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Analytical investigation of a figure-eight single-pulse all-fiber laser based
on a nonlinear amplifying loop mirror
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We establish analytically a master equation of a figure-eight all-fiber passively mode-locked laser. The nonlinear
amplifying loop mirror (NALM) is used as an effective saturable absorber in order to generate short pulses. The
master equation is of the cubic complex Ginzburg-Landau type, in which the coefficients explicitly depend on
the characteristics of the cavity, in particular on the orientation of the polarizer, the coupling coefficient, and the
length of the NALM. Single-pulse and continuous-wave (cw) solutions in both normal and anomalous dispersion
are discussed analytically. In the anomalous dispersion situation, the equation governing the evolution of the
system admits stable analytic pulse solutions. The pulse duration and energy are studied. The analysis provides
domains in the space of the cavity parameters where energetic soliton and ultrashort pulses are obtained.
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I. INTRODUCTION

During the last 20 years, passively mode-locked (ML)
fiber lasers have became mature thanks to more efficient
techniques with advanced technology. The ultrashort single
and multiple pulse regimes are generated experimentally
through the nonlinear polarization evolution (NPE) [1–5].
These studies considered a unidirectional ring cavity con-
figuration with polarizer and polarization controllers. The
optical Kerr effect of the fiber causes a large rotation of the
polarization for high intensity, and consequently the polarizer
and polarization controllers allow one to manage the nonlinear
losses. Analytical [6–8] and numerical [9,10] studies have been
developed in order to predict the laser operation. B. Ortaç
et al. [11] demonstrated experimentally the generation of
265 nJ ultrashort pulses by employing a saturable absorber
and ytterbium-doped short-length large-mode-area fiber.

The figure-eight cavity design involves two loops, one
of which is unidirectional, while the other one, the loop
mirror, allows propagation in both directions. Two different
configurations are possible: the amplifying fiber may be
inserted in either the first or second loop. If the amplifier is in
the unidirectional ring, the loop mirror is passive and is called
a nonlinear optical loop mirror (NOLM). If the amplifier
is inserted in the other loop, the latter is called a nonlinear
amplifying loop mirror (NALM). Many studies have proved
the ability of figure-eight lasers to produce subpicosecond
pulses. The first demonstration of the passively mode-locked
laser with NALM was given by Duling [12]. In this experiment,
the laser cavity was all fiber, and 2-ps pulse widths were
measured. Pulses as short as 620 fs have also been reported in a
fiber laser operating at 1.3 µm wavelength in a praseodymium
fluoride fiber laser [13]. A self-starting mode locking has
been observed in a laser configuration based on a symmetrical
NOLM with a twisted, birefringent fiber and a quarter-wave
retarder in the loop [14,15]. A completely fiber integrated
figure-eight laser generating an 850 fs pulse at 1065 nm is
reported in [16]. Passive mode locking was also demonstrated
experimentally in a polarization maintaining a figure-eight
erbium-doped fiber laser [17]. In addition, the figure-eight
geometry is able to operate in a multiple-pulse regime [18,19].

The large number of dynamics behaviors of the figure-eight
laser has led to the development of theoretical models. Haus
and coworkers [20] presented a simple phenomenological
analysis of the figure-eight laser based on the assumptions that
the changes per pass are small and the medium is isotropic.
The model does not allow one to determine the stability
criteria of pulses with respect to the coupling coefficient of
the coupler between the nonlinear optical loop (NOL) and
NALM. The pulse characteristics were not discussed either.
Numerical simulations reported by Theimer and Haus [21]
demonstrate that the pulse width depends on several factors
including the gain and length of the amplifier and the length of
the NOLM. Calculations by Pottiez [22] show that high-energy
pulses can be obtained with a figure-eight erbium-doped fiber
laser with large normal net dispersion and intensity-dependent
transmission created by the NOLM. A model equation of the
cubic complex Ginzburg-Landau (CGL) type has been derived
for a configuration using a NOLM, in which all coefficients
were expressed in terms of the parameters of the cavity [23].
It brought forward the effect of the coupling coefficient on the
laser behavior.

In the present work, we develop an analytical model for an
all-fiber passively mode-locked laser built with a NALM in
the figure-eight configuration. The system of equations which
governs propagation in the anisotropic fiber is reduced, in
the presence of polarizer, to a scalar cubic CGL equation. A
remarkable fact is the explicit dependence of the coefficients of
the equation on the characteristics of the cavity. The domains
of either mode-locking or continuous-wave (cw) behavior in
the positive group velocity dispersion (GVD) are given versus
both the coupling coefficient of the fiber coupler connecting
the NOL with the NALM and the orientation of the polarizer.
The characteristics of the soliton are investigated in anomalous
dispersion. This work is the complement of the investigation
presented in our previous work concerning the passively mode-
locked laser generated by the NOLM in the figure-eight cavity
[23].

