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Second- and third-harmonic generation in metal-based structures
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We present a theoretical approach to the study of second- and third-harmonic generation from metallic
structures and nanocavities filled with a nonlinear material in the ultrashort pulse regime. We model the metal as
a two-component medium, using the hydrodynamic model to describe free electrons and Lorentz oscillators to
account for core electron contributions to both the linear dielectric constant and harmonic generation. The active
nonlinear medium that may fill a metallic nanocavity, or be positioned between metallic layers in a stack, is also
modeled using Lorentz oscillators and surface phenomena due to symmetry breaking are taken into account. We
study the effects of incident TE- and TM-polarized fields and show that a simple reexamination of the basic
equations reveals additional, exploitable dynamical features of nonlinear frequency conversion in plasmonic
nanostructures.
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I. INTRODUCTION

Interest in nonlinear frequency conversion in metals and
semiconductors alike arches back to the beginning of non-
linear optics [1–15]. Recent research in linear plasmonic
phenomena like subwavelength resolution [16] and enhanced
transmission [17] has focused renewed attention on the
origins of harmonic generation in metamaterials [18–23];
metallic substrates with empty holes [24–27]; holes filled with
GaAs [28]; resonant, subwavelength nanocavities [29]; and
layered metal-dielectric photonic band gap structures [30,31].
These studies have shown that generation and enhancement of
harmonic frequencies are possible in a variety of conditions
and circumstances.

In the case of harmonic generation in metals it is no-
toriously difficult to reconcile quantitative and qualitative
aspects of theory and experiments simultaneously. Usually,
experimental results can be explained qualitatively by sep-
arating the nonlinear contributions into surface and volume
sources and by assigning to them suitable weights [32–39].
Our aim here is to study the dynamics in the ultrashort
pulse regime, with an eye toward achieving as much quali-
tative and quantitative agreement as possible between theory
and experiments, without imposing any separation between
surface and volume sources. We treat free electrons using
the hydrodynamic model [3,40–42], make no a priori as-
sumptions about charge or current distributions, and include
Coulomb, Lorentz, convective, electron gas pressure, and
linear and nonlinear contributions to the linear dielectric
constant of the metal arising from bound (or valence)
electrons.

It has been shown that contributions to second-harmonic
generation (SHG) from bound charges can be significant [10].
Free and bound electrons act in similar ways by displaying
surface and volume sources, so the general form of the
nonlinear source may be specified in terms of a complex
dielectric function defined at the fundamental and the SH
frequencies [7,11]. Bound electrons contribute to the linear
dielectric constant of typical metals (interband transitions)

at near-IR wavelengths for gold [43] and copper, with more
pronounced effects in the visible and UV ranges [11,44]. Even
silver [45] departs from a simple Drude description at near-
IR wavelengths. Its linear dielectric function is adequately
described by a combined Drude-Lorentz model that contains a
mix of free and bound electrons having one or more resonances
at UV wavelengths [46–48]. That is:

ε(ω) = 1 − ω̃2
pf

ω2 + iγ̃f ω
− ω̃2

pb

ω2 − ω̃2
0,b + iγ̃bω

. (1)

All parameters are scaled in units of µm−1. ω̃p,f and γ̃f

are the plasma frequency and damping coefficient for free
electrons; ω̃p,b,γ̃b, and ω̃0,b are the plasma frequency, damping
coefficient, and resonance frequency for bound electrons. By
choosing (ω̃p,f ,γ̃f ) = (0.0573,6.965) and (ω̃p,b,γ̃b,ω̃0,b) =
(0.526,3.96,3.1) Eq. (1) becomes a fairly accurate repre-
sentation of the dielectric function down to approximately
400 nm. In Fig. 1 we compare the data found in Ref. [45] with
Eq. (1). The solid black curve that runs below all others is
the Re(ε) of only the Drude portion of Eq. (1). The figure
shows that it is not possible to fit any two points on the
real portion of the data curve using only a Drude function
and a single plasma frequency, highlighting the importance of
bound electrons. In this vein, in Ref. [30] the dynamics of the
fundamental (800 nm) and SH (400 nm) fields was modeled
using free electrons only. That kind of approach forces the
use of two distinct free-electron plasma frequencies for each
field, even at wavelengths where the impact of core electrons is
considerable. This modeling practice leads to the neglect of the
dynamics of core electrons. Instead, the mere introduction of
bound electrons can recalibrate the linear dielectric function
(phase) and its slope (group or energy velocity), which for
computational purposes is akin to modifying effective plasma
frequency, electron mass, and density [46]. Later in the
examples we will see that small changes in the effective
electron mass and density in conduction and valence bands
can lead to notable qualitative and quantitative differences in
the results.

