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Effect of Kerr nonlinearity on an Airy beam
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The effect of Kerr nonlinearity on an Airy beam is investigated by using the nonlinear Schrödinger equation.
Based on the moments method, the evolution of the Airy beam width in the rms sense is analytically described.
Numerical simulations indicate that the central parts of the major lobe of the Airy beam initially give rise to radial
compression during propagation in a focusing medium, even though the rms beam width broadens. The partial
collapse of the center parts of the major lobe of the beam appear below the threshold for a global collapse. The
evolutions of the field distributions of the Airy beams are different during propagation in different Kerr media
while the beams still travel along the parabolic trajectory just as the beam propagates in free space.
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I. INTRODUCTION

The original Airy wave packets introduced by Berry and
Balazs in the context of quantum mechanics contain infinite
energy [1]. Recently, Siviloglou and Christodoulides [2,3] ex-
tended the model by introducing a finite-energy Airy beam for
the generation of optical Airy beams. Since then, the Airy beam
has been studied extensively [4–10]. These investigations
confirmed the unique features of the beam such as diffraction-
free and transverse acceleration [2–4], self-healing [5], sorting
microscopic particles [6], linear and angular momentum, the
Poynting vector [7], nonlinear generation and manipulation [8]
of the Airy beam, and changing the phase-matching condition
to switch the acceleration direction and the wavelength of
the output Airy beam [9] have been studied. Polynkin et al.
studied the filamentation of femtosecond laser Airy beams
in air [10] and in water [11]. Kasparian and Wolf elaborated
the transverse energy fluxes of the Airy beam where Kerr
nonlinearity plays an important role [12] and the traces of
Airy beams carrying high intensities [13]. They found that the
traces of the plasma channels roughly follow that of the Airy
beam and the Kerr lens induces transverse energy fluxes much
larger than the Airy “prism” at the main peak [10–13]. The
nonlinear Airy states in photorefractive media with diffusion
nonlinearity were studied by Jia et al. [14]. These works show
the interesting properties and potential applications of Airy
beams in the nonlinear optics regime [8–14]. In this work, we
study the propagation of the Airy beams in a Kerr medium
using the nonlinear Schrödinger (NLS) equation. Because of
the complexity of evolution of Airy beams in a Kerr medium,
we apply the moments method [15–19], which provides a
convenient and rigorous way of obtaining the evolution of the
relevant parameters, without any assumption of the solution, to
obtain important information about the Kerr effect on the Airy
beam. An analytical description of the evolution of the beam
width of an Airy beam in the rms sense is obtained. The critical
powers of the Airy beams as a function of the beam parameters
ax and ay that are associated with the modulating part of
the Airy beams are analytically obtained. By using numerical
simulations for the nonlinear dynamics of the beams in the Kerr
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medium, it is found that the central parts of the major lobe of
the Airy beam initially give rise to radial compression during
propagation in focusing media even though the rms beam width
remains constant or broadens. With increasing initial power,
the central parts of the major lobe of the Airy beam appear
partially collapsed [19–21] while the rms beam width still
increases or remains constant. The field distributions of the
Airy beam are different during propagation in different Kerr
media but the beam still travels along the parabolic trajectory
just as when the beam propagates in free space. The intensity
distribution of the central parts of the Airy beam increases
when the beam propagates in a focusing medium, and the
intensity distribution of the sides of the Airy beam decreases
in comparison with that of the beam during propagation in free
space. When the beam propagates in a defocusing medium,
the intensity distribution of the central parts of the Airy beam
decreases and the intensity distribution of the sides of the Airy
beam increases in comparison with that of the beam during
propagation in free space. These results are consistent with the
results of the works of Polynkin and Kasparian [10–13].

II. THE MOMENTS METHOD ANALYSIS

The propagation of a light beam in a Kerr medium is
described in the paraxial approximation by a NLS equation:

∂2E

∂x2
+ ∂2E

∂y2
− 2ik
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+ 2n2k

2

n0
|E|2E = 0, (1)

where k is the linear wave number, n0 is the linear refraction
index of the medium, n2 is the third-order nonlinear coefficient,
x and y are the transverse coordinates, and z is the longitudinal
coordinate, respectively. Since a general solution of this
problem cannot be given, in this section we apply the moments
method to obtain the nonlinear dynamics information about
the Kerr effect on the Airy beam by analyzing the evolution of
several integral quantities derived from the NLS equation. A
definition of these quantities is
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1050-2947/2010/82(4)/043832(4) 043832-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.82.043832


RUI-PIN CHEN, CHAO-FU YIN, XIU-XIANG CHU, AND HUI WANG PHYSICAL REVIEW A 82, 043832 (2010)

I3(z) = i

k

∫ ∫
s

[
x

(
E

∂E∗

∂x
− E∗ ∂E

∂x

)

+ y

(
E

∂E∗

∂y
− E∗ ∂E

∂y

)]
dxdy, (2c)

I4(z) = 1

2k2

∫ ∫
s

(∣∣∣∣∂E

∂x

∣∣∣∣
2

+
∣∣∣∣∂E

∂y

∣∣∣∣
2

− k2n2

n0
|E|4

)
dxdy.