The laser configuration under consideration is presented in
Fig. 1. It consists of a NALM connected with a NOL by a
variable fiber coupler with a coupling coefficient k. The NOL
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FIG. 1. Configuration of figure-eight fiber laser.

is constructed with a polarization-sensitive isolator, a standard
communication fiber (SMF28) of length L1 = 1 m placed
between the isolator and port 1 of the coupler, and a piece
of SMF28 (L4 = 10 m) between port 2 of the coupler and the
isolator. The polarizing isolator is used to obtain a traveling-
wave laser. Single-mode fibers have the following parameters:
GVD βs

2 = −0.022 ps2m−1 at 1550 nm, nonlinear coefficient
γ = 0.002 W−1m−1, and birefringent parameter ns = 1 m−1.
The NALM involves a LEr = 10 m long erbium-doped fiber
(EDF) with GVD βEr

2 = 0.075 ps2m−1 at 1550 nm, a nonlinear
coefficient γ = 0.002 W−1m−1, and a birefringent parameter
nEr = 0.1 m−1. The erbium-doped fiber is inserted between
two variable lengths L2 and L3 of SMF28. Wavelength
division multiplexing (WDM) is used to launch the pump
power into the erbium-doped fiber. In such a configuration,
the mechanism responsible for the mode-locking regime is
the intensity-dependent transmission created by NALM. The
incoming beam is split into two beams which follow a
trajectory in opposite directions. The pulse which enters the
gain medium first undergoes a larger phase shift through
self-phase modulation than its replica propagating in the
opposite direction does. The two pulses arrive simultaneously
at the fiber coupler where they recombine. Thus, the NALM
behaves as a fast saturable absorber.

II. NET POSITIVE DISPERSION

We study in this section the figure-eight laser operating in
normal dispersion. We use here the general method developed
in [24]. We first solve the coupled nonlinear Schrödinger
(NLS) equations describing an anisotropic standard fiber by
using the perturbation method. The perturbation approach
is also used to solve the equations governing the wave
propagation in the erbium-doped fiber with distributed gain.
In our analysis we take into account the polarizer effect and
the fiber coupler action. The electric field at the exit of the
polarizer at the (n + 1)th round trip is computed as a function
of its amplitude at the nth round trip. To discuss the localized
and stationary solutions, it is more convenient to transform the
discrete sequence into a continuous equation of the CGL type.

A. Equations of intracavity propagation of light

1. Propagation in the NALM

In anisotropic optical fibers, the evolution of the two
slowly varying envelopes u and v of the two polarization
components of the electric field is described by means of

a pair of coupled nonlinear Schrödinger equations. Each
equation takes into account the birefringence, the GVD, and
the Kerr nonlinearity in the case of a single-mode fiber. In
the erbium-doped fiber, we consider in addition the gain and
its bandwidth. Hence in the framework of the eigenaxis of
the birefringent fiber moving at the group velocity, the pulse
envelope propagation is modeled by the equations [24,25]

i
∂u

∂z
− nju − β

j

2

2

∂2u

∂t2
+ γ (u|u|2 + Au|v|2 + Bv2u∗)

= igu + iρ
∂2u

∂t2
, (1)

i
∂v

∂z
+ njv − β

j

2

2

∂2v

∂t2
+ γ (v|v|2 + Av|u|2 + Bu2v∗)

= igu + iρ
∂2v

∂t2
, (2)

where A = 2/3 and B = 1/3 [25] are the dielectric coeffi-
cients, and j = s in the standard fiber, or j = Er in the active
fiber. The gain g and, consequently, the gain filtering ρ = g/ω2

g

(ωg = 15.7 ps−1 is the spectral gain bandwidth) vanish in
SMF28.

The propagation in the NALM is characterized by two
counterpropagating fields denoted by E± = (u±,v±). The
clockwise pulse E+ circulating between port 3 and port 4 (see
Fig. 1) propagates over the piece L2 of SMF28, along the length
LEr of the EDF and along the length L3 of SMF28. We denote
it by E+(0) = (u+,0,v+,0) at the entrance of the loop, just after
port 3, and at the exit of each piece of the fiber it leads to
the electric-field components E+(L2) = (u+,2,v+,2), E+(L2 +
LEr) = (u+,Er,v+,Er), and E+(L2 + LEr + L3) = (u+,3,v+,3),
respectively. The anticlockwise pulse E− = (u−,v−) propa-
gates successively along the length L3, LEr, and L2, starting
from E−(0) = (u−,0,v−,0) just after port 4, and yielding
the electric-field components E−(L3) = (u−,3,v−,3), E−(L3 +
LEr) = (u−,Er,v−,Er), and E−(L3 + LEr + L2) = (u−,2,v−,2),
respectively.

The components (u±,Er,v±,Er) at the ends of the erbium-
doped fiber are computed analytically by solving Eqs. (1) and
(2) by means of a first-order perturbative approach [6,7,24],
assuming that the effect of GVD β

j

2 , of the nonlinear coefficient
γ , and of the gain filtering ρ = g/ω2

g are small over one round
trip in the cavity. The latter quantities are multiplied by a
small parameter ε, and the solutions are sought in the form of
series expansion in powers of ε. (u±,2,v±,2) and (u±,3,v±,3)
are computed the same way, except that the right-hand-side
terms in Eqs. (1) and (2) are replaced with zero. The explicit
expressions are given in the Appendix.

The cross-phase modulation between the two counterprop-
agating fields is neglected in our calculations. Indeed, for short
pulses, the two waves cross in a very short distance compared
to the fiber loop length, which renders their interaction
negligible. Hence the interaction terms u+|u−|2, u+|v−|2,
u2

−u∗
+, and v2

−u∗
+ are not considered in the evolution equation

for u+, and so on.

