities before and after the phase-changing plate J of π/2 was inserted in the setup
of Fig. 1. Although recorded intensities in (a) and (b) and (a′) and (b′) are in irregular appearances, their differences carried out well-defined
patterns as (c) and (c′) presented. One can see, they shared the same patterns of imaginary and real parts of the conceived object in Fourier
space, as Fig. 2 shows.
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TABLE I. The theoretical values of parameters in Eqs. (18) and
(19).

Eq. (18) Eq. (19)

Parameter Theoretical value Parameter Theoretical value

a 1
2 a′ 2 × 105

λf
= 0.005 26

b 2 × 1000
λf

= 0.050 13 b′ 2 × 300π

λf
= 0.047 24

c0 0 c′
1 0

c1
1 000×0.05

2π
= 7.961 78 c′

2 0

c2
1 000×0.05

2π
= 7.961 78 p′ 1

y0 0 y ′
0 0

and after the phase-changing plate J was inserted; Figs. 3(b)
and 3(b′) are intensity recorded in plane η1 before and after J

was inserted; Figs. 3(c) and 3(c′) were the intensity differences
between planes η2 and η1 obtained before and after J was
inserted. We see, although intensity itself on both planes is
irregular, their differences are quite well defined. Comparing
Figs. 3(c′) and 3(c) with Figs. 2(a) and 2(b), the results obtained
by the numerical experiment shared similar patterns of real and
imaginary parts of the conceived object in Fourier space.

In Sec. VI, we quantitatively identify the obtained patterns
are indeed the complex imaging of the object in Fourier space.

VI. A QUANTITATIVE COMPARISON OF THE
OBJECT AND THE OBTAINED DIFFRACTION

PATTERNS IN FOURIER SPACE

To compare the object and the numerically obtained
diffraction patterns quantitatively, we use Eqs. (15) and (16),
the object function in Fourier space, to build the nonlinear
regression models. The normalized forms of them are

fRe(η) = ŷ0 + â[sinc (b̂η + ĉ1) + 2sinc (b̂η + ĉ0)

+ sinc (b̂η − ĉ2)], (18)

and

fIm(η) = ŷ ′
0 + p̂′ sinc (â′η + ĉ′

1) cos(b̂′η + ĉ′
2), (19)

where, letters with hats are parameters waiting to be estimated
by the nonlinear regressions. Obviously, their theoretical

values are determined by Eqs. (13), (15), and (16), as Table I
shows.

With and without a phase-changing plate J inserted, the
normalized form of obtained patterns, which stand for the real
and the imaginary parts of the field strengths of the diffraction
imaging, were obtained by the numerical experiment and
were presented in Figs. 4 and 5 (scattered black squares)
respectively. In both of them, each diagram of (a)–(i) is
related to the situation when a sample number of instantaneous
intensity for averaging is selected to be N = 625 × 2n (n =
0,1, . . . ,8). Among them, the continuous lines are the fitted
results with models Eqs. (18) and (19). During each fitting
process shown in Figs. 4 and 5, the estimated parameters in
Eqs. (18) and (19) are worked out by nonlinear regressions.
They are presented in Tables II and III, correspondingly.
Comparing them with parameters in Table I, we can see that
the estimated parameters gradually agree with their theoretical
values while N increases.

To measure how well outcomes are likely to be predicted
by the models of Eqs. (18) and (19), the coefficient of deter-

mination (Ref. [29], p. 270) defined by R2 	= 1 −
∑

i (ŷi−yi )2∑
i (ŷi−ȳ)2

is investigated. (In the definition, yi,ȳ are obtained data and
their mean values, and ŷi are the model values estimated by
the fitting procedure.) The values of R2 for the fitting process
related to Figs. 4(a)–4(i) and 5(a)–5(i) are listed in Tables II
and III. Figure 6 presents the relations between R2 and sample
numbers N . As they showed, while N increases, R2 was
up approaching 1. The trend indicates when the N is large
enough, the regression line of models Eqs. (18) and (19) would
perfectly predict the data.

In order to evaluate how precisely the models agree with
the obtained data, the root-mean standard error [defined by

ERM
	=

√∑
i (ŷi−yi )2

N
] is also examined. The values of ERM for

the fitting process related to Figs. 4(a)–4(i) and 5(a)–5(i) are
also listed in Tables II and III, correspondingly. The relations
between ERM and N are shown in Fig. 7. As shown, ERM was
in a down trend until approaching 0 while N increased. Such
a trend indicates when N is large enough, the obtained data
would converge in Eqs. (18) and (19) precisely.

