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Making beam splitters with dark soliton collisions
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We show with numerical simulations that for certain simple choices of parameters, the waveguides induced
by colliding dark solitons in a Kerr medium yield a complete family of beam splitters for trapped linear waves,
ranging from total transmission to total deflection. The way energy is transferred from one waveguide to another
is similar to that of a directional coupler, but no special fabrication is required. Dark soliton beam splitters offer
potential advantages over their bright soliton counterparts: Their transfer characteristics do not depend on the
relative phase or speed of the colliding solitons; dark solitons are generally more robust than bright solitons; and
the probe peaks at nulls of the pump, enhancing the signal-to-noise ratio for probe detection. The last factor is
especially important for possible application to quantum information processing.
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I. INTRODUCTION

Solitons, both bright and dark, and both temporal and
spatial, imprint waveguides through their induced refractive-
index profile. These induced waveguides can be used to guide
linear waves, and this has been demonstrated theoretically
and experimentally. The literature at this point is extensive
(for bright solitons, see, e.g., [1–9]; for dark solitons, see the
review by Kivshar [10] and [11,12]).

An important application of the idea of guiding linear waves
with solitons is controlling light with light. The switching
of light waves using induced directional couplers has been
demonstrated experimentally for both bright [8] and dark [13]
solitons. The directional couplers used in these experiments
consist of a length of parallel waveguides; the length and
separation of the waveguides determine the extent of the
energy transfer. Dark solitons can also undergo Y splitting,
which produces a bifurcation of the induced waveguide, and
beam splitting has similarly been demonstrated with these
Y junctions [11,13].

An attractive alternative to a strip of parallel waveguides
for directional coupling is the X junction formed by a soliton
collision. Akhmediev and Ankiewicz [14] analyze the use
of two colliding Kerr solitons, both bright and dark, for
constructing induced X junctions and couplers, and Miller and
Akhmediev [15] give a comprehensive analysis of the effect of
an N -way bright soliton collision on the scattering of guided
waves, also in a Kerr medium. The corresponding analysis for
dark solitons is provided by Miller [16]. While useful energy
transfer results for bright solitons, the conclusion of [14,16]
is that the induced X junctions for dark solitons have zero
cross talk, the equivalent of a wire crossing, and no coupling
of energy can be exploited. This work assumes, however, that
the propagation of both the solitons and the guided waves is
governed by the same group velocity dispersion (GVD) and
nonlinear parameters.

This assumption—that the soliton pump and the signal
probe propagation equations have the same GVD and nonlinear
coupling parameters—does not ordinarily hold in practice,
especially when we aim at detecting the probe in the presence
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of the much more intense pump and therefore use different
wavelengths and polarizations for the pump and probe.
Consider, for example, solitons in a birefringent fiber. The
solitons see the self-phase modulation index, while the probe
sees the cross-phase modulation index, and these depend on
the polarization choices of the implementation. Furthermore,
both the GVD and coupling constants are in general functions
of wavelength [17].

Recently, Rand and the author discussed the use of bright
soliton collisions to build beam splitters, including mode-
separating beam splitters [18], and phase shifters [19]. This
suggests the possibility of using dark solitons in the same
way. Dark solitons have simpler collision dynamics than
their bright counterparts [10], are generally more stable in
the presence of perturbations [11], and may offer some
important advantages in this application. This hope might seem
dashed by the result mentioned previously [14,16]: Linear
waves guided by colliding dark solitons are not scattered
at junctions in the induced waveguides, assuming that the
propagation of pump and probe are governed by the same
GVD and nonlinear parameters. In this article, we relax
this unnecessarily restrictive assumption and show through
simulations that certain simple choices of GVD and nonlinear
coupling constant in the probe equation yield a complete,
one-parameter family of beam splitters.

II. THE MODEL AND BOUND STATE SOLUTIONS

We adopt the normalized self-defocusing cubic nonlinear
Schrödinger equation for the normal dispersion region to
model the pump,

i
∂P

∂x
+ ∂2P

∂t2
− 2|P |2P = 0, (1)

and use Blow and Doran’s analytical solution to this equation
for two dark solitons [20] in what follows. Here, as usual, t

is time relative to the frame moving with the soliton, and x is
distance in the direction of propagation. The propagation of
the probe signal is described by the linear equation

i
∂u

∂x
+ κ1

∂2u

∂t2
− 2κ2|P |2u = 0, (2)
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which is exactly the linear Schrödinger wave equation, with
potential |P |2 determined by the pump. The intensity of the
probe is assumed to be very much less than that of the pump
so that the probe signal has no effect on the pump. We also
assume that the interaction interval is short enough so that
walk-off between the pump and probe can be neglected. The
parameters κ1 and κ2 reflect the facts that in general the pump
and probe can differ in wavelength and that the nonlinear term
in the pump equation is due to self-phase modulation while the
corresponding term in the probe equation is due to cross-phase
modulation. A similar two-parameter probe equation is derived
in some detail by de la Fuente and Barthelemy [3].