2. Fiber optic splitter and propagation in NOL

The electric field at the output of the polarizing isolator is
E(0) = (u0,v0). It then evolves nonlinearly along the distance
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L1 of SMF28 according to Eqs. (1) and (2) with zero gain and
gain filtering. The resulting field E(L1) = (u1,v1), obtained
under the same approximations as above, is split by the fiber
coupler into the two counterpropagating fields E± whose
evolution has been computed in the previous subsection. The
light transmitted to ports 3 and 4 is written as a function of the
light injected into port 1 as E+(0) = (u+,0,v+,0) = √

k(u1,v1)
and E−(0) = (u−,0,v−,0) = i

√
1 − k(u1,v1), where k is the

coupling coefficient.
The field transmitted by the NALM results from the recom-

bination at port 2 of the coupler of the two counterpropagating
waves after one round trip in the loop containing the active
fiber. It is given by

Et (0) =
(

ut,0

vt,0

)
=

√
k

(
u+,3

v+,3

)
+ i

√
1 − k

(
u−,2

v−,2

)
. (3)

After propagation over the length L4, the field Et (0) becomes
Et (L4) = (ut,4,vt,4) [see Eqs. (A15)–(A16) in the Appendix].

3. The polarizer

A polarizing isolator converts an elliptical or circular
vibration into a beam with a linear polarization and stops
the counterpropagating wave in the NOL. The presence of
the polarizer in the cavity allows us to reduce the vectorial
discrete evolution equation into a scalar discrete equation for
the electric-field amplitude.

We describe the polarizer by the Jones formalism. We
assume that the eigenaxis of the fiber ends, at each side of
the polarizing isolator, are aligned and denote them as the
x and y axes. The transmission axis of the polarizer makes an
angle θ with the x axis. The Jones matrix of the polarizer in
the (x,y) frame can be expressed as

M = β

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
, (4)

where β = 95% is the amplitude transmission coefficient of
the polarizer.

When the light passes through the polarizer, it oscillates
with a linear polarization parallel to the passing axis of
the polarizer. The resulting electric-field components at the
beginning if the nth round trip at the input of the SMF28 fiber
spliced with port 1 of the fiber coupler are thus

(
un,0

vn,0

)
=

(
cos θ

sin θ

)
fn, (5)

where fn is the electric-field amplitude at the beginning of the
n round trip, just after the polarizer.

The electric field at the beginning of the (n + 1)th round
trip, just after the polarizer, is found by taking the product of the
Jones matrix of the polarizer and the Jones vector of the electric
field at the end of the n round trip Et,n(L4) = (ut,n,4,vt,n,4) at
the exit of the SMF28 fiber with length L4, as

(
cos θ

sin θ

)
fn+1 = M

(
ut,n,4

vt,n,4

)
. (6)

B. Equation governing wave propagation
for the figure-eight laser

The master equation governing the propagation in the
figure-eight laser is found by first reporting the expressions
(A15) and (A16) of (ut,n,4,vt,n,4) into Eq. (6). Then rela-
tion (3) is used, and fn+1 is related to the clockwise and
anticlockwise fields after propagation in NALM. We use the
solutions of (A1) to (A6) and of (A7) to (A12) in order to
express the components (u+,n,3,v+,n,3) and (u−,n,2,v−,n,2) as
functions of (u+,n,0,v+,n,0) and (u−,n,0,v−,n,0), respectively.
Then we replace the last two vectors by

√
k (un,1,vn,1) and

i
√

1 − k (un,1,vn,1), respectively. Finally, Eqs. (A13) and
(A14) allows us to relate fn+1 to (un,0,vn,0), and using
Eq. (5), to fn itself. After lengthy and cumbersome algebra,
we obtain

fn+1 = βegLErQfn + εβegLEr

×
[(

χ − i

2
η

)
Q

∂2fn

∂t2
+ iPfn|fn|2

]
+O(ε2), (7)

where χ = ρLEr, η = βs
2(L1 + L2 + L3 + L4) + βEr

2 LEr =
βs

2Ls + βEr
2 LEr is the net dispersion, and

Q = (2k − 1)(e−insLs−inErLEr cos2 θ + einsLs+inErLEr sin2 θ ).

(8)

P is a complex parameter and represents the nonlinearity; its
expression is not given here because of its excessive length. P
and Q depend, especially, on the coupling coefficient k of the
fiber coupler, on the orientation θ of the polarizing isolator,
and on the lengths L2 and L3 of SMF28.

Equation (7) allows us to calculate the gain threshold
g0. The gain threshold is obtained when the optical gain
of the laser medium is exactly balanced by the sum of all
losses experienced by the light in the cavity. At threshold,
the intensity is low, and gain and losses are purely linear.
This situation, which corresponds to the conservation of
intensity, expresses mathematically by requiring that the
equation |fn+1|2 = |fn|2 is satisfied at leading order in ε.
Therefore the gain is written as g = g0 + εg1. The excess
of linear gain g1 will compensate the nonlinear losses and is
self-adjusted [24].

The expression of g0 is

g0 = −1

2LEr
ln{β2(2k − 1)2[cos4 θ + 2 cos(2Lsns + 2LErnEr)

× cos2 θ sin2 θ + sin4 θ ]}. (9)

g0 denotes the amount of the gain that compensates the linear
losses of the laser cavity.