1050-2947/2010/82(4)/043828(14) 043828-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.82.043828


M. SCALORA et al. PHYSICAL REVIEW A 82, 043828 (2010)

0

-20

Im( ) data
Re( ) data

-40
Re( ) data
Im( ) both terms Eq.(1)
Re( ) both terms Eq.(1)
Im( ) Drude only Eq (1)

-60

Im( ) Drude only Eq.(1)
Re( ) Drude only Eq.(1)

60
1.0 1.5 2.0 2.5

Normalized Frequency ( m
-1

)

FIG. 1. (Color online) Markers: Re(ε) and Im(ε) parts for Ag in
the 1064- to 400-nm range. The solid, thin black, and dashed green
curves correspond to the full Eq. (1) and retrace the data well. The
lower thick black curve is only the Re(ε) of the Drude portion of
Eq. (1). At 450 nm (normalized frequency of 2.5) the discrepancy
with the data is substantial. The Im(ε) from just the Drude part in
Eq. (1) (dashed black curve) still fits the data reasonably well.

In contexts similar to those of Ref. [28], where a metallic
nanocavity is filled with GaAs, there is a tendency to focus only
on nonlinear restoring forces, to always neglect intrinsically
nonlinear magnetic forces that drive all bound electrons, and
to ignore harmonic generation arising from the metal itself.
Indeed, while magnetic forces in bound electrons may be
several orders of magnitude smaller than nonlinear restoring
forces, they are always present nonetheless and in fact play
a catalytic role by activating new interaction channels. The
nonlinear frequency conversion of GaAs-filled holes on a gold
substrate has been investigated at 3 µm [28], with reported
TE-polarized SH (1.5-µm) conversion efficiencies comparable
to a standard quasi-phase-matched lithium niobate sample of
similar thickness. In Ref. [29] it was reported that it is possible
to calibrate the width of even a single aperture carved on
a silver substrate of specified thickness in order to achieve
enhanced transmission, field localization, and, as a conse-
quence, enhanced second-harmonic generation that is strongly
correlated to linear transmission maxima. The subwavelength
cavity thus designed is capable of localizing and enhancing
the incident fields by several orders of magnitude, with effects
such as energy velocity reduction down to values less than
c/100. It is therefore possible to amplify the nonlinear response
of a nanocavity filled with a nonlinear material far more
than reported in Ref. [28], for both TE- and TM-polarized
harmonics, provided the cavity is aptly designed. These results
will be reported separately.

II. METALS

Even if metals do not have intrinsic quadratic nonlinear
terms, many early works consistently reported on SHG based
on the mere presence of the Lorentz force induced by the
incident magnetic field. Using a classical oscillator electron
model, SH source terms consisting of a magnetic dipole due to

the Lorentz force and an electric quadrupolelike contribution
emerge also in centrosymmetric media [4–7]. Subsequent
experimental work confirmed the existence of at least two
SH source terms [8,9] (volume and surface contributions) that
may be excited by a polarization normal or parallel to the plane
of incidence, respectively. Even though this separation may be
practical, it is generally recognized that it may not be possible
to fully decompose nonlinear sources as surface and volume
terms due at least in part to the presence of spatial derivatives
on the bulk polarization [49]. These terms introduce some
arbitrariness in the effective surface and volume coefficients,
making a clear distinction between these two types of sources
almost impossible to carry out [36].

The situation is more ambiguous for metal layers only a
few tens of nanometers thick, where field penetration and
localization occur inside the metal itself [30]. One might
inquire about the relative importance of convective versus
Lorentz or Coulomb terms [19], how the presence of sharp
corners in metallic nanocavities [29] or nanotubes [50] changes
the relative contributions with respect to each other, or what
role bound charges and electron gas pressure terms play. What
follows is an attempt to address these issues and to highlight
as much as possible the most salient dynamical aspects of the
interaction of free and bound charges in the ultrashort pulse
regime.

It is well known that SHG can be enhanced by coupling with
surface plasmons [15,40]: the signal generated by reflection
of the incident beam from a metal surface has important
contributions from currents stimulated near the surface. In
an effort to consider all the forces that act on the electrons as
fully as possible in the ultrafast regime we have developed
a detailed analysis of SHG and third-harmonic generation
(THG) from metallic surfaces and nanocavities that may
contain a nonlinear material. The metal is composed of free
electrons that occupy the conduction band (typically one
electron per atom; for Ag the uppermost level is the 5s1) and
electrons that fill the valence band (for Ag the uppermost
filled valence level is the 4d10 orbital, with ten available
electrons). Free electrons are described by the hydrodynamic
model [3,40–42,51], while ordinary Lorentz oscillators are
used to describe bound charges. Although this is a simplified
picture of metals, in what follows we derive and integrate
equations of motion that couple free and bound electrons in
the metal to bound electrons in materials like GaAs, GaP, or
LiNbO3 in turn also described as a set of nonlinear Lorentz
oscillators. All electrons are assumed to be under the influence
of electric and magnetic forces, so the dynamics that ensues
in the metal and the dielectric contains surface and volume
contributions simultaneously.