The comparing procedure mentioned earlier has been
displayed in Figs. 4(a)–4(i) and 5(a)–5(i). Their relative data
have been presented in Tables II and III. As examples, in
Figs. 4(i) and 5(i), the R2 were up to 0.998 75 and 0.9811, and

TABLE II. The estimated values â, b̂, ĉ0, ĉ1, ĉ2, and ŷ0 in Eq. (18) when N = 625 × 2n (n = 0,1,8). Their corresponding theoretical values
are listed in the left-hand side of Table I. The values for the coefficient of determination (R2) and the root-mean standard error (ERM) for the
fitting process related to Fig. 4 are also presented in the table.

N â b̂ ĉ0 ĉ1 ĉ2 ŷ0 R2 ERM

625 0.527 74 0.050 44 −0.059 87 8.003 44 8.094 15 −6.5345 × 10−4 0.865 77 0.065 56
1250 0.511 35 0.050 13 −0.052 92 8.0348 7.921 42 0.004 07 0.927 67 0.044 86
2500 0.501 85 0.050 16 −0.028 24 8.008 23 7.975 42 −0.0136 0.975 04 0.027 51
5000 0.501 12 0.050 26 −0.018 32 7.988 88 7.977 26 0.002 01 0.983 49 0.020 39
10 000 0.502 37 0.050 08 0.015 19 7.9558 7.937 13 −8.147 36 × 10−4 0.988 84 0.016 72
20 000 0.513 12 0.050 22 −0.003 31 7.975 14 7.9695 −0.002 22 0.995 25 0.011 13
40 000 0.5068 0.050 18 −0.004 24 7.974 82 7.963 04 −9.949 32 × 10−4 0.997 19 0.008 47
80 000 0.507 84 0.050 16 0.007 41 7.970 44 7.970 14 −7.130 34 × 10−4 0.998 48 0.006 21
160 000 0.506 28 0.050 18 0.005 15 7.969 92 7.970 84 −6.999 92 × 10−4 0.998 75 0.005 62
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FIG. 4. (Color online) The procedure during which the obtained data converge on the models of Eq. (18). The scattered black squares are
data obtained with phase-changing plate J being inserted; the continuous lines are fitted results. Diagrams from (a) to (i) are related to situations
when a sample number of instantaneous intensity for averaging is N = 625 × 2n (n = 0,1, . . . ,8). By using the obtained data related to each
diagram, the estimated values of â, b̂, ĉ0, ĉ1, ĉ2, and ŷ0 in Eq. (18) are worked out with the use of the nonlinear regressions. They are listed
in Table II with different N ’s. Their theoretical values are listed on the left-hand side of Table I. The coefficient of determination (R2) and the
root-mean standard error (ERM) for each N are also presented in Table II; their trend lines are shown in Figs. 6(a) and 7(a).

their ERM were 0.005 62 and 0.032 79. In accord with their
appearance, scattered squares and continuous lines fit almost
exactly.

From the previous comparisons, we quantitatively identify
that, when the number of N is large enough, the obtained
diffraction patterns would precisely converge in Eqs. (18) and
(19) in accord with theoretical parameters in Table I, which
stand for the real and the imaginary parts of the object in
Fourier space.

VII. DISCUSSIONS AND CONCLUSIONS

The patterns obtained, with and without the phase-changing
plate J being inserted, are the real and the imaginary parts,
respectively, of the Fraunhofer diffraction field. A theoretical
derivation and a numerical example to demonstrate the acqui-
sition procedure were presented. A quantitative comparison
between the object and the obtained data is also given. They
show that the real and the imaginary parts of the Fourier

TABLE III. The estimated values â′, b̂′, ĉ′
1, ĉ′

2, p̂′, and ŷ ′
0 in Eq. (19) when N = 625 × 2n (n = 0,1,8). Their corresponding theoretical

values are listed in the right-hand side of Table I. The values for the coefficient of determination (R2) and the root-mean standard error (ERM)
for the fitting process related to Fig. 5 are also presented in the table.

N â′ b̂′ ĉ′
1 ĉ′

2 p̂′ ŷ ′
0 R2 ERM

625 0.005 72 0.048 59 −0.249 42 −0.157 96 1.175 68 0.002 73 0.502 19 0.319 13
1250 0.0056 0.048 75 −0.202 71 0.007 4035 1.001 18 0.005 55 0.700 39 0.180 28
2500 0.005 23 0.047 75 −0.014 97 0.013 07 0.734 12 0.007 06 0.809 86 0.101 28
5000 0.0054 0.047 67 −0.021 86 −0.019 96 0.927 71 0.007 51 0.887 68 0.092 47
10 000 0.005 35 0.0476 −0.042 32 −0.0853 0.876 27 0.008 24 0.953 28 0.054 64
20 000 0.005 36 0.047 56 −0.0524 0.002 19 0.851 67 0.009 52 0.961 18 0.048 15
40 000 0.005 25 0.047 29 −0.0067 −0.009 36 0.857 0.007 29 0.9666 0.045 57
80 000 0.005 29 0.047 33 −0.017 41 0.0115 0.8373 0.0085 0.974 95 0.037 62
160 000 0.005 29 0.047 34 −0.007 65 0.002 78 0.839 25 0.0081 0.9811 0.032 79
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FIG. 5. (Color online) The procedure during which the obtained data converge on the models of Eq. (19). The scattered black squares
are data obtained without phase-changing plate J being inserted; the continuous lines are fitted results. Diagrams from (a) to (i) are related
to situations when the sample number of instantaneous intensity for averaging is N = 625 × 2n (n = 0,1, . . . ,8). By using the obtained data
related to each diagram, the estimated values of â′, b̂′, ĉ′