Since |Qβeg0LEr | = 1, it can be replaced by eiα with some
α real. Then, expanding eεg1LEr in a power series of ε and
rearranging Eq. (7) yields

fn+1 = eiα(1 + εg1LEr)fn + ε

(
χ − i

2
η

)
eiα ∂2fn

∂t2

+ iε
eiα

Q
Pfn|fn|2 + O(ε2). (10)
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The discrete sequence fn describing the field amplitude
does not allow us to use the known results on the CGL equation
to treat the continuous and single-pulse operation of the laser.
Therefore, the discrete sequence is interpolated, in the case of
a large number of round trips in the cavity, by a continuous
function, and we obtain

i
∂f

∂z
= −α − i ln(2k − 1)

L0
f + iε

g1LEr

L0
f

+ ε

(
η/2 + iχ

L0

)
∂2f

∂t2
+ εDf |f |2, (11)

where z = n(Ls + LEr) = nL0 is the longitudinal variable and

D = Dr + iDi = −P

Q[L0 + 4k(k − 1)L4]
. (12)

The solution at zero-order perturbation of Eq. (11) for
k �= 0.5 is

f = F exp

(
izα − z ln(2k − 1)

L0

)
+ O (ε) . (13)

We make the change of variable ξ = εz according to the
multiscale analysis [26,27]. The space derivative operator
becomes ∂z = ∂ẑ + ε∂ξ . The fast space variation is ẑ and
the slow space variation is ξ . The values of ξ/L0 about 1
correspond to the number of round trips n about 1/ε, or to
a propagation distance z = L0/ε, in which L0 = Ls + LEr

is the total cavity length, with Ls = L1 + L2 + L3 + L4 the
total length of SMF28. The variation of the amplitude F with
respect to the slow variable ξ is obtained by requiring that the
first-order correction O(ε) evolves slower than linearly with
respect to the fast variable ẑ. It finally yields the cubic CGL
equation

i
∂F

∂ξ
= i

g1LEr

L0
F + η/2 + iχ

L0

∂2F

∂t2
+ (Dr + iDi) F |F |2 .

(14)
Here Dr is the effective self-phase modulation, it is negative.
Di is the effective nonlinear gain. When it is negative, it
corresponds to an effective absorption. Note that Dr and Di

are explicitly computed as functions of the physical parameters
of the laser, especially the orientation of the polarizer θ , the
coupling coefficient k, and the different lengths of fiber that
make up the NALM.

C. Solutions of the cubic complex Ginzburg-Landau equation

We will restrict ourselves to the study of two particular
solutions of Eq. (14): the stationary one, and the analytical
soliton solution. The first one is the stationary solution corre-
sponding to a cw operating regime of the laser. We analyze
the existence and stability criterion. We then investigate the
localized solution. The latter informs us about the single-pulse
regime.

1. Stationary solution

The solution with constant modulus expresses as

F = �ei(κξ−�t), (15)

where

�2 = Di |�|2L0 + g1LEr

χ
, (16)

κ = η

2χ

(
Di |�|2 + g1LEr

L0

)
− Dr |�|2. (17)

The solution (15) is independent of time when the temporal
phase shift � is zero. Therefore, the expressions of �

and κ are

� =
√

−g1LEr

DiL0
, κ = g1DrLEr

DiL0
. (18)

The solution (15) makes sense only if the constant amplitude
� is real, which means that the product Dig1 must be
negative. Moreover, the studies carried out in [24] show that
modulational instability occurs when the excess of linear gain
g1 is negative and the nonlinear gain Di is positive. As a result,
the stationary solution is stable if

g1 > 0 and Di < 0, (19)

i.e., the stability criterion for the cw behavior corresponds to a
positive excess of linear gain and a negative effective nonlinear
gain.

2. Localized solution

The dissipative localized solution to the CGL equation (14)
is

F = a(t)1+ide−iωξ . (20)

Here, d is the chirp parameter, expressed as

d = −3 (ηDr + 2χDi) +
√

9 (2χDi + ηDr )2 + 8 (ηDi − 2χDr )2

2 (ηDi − 2χDr )
, (21)

while the frequency shift is

ω = −g1LEr(4χd + ηd2 − η)

2L0(χd2 − χ − ηd)
. (22)

a(t) gives the hyperbolic secant shape of the pulse, as

a(t) = MN sech (Mt), (23)

where

M =
√

g1LEr

χd2 − χ − ηd
, (24)

N =
√

3d(4χ2 + η2)

2L0(ηDi − 2χDr )
. (25)
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The hyperbolic secant pulse exists if the factor MN is
real. Consequently, the stability condition of the localized
solution is deduced from Eq. (24). Indeed, M is real if g1

and the quantity (χd2 − χ − ηd) have the same sign. In the
defocusing case, where ηDr < 0, the hyperbolic secant pulse
is never stable from the mathematical point of view. However,
numerical resolution shows that if the excess of linear gain g1

is negative and the effective nonlinear gain Di is positive, then
the pulses are self-starting and arise spontaneously from noise.
Because the CGL equation does not take into account the gain
saturation, the number of pulses may grow up indefinitely.
Any refinement of the model taking into account the gain
saturation and the fact that the energy in the cavity is bounded
from above will stabilize the pulse train. Consequently, this
situation corresponds to stable mode locking, and the stability
criterion for mode locking is

(χd2 − χ − ηd) < 0. (26)

Note that the bistability between single-pulse and continuous
regime is not excluded when the effective nonlinear gain is
negative.