III. FREE ELECTRONS

An equation that describes free electrons inside the metal
may be written as follows [3,40]:

m∗ dv
dt

+ γm∗v = eE + e

c
v × H − ∇p

n
; (2)

where m∗ is the effective mass of conduction electrons and n
is their density; v is the electron velocity; E and H(= B) are
electric and magnetic fields, respectively; and p is the electron
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gas pressure. The full temporal derivative of the velocity in
Eq. (2) can be written as

dv
dt

= ∂v
∂t

+ (v · ∇)v, (3)

so Eq. (2) becomes

∂v
∂t

+ (v · ∇)v + γ v = e

m∗ E + e

m∗c
v × H − ∇p

nm∗ . (4)

Identifying the current density with J = nev makes it possible
to rewrite Eq. (4) as

∂J
∂t

− ṅ

n
J + J · ∇

(
J
ne

)
+ γ J = ne2

m∗ E + e

m∗c
J × H − ∇p

nm∗ .

(5)

After defining Ṗj = J, Eq. (5) becomes

P̈j − ṅ

n
Ṗj + (Ṗj · ∇)

(
Ṗj

ne

)
+ γ Ṗj

= ne2

m∗ E + e

m∗c
Ṗj × H − e∇p

m∗ . (6)

For free electrons the continuity equation ṅ(r,t) = − 1
e
∇ · Ṗj

supplements the equations of motion and may be integrated
directly to yield

n(r,t) = n0 − 1

e
∇ · Pj , (7)

where n0 is the background, equilibrium charge density
in the absence of any applied fields. In what follows our
treatment departs from the usual procedure followed in the
hydrodynamic model [3,19,40]. Assuming ṅ � n, the ratio
ṅ/n may be expanded in powers of 1/(n0e) to obtain

ṅ

n
= − 1

n0e
∇ · Ṗ

(
1 − 1

n0e
∇ · P

)−1

∼ −∇ · Ṗ
en0

− 1

n2
0e

2
(∇ · Ṗ)(∇ · P) + ϑ

(
1

n3
0e

3

)
+ · · · . (8)

Substituting Eq. (8) back into Eq. (6) and neglecting terms of
order (1/n0e)2 and higher we get

P̈j + γ Ṗj = n0e
2

m∗ E − e

m∗ E(∇ · Pj ) + e

m∗c
Ṗj × H

− 1

n0e
[(∇ · Ṗj )Ṗj + (Ṗj · ∇)Ṗj ] − e∇p

m∗ . (9)

In all the calculations that we performed for typical silver-
based nanostructures (n0 ∼ 5.8 × 1022/cm3) we consistently
found |δn| = |∇ · Pj /e| ∼ 1013–1016/cm3. The lower bound
is typical of uniform metal layers. The upper bound is
characteristic of resonant subwavelength metallic slits and
nanocavities [29].

The specific impact of pressure is seldom considered in the
dynamics [40], but it is instructive to make a few observations
in its regard. Pressure may be treated classically by assuming
that electrons form an ideal gas, i.e., p = nkBT [52]. kB is the
Boltzmann constant and T is the temperature. The gradient of

p in Eq. (9) becomes the gradient of n, which in turn may be
related to the macroscopic polarization as follows:

−e∇p

m∗ = − e

m∗ kBT ∇
(

n0 − 1

e
∇ · Pj

)
= kBT

m∗ ∇(∇ · Pj ).

(10)

It is interesting and equally instructive to also look at a quantum
model of the pressure [53]. The quantum pressure is typically
described as p = p0(n/n0)γ , where γ = (D + 2)/D and D
is the dimensionality of the problem [53,54]. For D = 3, we
have p = p0(n/n0)5/3, where p0 = n0EF , EF is the Fermi
energy, and n0 is once again the equilibrium charge density.
The leading pressure terms are

−e∇p

m∗ = − ep0

m∗n5/3
0

5

3
n2/3∇n = −5

3

en0EF

m∗n5/3
0

n2/3∇n

≈ 5

3

EF

m∗ ∇(∇ · Pj ) − 10

9

EF

m∗
1

n0e
(∇ · Pj )∇(∇ · Pj ).