(2d)

The quantities are associated with the beam power (I1), the
beam width (I2), the momentum (I3), and the Hamiltonian (I4)
and they satisfy a closed set of coupled ordinary differential
equations; thus [15,16], dI1(z)/dz = 0, dI2(z)/dz = I3(z),
dI3(z)/dz = 4I4(z), and dI4(z)/dz = 0. With the important
invariant under evolution, Q = 2I4I2 − I 2

3 /4, one obtains an
Ermakov-Pinney [22] equation describing the dynamics of the
scaled beam width:

d2I
1/2
2 (z)

dz2
= Q

I
3/2
2 (z)

. (3)

For a finite-power Airy beam as an initial field distribution
[1–3],

E(x,y; z = 0)

= A0Ai(x/x0) exp(axx/x0)Ai(y/x0) exp(ayy/x0), (4)

where A0 is the amplitude of the complex amplitude
E(x,y,z = 0), x0 is an arbitrary transverse scale, and ax and ay

are small positive parameters. The general solution of Eq. (3)
with the Airy beam as an initial field distribution can be
given [22] as
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It should be noted that the Fourier transform and Parseval’s
formula have been used for calculating these quantities.
Equation (5) describes the variation of the scaled beam width
of the Airy beam in a Kerr medium. For a better expression
of the dependence on the nonlinearity, Pcr is defined as the
critical power required to collapse the beam with a uniform
wave front [18]. When Q = 0, the rms beam width remains
constant, as recognized from Eq. (5). Then the critical value
of I1 can be obtained from Eq. (6) and the critical power can
be obtained by Pcr = n0cε0I1/2 for the Airy beam to yield

Pcr = cε0π
2n2
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) , (7)

where c is velocity of light in vacuum and ε0 is the permittivity
of free space. The value of the critical power of the Airy

FIG. 1. (Color online) The critical powers of the Airy beam for
different ax and ay .

beam is only dependent on the beam profile of the transverse
distribution and the nonlinear parameters of the medium.
K0(x) is the modified Bessel function of the second kind and
can be expanded as follows:

K0(x) =
√

π

2x
exp(−x)

[
n−1∑
k=0

(−1)n
�(k + 1/2)

k!�(−k + 1/2)
(2x)−k

+O(|x|−n)

]
, (8)

where �(·) is the gamma function. When ax and ay tend to
infinity, in this case, n take the value of 1. Substituting Eq. (8)
into Eq. (7), the critical power of the Airy beam reduces to the
critical power of the Gaussian beam:

P G
cr = πcε0n

2
0

n2k2
, (9)

where the critical power of a Gaussian beam, P G
cr , can also be

obtained by performing the preceding process with a Gaussian
profile as an initial field distribution. Figure 1 shows the
logarithmic scale of the ratio of the critical powers of the
Airy beams to that of the Gaussian beam. As recognized from
Fig. 1, the critical powers of the Airy beams increase with
decreasing modulating parameters ax and ay , and the values
of the critical powers of the Airy beams tend the critical power
of a Gaussian when ax and ay tend to infinity. Obviously, the
resulting powers, Pcr, is thus the upper bound for the critical
power [21]. When the initial power exceeds the critical power
Pcr, the beam rms width goes to zero in a finite propagation
distance as predicted by the moments method, and a global
collapse occurs.

III. NUMERICAL SIMULATION AND ANALYSIS

Numerical simulations are carried out by using the Crank-
Nicholson finite-difference method [23] to investigate further
the Kerr effect on an Airy beam. In the following numerical
calculation, we take the wavelength λ = 0.53 µm, x0 =
100 µm, and z0 = kx2

0/2 = 6 mm, respectively. The peak
intensities as a function of the propagation distance with
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FIG. 2. (Color online) The peak intensity of the Airy beam as
a function of the propagation distance with different initial powers:
(a) ax = ay = 0.1 and (b) ax = ay = 0.3.