More specifically, the inclusion of quintic nonlinear terms
in the CGL equation (14) yields the so-called cubic-quintic
CGL equation, which possesses stable pulse solutions [28].
Such additional quintic terms have been derived in the case
of the fiber laser mode locked by nonlinear rotation of the
polarization in [29], by considering the terms of order ε2 in the
perturbative expansion. Insofar as the perturbation approach
is valid, the coefficients of the quintic terms remain small.
As the effective quintic nonlinear index and the effective
nonlinear gain-absorption coefficient (usually denoted by ν

and µ, respectively) tend to zero, the analytic fixed-amplitude
solution to the cubic-quintic CGL equation tends to solution
(20) to the cubic CGL equation [28]. The condition g1 < 0 is
still required for stability, and consequently condition (26) is
valid as a stability condition for the analytic fixed-amplitude
solution to the cubic-quintic CGL equation, in the limit of
small values of the coefficients of the quintic terms.

The validity of the perturbative procedure has been checked
in [29] for the fiber laser mode locked by nonlinear rotation of
the polarization, by comparing the results of the resolution of
the cubic-quintic CGL model with the full numerical resolution
of the equations governing light propagation in the laser cavity.
Quantitative agreement was found. In the present case of the
figure-8 laser, the full numerical resolution of the propagation
equations is a much more lengthy and complicated task, and
we shall not perform it. Notice that to conclude on the nature
of the laser behavior, only qualitative agreement is required.

D. Results and discussion

In the above section, we have given the conditions of
existence and stability for the cw and mode-locked regimes.
It is now possible to study the stability domains in the (θ,k)
plane. The length of the NALM also plays an important role in
the distribution of regimes in the (θ,k) plane. For this reason,
we varied L2 and L3. The length of the active fiber remains
constant.

To treat the effect of the NALM length on the regime
distribution in the (θ,k) plane, we proceed as follows. We

FIG. 2. (Color online) Stability diagram of the cw and ML
solutions for (a) L2 = 3 m, L3 = 2 m and (b) L2 = 7.5 m, L3 = 5 m
in the plane (θ,k). The yellow (light gray) region corresponds to
stable cw and TXtable unstable ML operation, the blue (black) region
corresponds to stable ML and unstable cw operation. The green (dark
gray) corresponds to unstable cw and unstable ML operation.

first fix the length L3 equal to zero and vary L2 from 0 to 23 m
by steps of 0.5 m. We took subsequently L3 = 1, 2, 3, 4, and
5 m, and for each value we varied L2. Note that the total length
is chosen in such a way that the net dispersion is still positive.
In this situation, the criterion (26) is valid. The cartographies
obtained reveal a great sensitivity to θ , k, L2, and L3. Examples
of diagrams are given in Fig. 2(a) for L2 = 3 m and L3 = 2 m
and in Fig. 2(b) for L2 = 7.5 m and L3 = 5 m. The operating
regimes are not symmetric with respect to k = 0.5 except for
L2 = L3. In some situations, however, a mode locking occurs
only for k > 0.5. Figure 3 shows a mapping corresponding
to L2 = 7.5 m and L3 = 1 m.

The analysis performed on the cartographies showed a
disappearance of the pulsed regime for some particular values
of lengths L2 and L3. This observation was expected because
the length of the NALM affects the total nonlinear phase
shift between clockwise and anticlockwise propagating pulses.
Interference between these two pulses gives a low contrast
between high and low intensities. The resulting pulse in
port 2 is larger than the input pulse in port 1 and makes
mode-locked operation of the laser unstable. The cartographies
also demonstrate that if the light is linearly polarized and

FIG. 3. (Color online) Stability diagram of the cw and ML
solutions for L2 = 7.5 m and L3 = 1 m in the plane (θ,k). The colors
have the same meaning as in Fig. 2.
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parallel to one of the eigenaxis of the entrance of fiber of
length L1 (θ = 0◦ or 90◦) or circularly polarized (θ = 45◦
or 135◦), then the localized solutions are unstable. This
observation is in agreement with experimental and numerical
results reported by Stentz and Boyd [30]. The authors showed
that the polarization plays an important role in figure-eight
fiber lasers. However, contrary to our model, the work did not
specify the polarizations leading to instability of the mode-
locked regime. In addition, according to our calculations,
the latter regime becomes unstable near zero net dispersion
η = βs

2Ls + βEr
2 LEr � 0+ [31]. Indeed, in the presence of an

excess of linear gain g1 and an effective nonlinear gain Di , the
pulse tends to grow dramatically.

The growth is equilibrated by nonlinear self-defocusing.
The latter requires both Kerr effect and dispersion. In the
absence of dispersion, there is no self-defocusing and the pulse
cannot be stabilized. If higher-order dispersion terms are taken
into account in the propagation equation, self-defocusing can
be recovered, and consequently pulse stabilization can occur.

III. NET NEGATIVE DISPERSION

A. Stability of stationary and localized solutions

We discuss in this section a situation corresponding to
a net negative dispersion η = βs

2Ls + βEr
2 LEr < 0. In such

case, lengths L2 and L3 are adjusted in such a way that the
figure-eight laser operates in the so-called soliton regime. It
is worth noticing that the previously established equations
remain valid, except the stability criterion of the pulsed regime.
The expression and the stability criterion of the constant
solution are not sensitive to the sign of dispersion.

To determine the criterion of existence and stability of
solution (20) in the case of net negative dispersion and positive
nonlinear gain Di , we consider the criterion established by
Akhmediev et al. [32]. They found that the soliton (20) is stable
when the denominator in the expression for M is positive.
The excess of linear gain g1 is positive and the zero solution
(F ∼ 0) is unstable.