(11)

As already shown elsewhere using a two-fluid quantum
model [53], and as Eq. (11) plainly suggests, the quantum
model intrinsically contains a first-order classical, ideal elec-
tron gas contribution [if we equate the Fermi energy with
KBT in Eq. (10)] and a nonlinear quantum correction of
lower order. It is easy to see the impact of pressure if we
scale the equations with respect to dimensionless time and
longitudinal and transverse coordinates, τ = ct/λ0, ξ = z/λ0,
ỹ = y/λ0, respectively, where λ0 = 1 µm is arbitrarily chosen
as the reference wavelength. As a result of this scaling Eq. (9)
becomes

P̈j + γ̃ Ṗj = n0e
2

m∗

(
λ0

c

)2

E − eλ0

m∗c2
E(∇ · Pj ) + eλ0

m∗c2
Ṗj × H

− 1

n0eλ0
[(∇ · Ṗj )Ṗj + (Ṗj · ∇)Ṗj ]

+ 5

3

EF

m∗c2
∇(∇ · Pj )

− 10

9

EF

m∗c2

1

n0eλ0
(∇ · Pj )∇(∇ · Pj ). (12)

in addition to the magnetic Lorentz force, (eλ0/m∗c2)Ṗj × H,
we have an explicit quadrupolelike [1] Coulomb term that
arises from the continuity equation, −(eλ0/m∗c2)E(∇ · Pj ),
convective terms proportional to [(∇ · Ṗj )Ṗj + (Ṗj · ∇)Ṗj ],
and linear and nonlinear pressure terms proportional to
∇(∇ · Pj ) and (∇ · Pj )∇(∇ · Pj ), respectively. For silver, the
Fermi velocity vF ∼ 108 cm/s so (EF /m∗c2) ∼ 10−5. This
is then combined with 1/(n0eλ0) ∼ 10−10(cgs, silver). If, for
the moment, we neglect all nonlinear contributions, Eq. (12)
becomes

P̈j + γ̃ Ṗj = n0e
2

m∗

(
λ0

c

)2

E + 5

3

EF

m∗c2
∇(∇ · Pj ). (13)

Expanding the terms on the right hand side of Eq. (13) shows
that the pressure couples orthogonal, free-electron polarization
states and introduces a dynamical anisotropy. More generally,
pressure could directly impact the linear dielectric function
of the metal near its walls, should the fields become strongly
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confined and/or their derivatives be large enough [55] (i.e., near
sharp edges, corners, or in resonant subwavelength cavities) to
introduce large, evanescent k vectors. The same is true for
the nonlinear term: its magnitude could perturb Coulomb,
Lorentz, or convective terms at high-enough intensity and/or if
large-enough k vectors were excited. With these issues in mind,
some simple considerations may be made about nonlinear
sources derivable from Eq. (12). Assuming the incident pump
is undepleted and time harmonic, lowest-order terms may be
collected as follows:

PSH
NL,free(2ω) ≈ − eλ0

m∗c2
Eω∇ · [χfree(ω)Eω]

− eλ0

m∗c2
χfree(ω)iβEω × Hω

− β2χfree(ω)

n0eλ0
{Eω∇ · [χfree(ω)Eω]

+ (Eω · ∇)χfree(ω)Eω} − 10

9

EF

m∗c2

1

n0eλ0

×{∇ · [χfree(ω)Eω]}∇{∇ · [χfree(ω)Eω]},
(14)

where β = 2πω/ω0 and χfree(ω) is the free-electron portion of
the dielectric function. A similar equation may be written for
the third-harmonic polarization. Should the incident signal be a
short pulse [25,30], material dispersion is included to all orders
in Eq. (12) along with all appropriate boundary conditions
[38,39]. The form of the spatial derivatives in Eq. (14) suggests
that convective and quantum terms have properties similar to
the Coulomb term. However, this could change for thin layers,
subwavelength nanocavities, or for wavelengths in the near
IR, visible, and UV ranges, where the fields can penetrate
and become localized inside the metal [30,31]. For this reason
our reference point for the dynamics of free electrons will be
Eq. (12).

For localized ultrashort pulses harmonic generation occurs
regardless of angle of incidence or polarization state. Addi-
tional dynamical features may be ascertained by decomposing
Coulomb and Lorentz forces explicitly into all their harmonic
components. The geometry of our system is shown in Fig. 2.
Two fields of orthogonal polarizations and arbitrary amplitudes

HTM

H into the page

x
HTM

y

ETM

STMx

HTE

x
ETE

z

TE

STEE into the page

FIG. 2. (Color online) Incident TE- and TM-polarized fields. In
all our cases the fields overlap but appear spatially separated for
clarity.

are incident on a structure whose details are unspecified. The
interaction takes place on the y-z plane and the fields are
independent of x. Up to TH frequency, TE- and TM-polarized
fields (according to Fig. 2) are as follows, respectively:

ETE = iETEx = i
[
Eω

TExe
−iωt + (

Eω
TEx

)∗
eiωt + E2ω

TExe
−2iωt

+ (
E2ω

TEx

)∗
e2iωt + E3ω

TExe
−3iωt + (

E3ω
TEx

)∗
e3iωt

]
;

HTE =
(

jHTEy

+kHTEz

)
= j

[
Hω

TEye
−iωt + (

Hω
TEy

)∗
eiωt

+H 2ω
TEye

−2iωt + (
H 2ω

TEy

)∗
e2iωt + H 3ω

TEye
−3iωt

+ (
H 3ω

TEy

)∗
e3iωt

] + k
[
Hω

TEze
−iωt + (

Hω
TEz

)∗
eiωt

+H 2ω
TEze

−2iωt + (
H 2ω

TEz

)∗
e2iωt + H 3ω

TEze
−3iωt

+ (
H 3ω

TEz

)∗
e3iωt

]
; (15)

ETM =
(

jETMy

+kETMz

)
= j

[
Eω

TMye
−iωt + (

Eω
TMy

)∗
eiωt

+E2ω
TMye

−2iωt + (
E2ω

TMy

)∗
e2iωt + E3ω

TMye
−3iωt

+ (
E3ω

TMy

)∗
e3iωt

] + k
[
Eω

TMze
−iωt + (

Eω
TMz

)∗
eiωt

+E2ω
TMze

−2iωt + (
E2ω

TMz

)∗
e2iωt + E3ω

TMze
−3iωt

+ (
E3ω

TMz

)∗
e3iωt

]
;

HTM = iHTMx = i
[
Hω

TMxe
−iωt + (

Hω
TMx

)∗
eiωt + H 2ω

TMxe
−2iωt

+ (
H 2ω

TMx

)∗
e2iωt + H 3ω

TMxe
−3iωt + (

H 3ω
TMx

)∗
e3iωt

]
.

(16)

The field envelopes in Eqs. (15) and (16) are not assumed to
be slowly varying and retain spatial and temporal dependence.
The extraction of carrier frequencies is done only as a matter
of convenience. With reference to Fig. 2, both TE- and
TM-polarized fields have transverse components orthogonal
to each other, but they should not be confused: one component
points along x̂, the other along ŷ. Equations (15) and (16)
become

E = iETEx + jETMy + kETMz, H = iHTMx + jHTEy + kHTEz.

(17)

In similar fashion the electric polarization has TE and TM
components and may be expressed as

P = (PTExi + PTMyj + PTMzk). (18)

An expansion of the magnetic Lorentz force using Eqs. (17)
and (18) yields the following constituents:

Ṗ × H = (ṖTExi + ṖTMyj + ṖTMzk)

× (HTMxi + HTEyj + HTEzk)

= (ṖTMyHTEz − ṖTMzHTEy)i

+ (ṖTMzHTMx − ṖTExHTEz)j

+ (ṖTExHTEy − ṖTMyHTMx)k. (19)

These equations show that even a normally incident, TE-
polarized field generates a nonzero, TM-polarized harmonic
component via the term(ṖTExHTEy)k, thus opening a possible
catalytic interaction channel. At oblique incidence the term
(−ṖTExHTEz)j also provides nonzero gain for a TM-polarized
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harmonic signal. The Coulomb term may also be decomposed
as follows:

(∇ · Pj )E =
(

∂PTMz

∂z
+ ∂PTMy

∂y

)
(iETEx + jETMy + kETMz),

(20)

where ∂PTEx/∂x = 0. Therefore an incident beam with a
mixed polarization state activates all possible conversion chan-
nels. Simultaneously TE- and TM-polarized incident fields
lead to efficiencies that may differ and be much enhanced com-
pared to pumping with either TE- or TM-polarized light only.

IV. BOUND ELECTRONS

Bound electrons differ from free electrons in at least
two ways: (i) they may be under the action of linear and
nonlinear restoring forces and (ii) the average local charge
density remains constant in time, as electrons are not free to
leave their atomic sites. The method that we present here to
treat Coulomb and Lorentz forces was derived previously for
SHG [4] and plane waves in the undepleted pump regime. Here
we generalize that approach to treat pulses of arbitrary duration
up to the TH frequency. The method may be combined with
nonlinear restoring forces (χ (2), χ (3), etc.) to generalize the
nonlinear response of dielectrics or semiconductors to include

surface phenomena dynamically. The ability to describe the
simultaneous excitation of linear and nonlinear plasmonic
phenomena is important to model nonlinear semiconductor
nanocavities or slits in the UV range, where the dielectric
function may be negative [56].