We consider first the special case when the wavelengths
and relative polarizations of the pump and probe can be
adjusted so that the two free parameters in the probe equation
are equal: κ1 = κ2 = κ . When the pump signal is just a
single dark (actually, black) soliton, |P |2 = tanh2(t). To reduce
the corresponding probe equation to a familiar eigenvalue
problem, let

u(x,t) = w(t)e−iκ(E+2)x, (3)

which results in

w′′ + [E + 2sech2(t)]w = 0. (4)

This is a form of the associated Legendre equation [21] with
degree � and order m, where �(� + 1) = 2 and m2 = −E.
Taking � = 1 and m2 = −E = 1 then shows that w = sech(t)
is a fundamental trapped mode of the waveguide induced by
the dark soliton. Finally, the probe signal in this case is

u(x,t) = sech(t)e−iκx . (5)

We conclude that the guided wave when κ �= 1 differs from
the special case when κ = 1 only by a phase factor e−i(κ−1)x .
This corresponds to what can be called an additional dynamical
phase if the probe equation is interpreted as a Schrödinger wave
equation. We will next see that this difference completely
changes the probe’s scattering behavior at the junctions
produced by dark soliton collisions.

III. SCATTERING AT JUNCTIONS

The behavior of the guided wave at the collision-induced
junction depends on κ in a very regular way. First, Fig. 1
shows the pump and probe for the case when κ = 1. The probe
emerges unchanged (except for a displacement) after passing
the junction, as predicted in [14,16]. Figure 2 then shows the
intensity of the propagating probe signal in the same induced
waveguide for the more general cases κ = 1.5,2, and 2.5. As κ

increases from 1, the effect of scattering at the junction changes
from transparent (κ = 1) to a 50:50 beam splitter (κ = 1.5)
to total deflection (κ = 2) and back to a 50:50 beam splitter
(κ = 2.5). This behavior continues periodically as κ continues
to increase. For example, Fig. 3 shows the intensity of the probe
(as seen from above) for the case κ = 12, which corresponds to
a total transfer of energy to the deflected beam. The captured
wave bounces back and forth between the two arms of the
induced waveguide κ/2 times, as in a directional coupler
[22].

Thus the net effect of the induced waveguide is the same as
two linear polarizers with their axes rotated at relative angle

FIG. 1. (Color online) (top) The pump signal, a dark soliton
collision, using the analytical solution of Eq. (1) from Blow and
Doran [20]. The velocity parameters are λ1 = 0.0 and λ2 = 0.04.
(bottom) The corresponding probe signal for the case when the pump
and probe equations have the same constants (κ = 1), illustrating zero
cross talk [14,16].

(κ − 1)π/2. Figure 4 shows the transmitted and deflected
energy as a function of κ for −1 � κ � 6, measured from
numerical simulations. The behavior is remarkably close to the
square of a sinusoid, and in fact, in the range 1 � κ � 2, the
measured energy ratios differ from sin2(κπ/2) and cos2(κπ/2)
by less than 1%. Note, however, that the point κ = 0 is singular
because there the probe propagates independently of the pump;
points for very small |κ| are omitted from the plot.

The way the soliton-guided beam splitter works is similar
to the way a directional coupler works, but they differ in
important ways. In the usual kind of directional coupler, two
identical waveguides are brought together to run in parallel,
and the amount of energy transfer is determined by the length
of the run and their distance apart. In the same way, the two
waveguide arms induced by a dark soliton collision, which is
always repulsive, approach each other, and energy in one of
the arms can then couple to the second. By analogy, one might
suppose that the relative speed of the colliding solitons, which
determines the interaction time between the trapped waves,
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FIG. 2. (Color online) (top to bottom) The probe signal in the
same induced waveguide for the cases κ = 1.5,2, and 2.5.

also determines the amount of energy transfer. Surprisingly,
this is not the case—it is only the parameter κ that determines
the nature of the induced coupler. For example, Fig. 5 shows
the probe wave for the case κ = 2 (total transfer) and relative
speeds 0.015 and 0.12; the behavior is qualitatively the same
as for relative speed 0.04, which is illustrated in Fig. 2.

FIG. 3. (Color online) The intensity of the probe signal (as seen
from above) for κ = 12.

A hint of this phenomenon is provided by the theoretical
result mentioned earlier [14,16]: When κ = 1, captured waves
do not couple at all, regardless of the relative collision
velocity.

IV. HIGHER ORDER MODES AND MODE SEPARATION

Relaxing the requirement that κ1 = κ2 in Eq. (2) allows
higher order modal solutions, as in the case of bright
solitons [18]. If we then write the probe equation as the
associated Legendre equation in this more general case, we
get

w′′ + (κ2/κ1)[E + 2sech2(t)]w = 0. (6)

The eigenfunctions, which are associated Legendre functions
of degree � and order m, now correspond to the choices
�(� + 1) = 2κ2/κ1 and m2 = −(κ2/κ1)E, and

u(x,t) = w(t)e−iκ2(E+2)x. (7)

From this we see that the first-degree case (� = 1) requires
that κ2 = κ1, and the second-degree case (� = 2) requires that

FIG. 4. (Color online) The relative energy transmission of the
dark-soliton beam splitter as a function of κ .
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FIG. 5. (Color online) Full transfer of a captured wave, corre-
sponding to the case κ = 2, for waveguides resulting from soliton
collisions at different speeds. (top) Relative speed (λ2 − λ1 in [20])
is 0.015, instead of 0.04; (bottom) relative speed is 0.12.