(χd2 − χ − ηd) > 0. (27)

On the (Di ,χ ) plane, the solution is stable below the curve

Di = DS
i = −χDr

3
√

η2 + 4χ2 + η

4η2 + 18χ2
, (28)

and unstable above this curve. Since the pulse solution of
the cubic CGL equation is stable, additional quintic terms are
not required to describe the laser behavior, in contrast to the
case of normal dispersion. We point out that, in our model,
the coefficients of the CGL equation explicitly depend on the
characteristics of the laser, hence condition (27) expresses
in terms of laser parameters. It should be emphasized that
when the nonlinear gain Di is negative, the stability condition
is unknown at this time. The continuous laser emission
corresponding to a stable stationary solution occurs in this case
for a positive excess of linear gain g1. In addition, the compet-
ition between continuous and mode-locked emission could
be envisaged. Finally, it is important to note that for positive
nonlinear gain and positive excess of linear gain, the localized

solution can be distorted for long-distance propagation by the
instability developed by the background state.

B. Pulse energy

In the present focusing case, the hyperbolic secant pulse
solution (21)–(26) to CGL is stable from the mathematical
point of view, and hence it represents correctly the physical
laser pulse in the cavity. Therefore, it is possible to use the
analytical expression of the pulse to investigate its energy as
a function of k, θ , and NALM length. In a homogeneously
broadened gain medium, the saturated gain can be written as

g0 = g′

1 + (E/ES)
, (29)

where g′ = 1.26 m−1 is the unsaturated gain, ES = 0.1 pJ the
saturation energy, and E the pulse energy. This saturated gain
is also the gain which compensates the linear losses, g0, given
in Eq. (9). It is now easy through Eq. (29) to deduce the
expression of energy.

The inspection of the single-pulse soliton energy in the
plane (θ,k) versus the variation of the length of NALM is
performed in the soliton regime. For this condition, L2 + L3

must be greater than 24 m. We have thus taken L3 = 24 m and
varied L2 from 0 to 20 m with a step of 0.5 m. The interesting
point of our analytical simulations is that the most energetic
solitons are always obtained with a highly asymmetrical
coupler and close to alignment between the polarizer and the
fast or slow axes at the entrance of fiber placed in port 1 of
the variable coupler (corresponding, respectively, to θ = 0◦ or
90◦). The regions with mode-locking energy greater than 2 pJ
are small and occur if the coupling coefficient k of the coupler
is below 0.2 or above 0.8. Such zones are observed when the
polarizer is aligned with the fast axis of the entrance of the fiber
of length L1. No energies greater than 2 pJ were observed in the
(θ,k) plane for an alignment between the polarizer and the slow
axis of the entrance of fiber of length L1, except for L2 equal
to 9.5 m. The opposite situation is also observed. An example
of cartography is represented in Fig. 4 for L2 = 19 m and
L3 = 24 m. The maximum energy is about 24 pJ; it is obtained
for θ = 90◦, and k close to 0 or k close to 1. If L2 = 9.5 m,
the highest energy corresponds to θ = 0◦ (or 180◦) and k close
to 1, or θ = 90◦ and k close to 0. From the experimental point
of view, the insertion of a simple polarization controller after
the polarizer allows the rotation of the polarization and the
alignment between the latter and one of the principal axes of
the input fiber of length L1.

C. Pulse duration

Our analytical approach is also able to determine the pulse
duration in the soliton regime. The pulse width is correlated
to the pulse energy through the parameter M . Since the pulse
width is t0 = 1/M , it depends on the parameter M , which
is a function of the excess of linear gain g1, the coupling
coefficient k, the orientation of the polarizer, and the length
of the nonlinear amplifying loop mirror. Since the excess of
linear gain g1 is self-adjusted and is not known in our model,
for exploring the variations of t0 in the plane (θ,k), we need
some other expression of M , which do not involve g1. Such an
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FIG. 4. (Color online) Variation of pulse energy in the (θ,k) plane
for L2 = 19 m and L3 = 24 m. In the blue (black) region, the energy
is above 8 pJ; in the green (dark gray) region, the energy is between
2 and 8 pJ; and in the hatched region, the energy is below 2 pJ. In
the yellow (light gray) region, either the pulses are unstable or their
stability is not determined and continuous emission occurs.

expression can be drawn from the pulse energy E = ∫ |F |2dt .
After some calculation, we obtain

E = 2MN2. (30)

The pulse duration is thus

t0 = 2N2

E
, (31)

which shows explicitly that it is inversely proportional to the
energy.

The latter can be computed from the expression of the
saturated gain (29) as E = (g′/g0 − 1)ES , where N is given
by (25) and the gain threshold g0 by (9), both of which do not
involve g1. Through these quantities, the pulse width is also
affected by the total dispersion in the cavity η and by nonlinear
effects corresponding to the effective self-phase modulation
Dr and the effective nonlinear absorption −Di .