Neglecting for the moment nonlinear restoring forces,
Newton’s second law for one species of core electrons leads to
an effective polarization equation for bound charges that reads
as follows:

P̈b + γbṖb + ω2
0,bPb = n0,be

2

m∗
b

E + e

m∗
bc

Ṗb × H, (21)

where Pb = n0,berb is the polarization, rb is the electron’s
position relative to an equilibrium origin, n0,b is the constant
density, m∗

b is the bound electron’s effective mass, and Ṗb =
n0,beṙb is the bound current density. Up to the third-harmonic
frequency, the fields may be written as

E = (Eωei(k·rb−ωt) + E∗
ωe−i(k·rb−ωt) + E2ωe2i(k·rb−ωt)

+E∗
2ωe−2i(k·rb−ωt) + E3ωe3i(k·rb−ωt) + E∗

3ωe−3i(k·rb−ωt)),

H = (Hωei(k·rb−ωt) + H∗
ωe−i(k·rb−ωt) + H2ωe2i(k·rb−ωt)

+ H∗
2ωe−2i(k·rb−ωt) + H3ωe3i(k·rb−ωt) + H∗

3ωe−3i(k·rb−ωt)).
(22)

Expanding the fields in powers of k · rb we have [4]

E =

⎛
⎜⎜⎜⎝

Eωe−iωt
(
1 + ik · rb + (ik·rb)2

2 + · · ·) + E∗
ωeiωt

(
1 − ik · rb + (−ik·rb)2

2 + · · ·)
+E2ωe−2iωt

(
1 + 2ik · rb + (2ik·rb)2

2 + · · ·) + E∗
2ωe2iωt

(
1 − 2ik · rb + (−2ik·rb)2

2 + · · ·)
+E3ωe−3iωt

(
1 + 3ik · rb + (3ik·rb)2

2 + · · ·) + E∗
3ωe3iωt

(
1 − 3ik · rb + (−3ik·rb)2

2 + · · ·)

⎞
⎟⎟⎟⎠ , (23)

and similarly for the magnetic field. The solutions for the
electron’s position and its derivatives are

rb = rωe−iωt + r2ωe−2iωt + r3ωe−3iωt + c.c., (24)

ṙb = (ṙω − iωrω)e−iωt + (ṙ2ω − 2iωr2ω)e−2iωt

+ (ṙ3ω − 3iωr3ω)e−3iωt + c.c., (25)

r̈b = (r̈ω − 2iωṙω − ω2rω)e−iωt

+ (r̈2ω − 4iωṙ2ω − 4ω2r2ω)e−2iωt

+ (r̈3ω − 6iωṙω − 9ω2rω)e−3iωt + c.c. (26)

As before, the envelope functions defined in Eqs. (22)–(26) are
not assumed to be slowly varying as all temporal and spatial
derivatives will be retained. Substitution of Eqs. (22)–(26) into
Eq. (21) leads to

r̈ω + (γb − 2iω)ṙω + (
ω2

0 − ω2 + iγbω
)
rω = e

m∗
b

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Eω

−ik·r2ωE∗
ω

−2ik · r3ωE∗
2ω

+2ik · r∗
ωE2ω

+3ik · r∗
2ωE3ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ e

m∗
bc

⎛
⎜⎜⎜⎜⎝

(ṙ∗
ω + iωr∗

ω) × H2ω + (ṙ2ω − 2iωr2ω) × H∗
ω

(ṙ∗
2ω + 2iωr∗

2ω) × H3ω + (ṙ3ω − 3iωr3ω) × H∗
2ω

−(iṙω + ωrω) × H∗
ωk · rω − (−iṙ∗

ω + ωr∗
ω) × Hωk · rω

+(iṙω + ωrω) × Hωk · r∗
ω

⎞
⎟⎟⎟⎟⎠ ,
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r̈2ω + (γb − 4iω)ṙ2ω + (
ω2

0 − 4ω2 + 2iγbω
)

r2ω = e

m∗
b

⎛
⎜⎜⎜⎜⎝

+E2ω

+ik · rωEω

−ik · r3ωE∗
ω

+3ik · r∗
ωE3ω

⎞
⎟⎟⎟⎟⎠

+ e

m∗
bc

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(ṙω − iωrω) × Hω

+(ṙ3ω − 3iωr3ω) × H∗
ω + (ṙ∗

ω + iωr∗
ω) × H3ω

−(iṙ2ω + 2ωr2ω) × H∗
ωk · rω − 2(iṙω + ωrω) × H∗

ωk · r2ω

−(−iṙ∗
ω + ωr∗

ω) × Hωk · r2ω − 2(−iṙ∗
ω + ωr∗

ω) × H2ωk · rω

+(iṙ2ω + 2ωr2ω) × Hωk · r∗
ω + 2(iṙω + ωrω) × H2ωk · r∗

ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

r̈3ω + (γb − 6iω) ṙ3ω + (
ω2

0 − 9ω2 + 3iγbω
)

r3ω = e

m∗
b

⎛
⎜⎝

+E3ω

+ik·r2ωEω

+2ik · rωE2ω

⎞
⎟⎠

+ e

m∗
bc

(
(ṙ2ω − 2iωr2ω) × Hω + (ṙω − iωrω) × H2ω

+(iṙω + ωrω) × Hωk · rω

)
. (27)