FIG. 6. (Color online) The effect of a junction on the second-
degree modal function u21. In this example, κ1 = 2/3, κ2 = 2, and
the modal function u21 is totally deflected.

FIG. 7. (Color online) The effect of a junction on an equal
superposition of the second-degree modal functions u21 and u22. In
this example, κ1 = 1/3, κ2 = 1, and the modes are separated, with
only u22 being deflected.

κ2 = 3κ1. These values for κ2 will be used in the following
examples. As in [18], we denote the orthogonal modal
functions by u�m. The behavior of mode u21 at a waveguide
junction exhibits the same behavior as does u11, but with one-
third the period. For example, κ1 = 1/3 results in transparency,
κ1 = 2/3 in total transfer, κ1 = 1 in transparency, and so on.
Figure 6 shows an example for the case when κ1 = 2/3: The
probe wave is transferred totally from the soliton with speed 0
to the soliton with speed 0.04.

In contrast, the modal function u22 is transferred almost
perfectly for a very broad range of κ1 around 1. Thus, when
κ1 = 1/3, u21 is not affected by the junction, while u22 is totally
deflected. This means that if the probe signal is originally a
linear superposition of the two, the junction, acting as a beam
splitter, will separate the two modes, as in the bright soliton
case [18]. Figure 7 illustrates this. The strong beat in the linear
superposition is caused by the fact that the modal functions u21

and u22 propagate with dynamical phases determined by two
different eigenvalues, as observed in the corresponding bright
case [18,23].

V. DISCUSSION AND IMPLICATIONS

Dark soliton collisions offer some real advantages over
bright soliton collisions and directional couplers in controlling
light waves: First, dark solitons are known to be more stable in
the presence of noise and are generally more robust than bright
solitons [11,17]. Second, the probe, which is of much lower
intensity, peaks at the dip in the intensity of its host soliton,
thus increasing the signal-to-noise ratio and making it easier,
in principle, to detect. Third, the characteristics of the dark
soliton beam splitter do not depend on the relative phase or
relative speed of the colliding solitons, whereas bright solitons
need to have their phases and speeds carefully controlled to
produce a given result [18,19]. Finally, no special fabrication
is required, as might be the case for directional couplers.

One might ask how dependent the behavior of this scheme is
on the accuracy of the coefficients κ1 and κ2 in Eq. (2), which,
in a practical implementation, would depend on proper tuning
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of the wavelength and polarization. Some simple numerical
experiments were conducted in the κ1 = κ2 case by perturbing
κ2 and keeping κ1 fixed at 1, a transparent case. The results
show that the effect of this kind of perturbation is to deflect
some energy to the alternate channel rather than causing
radiation or some other, irregular loss of energy. Also, the
magnitude of the diversion is moderate. For example, if κ2

is perturbed by +5%, the transmitted energy decreases from
essentially 100% to 98.6%, and the deflected energy, captured
by the second arm of the induced waveguide, increases from
essentially zero to 1.4%. These experiments suggest that a
practical implementation would not be overly sensitive to the
realization of physical parameters.

While everything we have said so far is classical, in
the limit of low linear wave energy, the probe becomes
quantized and can be thought of as a photon wave packet—as
pointed out in [18]. There is now experimental verification
that coherent photons can be transmitted and detected in the
presence of normal, classical traffic in fibers using wavelength
multiplexing (e.g., see [24]). Furthermore, pulse shaping of
individual photons in single-mode fibers has recently been
reported [25,26]. The trapping of the probe in the traveling
potential of a dark (or bright) soliton is a kind of wave shaping,
and this possibility suggests a variety of experiments and
possible application to quantum information processing. Dark

solitons seem especially attractive for this application because
the photon detection takes place when the pump is near zero
in intensity.

VI. CONCLUSIONS

We have shown that the waveguides induced by dark
solitons can be used to control weak probes in the same way
that bright solitons can, in contrast with the zero–cross talk
case reported in [16], provided that the GVD and nonlinear
coupling parameter for the probe are chosen appropriately.
These degrees of freedom are readily available if we use
different wavelengths and polarizations for the pump and
probe. For the probes corresponding to the degree 1–associated
Legendre modal functions, the dark soliton junctions behave in
a way that is very closely analogous to a beam splitter made of
crossed polarizers, with a single parameter playing the role of
angle between polarizing filters. For the probes corresponding
to the degree 2–associated Legendre functions, the junction
can act as a mode-separating beam splitter.
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