In order to explore the influence of the length of NALM
on the pulse duration in the (θ,k) plane, we proceed in the
same way as for studying the pulse energy. L2 has been varied
between 0 and 20 m by a step of 0.5 m and L3 has been
fixed to 24 m. Figure 5 shows an example of cartography for
L2 = 19 m and L3 = 24 m. The most important observation
is that the regions of ultrashort pulses are not obtained only for
the highly asymmetrical coupler, but also for the intermediate
coupling coefficient (k � 0.35–0.6). In addition, a large range
of orientation angles (θ ) can be chosen to produce ultrashort
pulses (θ varies from 25◦ to 155◦). Note that the zones where
the pulse width is shorter than 500 fs are small compared
with the regions where the pulses are unstable or where their
stability is not determined. From the experimental point of
view, the generation of ultrashort single pulses from a figure-
eight laser based on the NALM requires the optimization of
the parameters of the cavity, in particular the orientation of
the polarizer, the coupling coefficient, and the length of the
NALM.

FIG. 5. (Color online) Evolution of the pulse duration in the (θ,k)
plane for L2 = 19 m and L3 = 24 m. In the hatched region, the
duration is above 1 ps; in the green (dark gray) region, it is between
0.5 and 1 ps; and in the blue (black) region, below 0.5 ps. The yellow
(light gray) regions have the same meaning as in Fig. 4.

IV. CONCLUSION

We have established theoretically the master equation
valid for both normal and anomalous dispersion regimes for a
figure-eight single-pulse all-fiber laser based on NALM. The
master equation of CGL type has been derived from two cou-
pled nonlinear Schrödinger equations describing the evolution
of the electric-field amplitude in the fiber. The coefficients of
the equation are directly related to the characteristics of the
laser cavity. In the normal dispersion case, we have presented
the regions of stability of the ML and cw regimes in the
(θ,k) plane. The effect of the length of the NALM was also
pointed out. In the anomalous dispersion regime, thanks to
its stability, the analytical solution describes well the real
pulse, and consequently the pulse duration and energy have
been investigated. The model predicts that the most energetic
solitons occur for the high asymmetrical coupler and alignment
between the polarizer and the fast or slow axes at the entrance
of the fiber placed after the polarizer. Concerning the ultrashort
single pulses, they may also exist for the intermediate coupling
coefficient.

APPENDIX

This appendix lists the analytic solutions of the propagation
equations for each piece of fiber.

1. Clockwise pulse propagation in NALM

Hereafter are the expressions of the copropagating wave
electric field E+ = (u+,v+) after propagation in each piece of
fiber composing the NALM:

u+,2 = u+,0e
−insL2 + ε

[
− iβs

2

2
L2

∂2u+,0

∂t2

+ iγL2(u+,0|u+,0|2 + Au+,0|v+,0|2)

+ γB

4ns

(e4insL2 − 1)v2
+,0u

∗
+,0

]
e−insL2 + O(ε2), (A1)
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v+,2 = v+,0e
−insL2 + ε

[
− iβs

2

2
L2

∂2v+,0

∂t2

+ iγL2(v+,0|v+,0|2 + Av+,0|u+,0|2)

+ γB

4ns

(e4insL2 − 1)u2
+,0v

∗
+,0

]
e−insL2 + O(ε2), (A2)

u+,Er = u+,2e
(g−inEr)LEr + ε

[
LEr

(
ρ − iβEr

2

2

)
∂2u+,2

∂t2

+ iγ (u+,2|u+,2|2 + Au+,2|v+,2|2)
e2gLEr − 1

2g

+ iγBv2
+,2u

∗
+,2

e(2g+4inEr)LEr − 1

(2g + 4inEr)

]
e(g−inEr)LEr + O(ε2),

(A3)

v+,Er = v+,2e
(g−inEr)LEr + ε

[
LEr

(
ρ − iβEr

2

2

)
∂2v+,2

∂t2

+ iγ (v+,2|v+,2|2 + Av+,2|u+,2|2)
e2gLEr − 1

2g

+ iγBu2
+,2v

∗
+,2

e(2g+4inEr)LEr − 1

(2g + 4inEr)

]
e(g−inEr)LEr + O(ε2),

(A4)

u+,3 = u+,Ere
−insL3 + ε

[
− iβs

2

2
L3

∂2u+,Er

∂t2

+ iγL3(u+,Er|u+,Er|2 + Au+,Er|v+,Er|2)

+ γB

4ns

(e4insL3 − 1)v2
+,Eru

∗
+,Er

]
e−insL3 + O(ε2),

(A5)

v+,3 = v+,Ere
−insL3 + ε

[
− iβs

2

2
L3

∂2v+,Er

∂t2

+ iγL3(v+,Er|v+,Er|2 + Av+,Er|u+,Er|2)

+ γB

4ns

(e4insL3 − 1)u2
+,Erv

∗
+,Er

]
e−insL3 + O(ε2),

(A6)

2. Anticlockwise pulse propagation in NALM

The solutions of the counterpropagating wave electric field
E− = (u−,v−) after propagation in each piece of fiber in the
NALM are given by

u−,3 = u−,0e
−insL3 + ε

[
− iβs

2

2
L3

∂2u−,0

∂t2

+ iγL3(u−,0|u−,0|2 + Au−,0|v−,0|2)

+ γB

4ns

(e4insL3 − 1)v2
−,0u

∗
−,0

]
e−insL3 + O(ε2), (A7)

v−,3 = v−,0e
−insL3 + ε

[
− iβs

2

2
L3

∂2v−,0

∂t2

+ iγL3(v−,0|v−,0|2 + Av−,0|u−,0|2)