1, ĉ′
2, p̂′, and ŷ ′

0 in Eq. (19) are worked out with the use of the nonlinear regressions; they
are listed in Table III with different N ’s. Their corresponding theoretical values are listed in the right-hand side of Table I. The coefficient of
determination (R2) and the root-mean standard error (ERM) for each N are also presented in Table III; their trend lines are shown in Figs. 6(b)
and 7(b).

transform of a conceived object were both retrieved in good
agreement with theoretical anticipation. The whole process
is a pure physical procedure needing no iterative algorithms
and without a support constraint. The aim of this paper is to
determine the basic problem of the phases of the diffracted
beams. The theory may also apply equally to those situations,
such as synchrotron radiation hard x-ray imaging [30] and
neutron-diffraction tomography [31,32], where high intensity

and a highly brilliant coherent source were difficult to attain.
The importance of such issues had been discussed, in detail,
in Ref. [13].

The mechanisms behind the proposed setup to obtain the
diffraction patterns are quite different from the Mach-Zehnder
interferometer. In the latter, the observed fringes were caused
by the first-order coherence of the light. That requires coherent
illumination. In the work of this paper, the fringes obtained

FIG. 6. (Color online) Relations between the coefficient of determination (R2) and the sample numbers N . As shown, R2 was in an up trend
while approaching 1. This indicates when N is large enough, the regression models Eqs. (18) and (19) would perfectly predict the data. (a) The
trend line of R2 − N for the retrieval process of Fig. 4; (b) The trend line of R2 − N for the retrieval process of Fig. 5.
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FIG. 7. (Color online) The relations between the root-mean standard error (ERM) and the sample numbers N . As shown, ERM was in a down
trend while approaching 0. This indicates when N is large enough, the obtained data would converge in the regression models Eqs. (18) and
(19) precisely. (a) The trend line of ERM-N for the retrieval process of Fig. 4; (b) The trend line of ERM-N for the retrieval process of Fig. 5.

were caused by mutual correlation of the fields, and no
coherent source was needed, as Eqs. (5) and (6) indicate.
That is the key difference. In fact, there had been previous
work concerned with measuring the mutual coherence function
through interferometry [33].

The reason we use deflection and rotation devices (L
and M) rather than plane mirrors to guide the optical path
is that such an arrangement leads Eq. (13) to exist. If we
used plane mirrors as used in Mach-Zehnder interferometer,
Eq. (13) would have been η1 = η2, and Eq. (6) would become
a constant value, therefore, the fringes would not be observed.
The appearance of such kinds of fringes can be explained
intuitively by Klyshko’s advanced wave-interference theory
[34]. Equation (6) can be interpreted as a scenario of the
impinging of two conjugate and backward wave fronts of E(η1)
and E(η2), hence, canceling the spherical part of the wave
fronts and remaining the only plane-wave front to compose a
Fourier transform.

The beam splitter BS2 introduces a π phase shift upon
reflecting from the upper side, but introduces no phase shifts
upon reflection on the lower side and on transmission in any
side. Without these characteristics, the approach will not work.
It is well known that such a nature can be achieved by optical
filming techniques.

To the best of our knowledge, it was the first physical
proposal for the complex acquisition of the two-dimensional
diffraction field with quasimonochromatic incoherent light.

Yet a solution of the phase problem in the theory of structure
determination of crystals from x-ray diffraction experiments
with coherent illumination was also suggested by Wolf very
recently [35]. The feasibility of obtaining the fringes by
incoherent light via intensity distribution rather than by
coincident rate or intensity correlation function was discussed
not long ago and has been verified experimentally [36].

As we have compared in Fourier space, the obtained data
would converge upon the function of objects as the number
of N increases. Since N can be viewed as the amount of
instantaneous intensity to be averaged due to the detectors’
time integral, the precise imaging may benefit from the slow
responding detectors.

Finally, we mention our suggested scheme differs from
vast literature on getting phase information with white-light
interferometry. The latter obtains information from the time-
frequency domain. Also, it is fundamentally different from
incoherent holography. Their differences are illustrated in
Ref. [36].
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