different initial powers are shown in Fig. 2 for ax = ay = 0.1
and ax = ay = 0.3. For the sake of intuition, the initial powers
are specified below not only in terms of Pcr but also in terms
of P G

cr .
The traces have been normalized with respect to their initial

peak intensities in Fig. 2. Although the moments method
predicts that the rms beam width broadens when the initial
power is below the critical power, the peak intensities initially
increase, which would suggest that the major lobe of the
Airy beams initially compresses. Obviously the rms beam
broadens because the departure of each lobe from the beam
center more than compensates for the compression of each
lobe. The simulations show that, with further increasing initial
power, the intensity at the central parts of the major lobe
dominate and eventually lead to a collapse [19–21], while
the rms beam width still increases or remains constant. By
using numerical simulations, we find that the ratio of the
initial powers which give rise to partial collapse to the critical
power are different with different beam parameters such as
the cases shown in Fig. 2(a) for ax = ay = 0.1 and Fig. 2(b)
for ax = ay = 0.3. The ratio of the initial powers which give
rise to partial collapse to the critical power increases with the
increasing beam parameters ax and ay . Numerical simulations
indicate that the partial collapse occurs for ax = ay = 0.1
when Pin = 0.1Pcr = 2.0P G

cr and the partial collapse occurs
for ax = ay = 0.3 when Pin = 0.5Pcr = 1.4P G

cr .
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FIG. 3. (Color online) The intensity distribution of an Airy beam
(ax = ay = 0.1) at different propagation distances with initial powers
Pin = 0.05Pcr = 1.0P G

cr in (a, b) focusing medium, (c, d) free space,
and (e, f) defocusing medium. The thin (red) line in the first plot
indicates the position of the longitudinal cross section.

In order to further illustrate how the beam is evolved, the
intensity distributions of the Airy beam in the focusing non-
linear medium with the beam parameters ax = ay = 0.1 and
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initial powers Pin = 0.05Pcr = 1.0P G
cr at different propagation

distances are shown in Figs. 3(a) and 3(b). For comparison,
the intensity distributions of the Airy beam with the same
beam parameters in free space are shown in Figs. 3(c) and
3(d), and with the defocusing medium in Figs. 3(e) and 3(f).
Figures 3(a), 3(c), and 3(e) show the transversal intensity
distribution of the Airy beam at propagation distances z = 4z0

and 12z0, respectively. Figures 3(b), 3(d), and 3(f) show
the evolution of the intensity distribution in the longitudinal
cross sections of the Airy beam, which pass through the
center of the beam and the major lobe, during propagation
in focusing medium, free space, and defocusing medium,
respectively. Again, the intensities are normalized with respect
to their initial peak intensities. As recognized from Fig. 3, the
beams travel along the identical accelerating trajectory during
propagation either in the Kerr medium or in free space. The
beam profile remains almost constant up to a certain distance
during propagation in the Kerr medium just as for propagation
in free space [2,3]. The field distributions of the Airy beam
are different during propagation in the Kerr medium than in
free space. When the beam propagates in a focusing medium,
the intensity distribution of the central parts of the Airy beam
becomes more intensive and the intensity distribution of the
sides of the Airy beam becomes weaker than that of the
beam during propagation in free space. Numerical simulations
indicate that the intensity distribution of the central parts of
the Airy beam exceed the intensity distribution of the sides of
the Airy beam, including the major lobe of the beam, after the
beam propagates a certain distance, although the beam profile
still remains invariant just as when the beam propagates in free
space, as shown in Fig. 3(a). When the beam propagates in a
defocusing medium, the intensity distribution of the central
parts of the Airy beam becomes weaker and the intensity

distribution of the sides of the Airy beam becomes more
intensive than that of the beam during propagation in free
space, as shown in Fig. 3(e). These results confirm that the
rms beam width of the Airy beam in free space is bigger than
that in the focusing medium but less than that in the defocusing
medium, although the propagation traces and beam profiles are
identical. These results are in agreement with the analytical
expression of Eq. (5) and are consistent with the results of the
works of Polynkin and Kasparian [10–13].

IV. CONCLUSION

The effect of the Kerr nonlinearity on an Airy beam has been
studied by using the NLS equation. The evolution of the Airy
rms beam width has been analytically described. The analytical
expression of the critical powers for different parameters ax

and ay is given. By using numerical simulations, the dynamic
interaction between nonlinear focusing and linear diffraction
has been analyzed. It has been found that the partial collapse
of the major lobe of the Airy beam appears when the initial
power is still below the critical collapse power. The beam
profile remains almost constant during propagation, either in
the Kerr medium or in free space for a certain distance. The
field distribution of the Airy beam differs during propagation
in different nonlinear media.
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