+ γB

4ns

(e4insL3 − 1)u2
−,0v

∗
−,0

]
e−insL3 + O(ε2), (A8)

u−,Er = u−,3e
(g−inEr)LEr + ε

[
LEr

(
ρ − iβEr

2

2

)
∂2u−,3

∂t2

+ iγ (u−,3|u−,3|2 + Au−,3|v−,3|2)
e2gLEr − 1

2g

+ iγBv2
−,3u

∗
−,3

e(2g+4inEr)LEr − 1

(2g + 4inEr)

]
e(g−inEr)LEr + O(ε2),

(A9)

v−,Er = v−,3e
(g−inEr)LEr + ε

[
LEr

(
ρ − iβEr

2

2

)
∂2v−,3

∂t2

+ iγ (v−,3|v−,3|2 + Av−,3|u−,3|2)
e2gLEr − 1

2g

+ iγBu2
−,3v

∗
−,3

e(2g+4inEr)LEr − 1

(2g + 4inEr)

]
e(g−inEr)LEr + O(ε2),

(A10)

u−,2 = u−,Ere
−insL2 + ε

[
− iβs

2

2
L2

∂2u−,Er

∂t2

+ iγL2(u−,Er|u−,Er|2 + Au−,Er|v−,Er|2)

+ γB

4ns

(e4insL2 − 1)v2
−,Eru

∗
−,Er

]
e−insL2 + O(ε2),

(A11)

v−,2 = v−,Ere
−insL2 + ε

[
− iβs

2

2
L2

∂2v−,Er

∂t2

+ iγL2(v−,Er|v−,Er|2 + Av−,Er|u−,Er|2)

+ γB

4ns

(e4insL2 − 1)u2
−,Erv

∗
−,Er

]
e−insL2 + O(ε2).

(A12)

3. Propagation along the length L1 and L4 of standard fiber

The electric field E(0) = (u0,v0) at the entrance of the
piece of the standard fiber inserted after the isolator becomes,
after propagation over a distance L1, E(L1) = (u1,v1), and is
given by

u1 = u0e
−insL1 + ε

[
− iβs

2

2
L1

∂2u0

∂t2

+ iγL1(u0|u0|2 + Au0|v0|2)

+ γB

4ns

(e4insL1 − 1)v2
0u

∗
0

]
e−insL1 + O(ε2), (A13)

v1 = v0e
insL1 + ε

[
− iβs

2

2
L1

∂2v0

∂t2
+ iγL1(v0|v0|2 + Av0|u0|2)

− γB

4ns

(e−4insL1 − 1)u2
0v

∗
0

]
einsL1 + O(ε2). (A14)

After the propagation through length L4 of standard
fiber, we obtain the electric field Et (L4) = (ut,4,vt,4)
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expressed by

ut,4 = ut,0e
−insL4 + ε

[
− iβs

2

2
L4

∂2ut,0

∂t2

+ iγL4(ut,0|ut,0|2 + Aut,0|vt,0|2)

+ γB

4ns

(e4insL4 − 1)v2
t,0u

∗
t,0

]
e−insL4 + O(ε2), (A15)

vt,4 = vt,0e
insL4 + ε

[
− iβs

2

2
L4

∂2vt,0

∂t2

+ iγL4(vt,0|vt,0|2 + Avt,0|ut,0|2)

− γB

4ns

(e−4insL4 − 1)u2
t,0v

∗
t,0

]
einsL4 + O(ε2). (A16)
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and A. Hideur, Opt. Express 15, 10725 (2007).
[12] I. N. Duling III, Opt. Lett. 16, 539 (1991).
[13] M. J. Guy, D. U. Noske, A. Boskovic, and J. R. Taylor, Opt.

Lett. 19, 828 (1994).
[14] E. A. Kuzin, B. Ibarra Escamilla, D. E. Garcia-Gomez, and

J. W. Hauss, Opt. Lett. 26, 1559 (2001).
[15] B. Ibarra Escamilla, O. Pottiez, E. A. Kuzin, M. Duran-Sanchez,

and J. W. Hauss, Laser Phys. 19, 368 (2009).

[16] A. V. Avdokhin, S. V. Popov, and J. R. Taylor, Opt. Express 11,
265 (2003).

[17] J. W. Nicholson and M. Andrejco, Opt. Express 14, 8160
(2006).

[18] N. H. Seong and D. Y. Kim, Opt. Lett. 27, 1321 (2002).
[19] M. J. Guy, D. U. Noske, and J. R. Taylor, Opt. Lett. 18, 1447

(1993).
[20] H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Quantum

Electron. 30, 200 (1994).
[21] J. Theimer and J. W. Haus, J. Mod. Opt. 44, 919 (1997).
[22] O. Pottiez, B. Ibarra Escamilla, and E. A. Kuzin, Laser Phys. 19,

371 (2009).
[23] M. Salhi, A. Haboucha, H. Leblond, and F. Sanchez, Phys. Rev.

A 77, 033828 (2008).
[24] H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and

F. Sanchez, Phys. Rev. A 65, 063811 (2002).
[25] G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic,

New York, 1995).
[26] T. Taniuti and C.-C. Wei, J. Phys. Soc. Jpn. 24, 941 (1968).
[27] H. Leblond, J. Phys. B 41, 043001 (2008).
[28] J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and

S. Wabnitz, Phys. Rev. E 55, 4783 (1997).
[29] E. Ding and J. N. Kutz, J. Opt. Soc. Am. B 26, 2290 (2009).
[30] A. J. Stentz and R. W. Boyd, Opt. Lett. 19, 1462 (1994).
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