In writing Eqs. (27) we have excluded higher-order terms
that couple magnetic and electric dipoles, terms like
[(iṙω + ωrω) × Hωk · rω] that already appear in Eq. (27)
but contain at least two harmonic fields. These terms could
become important in solids at TW/cm2 or highly nonlinear
plasmas [57,58] or for extremely short, intense pulses. Of

course, one should consider these and other terms if different
pumping conditions are used, and matters should be evaluated
on a case-by-case basis [59]. Finally, Eq. (27) may be
simplified if we neglect higher-order magnetic dipole-electric
dipole terms, and if we identify

Pb,ω = n0,berω, Pb,2ω = n0,ber2ω, Pb,3ω = n0,ber3ω,
(28)

ik · n0,berω ≈ ∇ · Pb,ω, 2ik · n0,ber2ω ≈ ∇ · Pb,2ω, 3ik · n0,ber3ω ≈ ∇ · Pb,3ω.

Then, Eq. (21) becomes

P̈b,ω + γ̃b,ωṖb,ω + ω̃2
0,b,ωPb,ω ≈ n0,be

2λ2
0

m∗
bc

2
Eω + eλ0

m∗
bc

2

⎛
⎜⎜⎜⎜⎝

− 1
2 E∗

ω∇·Pb,2ω

+2E2ω∇·P∗
b,ω

− 2
3 E∗

2ω∇ · Pb,3ω

− 3
2 E3ω∇ · P∗

b,2ω

⎞
⎟⎟⎟⎟⎠ + eλ0

m∗
bc

2

⎛
⎜⎜⎜⎜⎜⎝

(Ṗ∗
b,ω + iωP∗

b,ω) × H2ω

+(Ṗb,2ω − 2iωPb,2ω) × H∗
ω

+(Ṗ∗
b,2ω + 2iωP∗

b,2ω) × H3ω

+(Ṗb,3ω − 3iωPb,3ω) × H∗
2ω

⎞
⎟⎟⎟⎟⎟⎠ ,

P̈b,2ω + γ̃b,2ωṖb,2ω + ω̃2
0,b,2ωPb,2ω ≈ n0,be

2λ2
0

m∗
bc

2
E2ω + eλ0

m∗
bc

2

⎛
⎜⎜⎝

Eω∇·Pb,ω

− 1
3 E∗

ω∇ · Pb,3ω

−3E3ω∇ · P∗
b,ω

⎞
⎟⎟⎠ + eλ0

m∗
bc

2

⎛
⎜⎜⎝

(Ṗb,ω − iωPb,ω) × Hω

+(Ṗ∗
b,ω + iωP∗

b,ω) × H3ω

+(Ṗb,3ω − 3iωPb,3ω) × H∗
ω

⎞
⎟⎟⎠ ,

P̈b,3ω + γ̃b,3ωṖb,3ω + ω̃2
0,b,3ωPb,3ω ≈ n0,be

2λ2
0

m∗
bc

2
E3ω + eλ0

m∗
bc

2

( 1
2 Eω∇·Pb,2ω

+2E2ω∇·Pb,ω

)
+ eλ0

m∗
bc

2

(
(Ṗb,2ω − 2iωPb,2ω) × Hω

+(Ṗb,ω − iωPb,ω) × H2ω

)
. (29)

The scaled coefficients are γ̃b,Nω = (γb − Niω),
ω̃2

0,b,Nω = (ω2
0 − (Nω)2 + iγbNω), where N is an integer

that denotes the given harmonic. We emphasize that all
envelope functions in Eq. (29) are generic and allowed to vary
rapidly in space and time, as demonstrated by the presence of
spatial and temporal derivatives up to all orders of dispersion.
Expanding Eq. (12) into all its harmonics with envelope

functions and oscillating factors leads to equations that are
very similar to Eqs. (29). Equations (12) and (29) thus form a
set of coupled equations that describe free and bound charges
that give rise to second- and third-harmonic generation in
metallic structures of arbitrary geometry and are valid in
the ultrashort pulse regime. Equation (29) is applicable to
dielectrics and semiconductors alike, for depleted pumps and
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harmonic down-conversion or other cases where the harmonic
fields may be more intense than the fundamental field.
The introduction of nonlinear restoring forces generalizes
Eq. (29) to describe nonlinear phenomena in dielectric and
semiconductor nanocavities. This may be achieved by adding
nonlinear terms to the right-hand sides of each of Eq. (29) or
by introducing a nonlinear polarization in the usual way:

PNL = χ (2)E2 + χ (3)E3 + · · · . (30)

A comparison between Eqs. (12) and (29) shows that at
this order of approximation the equations have similar form,
even though the Coulomb terms have different origins. For
free electrons the equation of continuity accounts for charge
density variations in time. In the case of bound charges it is the
spatial variation of the fields that leads to similar contributions.
The Coulomb terms have opposite signs, negative for free
electrons and positive for bound charges, with identifiable,
effective charge distributions and currents that add to and
interfere with their free-electron counterparts. Given the
similarities between Eqs. (12) and (29), it is reasonable to
expect comparable qualitative responses from free and bound
charges [7,11]. We also note that it is possible to arrive at
slightly different forms of Eqs. (29) that involve the fields
explicitly rather than the polarization, as was done in Ref. [4].

We conclude this section with a few words about
expectations from the model. Equations (12) and (29) are
solved simultaneously with Maxwell’s equation for pulses
of arbitrary duration without approximations. The coupled
equations that result from expanding up to the TH frequency
(92 in all) are integrated using a fast Fourier transform, time
domain, split-step beam propagation method. The technique
is outlined in Ref. [60], where it was originally developed
for the wave equation to describe slowly varying envelope
functions in order to integrate an equation of motion that was
first order in time. However, since Maxwell’s equations are
first order in time at the start, the method is easily extended
by removing all approximations to take into account all orders
of reflection (spatial derivatives) and dispersion (temporal
derivatives). The integration scheme is stable, electric and
magnetic fields and their derivatives are colocated, and the
evaluation of spatial derivatives across hard interfaces is
straightforward. Integration times range from a few minutes
to a few hours on a 2.4-GHz Pentium Core 2 Duo, depending
on pulse duration and angle of approach.

As may be easily ascertained from Eqs. (12) and (29),
the free parameters the model allows are the effective free
and bound electron masses and densities. These factors are
important because they appear as a ratio (plasma frequency)
and also singly in the nonlinear terms to completely determine
the quantitative aspect of conversion efficiencies. Although the
values of electron mass and density are well known, in practice
strain during the deposition process causes these values to fluc-
tuate and so the issue has been addressed often in the literature
[61–64]. The actual values not only appear to be sensitive to
the method of growth and layer thickness [64] but also depend
on the natural porosity of the metal under consideration and the
surface on which it is deposited [65,66]. Reference [64] reports
that using dc magnetron sputtering, layers of gold exhibited ef-
fective conduction electron masses that ranged from 0.48me to

1.14me for 9.6- and 22-nm layers, respectively. Similar results
were found for silver, with deduced effective masses that varied
from 1.06me to 1.99me for 10- and 19-nm layers, respectively.
The situation improves for rf sputtering, but effective masses
still vary with layer thickness between 20% for silver (from
1.02me to 0.84me) and 35% for gold (from 1.38me to 1.04me).
As a consequence of these relatively large fluctuations,
one should expect that electron density, plasma frequency,
skin depth, and Fermi energy will also vary accordingly,
allowing substantial flexibility in departing from tabulated
values.

Although porosity can be used to control plasmonic
behavior of gold across a large wavelength range [66], it can
also manifest itself in a somewhat disquieting manner [65]. The
experimental results reported in Ref. [65] indicated that a silver
layer deposited on a glass substrate may be much more porous
on the air side than on the glass side. By monitoring surface
plasmons propagating on either side, it was determined that for
an incident wavelength of 632 nm the real part of the dielectric
“constant” on the air side was approximately 25% smaller
compared to the glass side, while the imaginary part could vary
by as much as 60%! These differences are significant, persist
for thick layers, and ultimately modify the quantitative aspects
of linear propagation (actual reflection and transmission) and
harmonic generation. Finally, there is the issue of surface
roughness. It is easy to imagine how in the linear regime
roughness could act in ways similar to porosity, in that it could
lead to changes of the effective mass, density, skin depth, and
Fermi energy. In the nonlinear regime the enhancement of SHG
due to surface roughness has already been discussed [67]: it
takes place in a manner similar to what occurs in the case
of surface enhanced Raman scattering [55], and as such it is
also characterized by the formation of SH hot spots. Although
under normal conditions all these issues may be neglected
in favor of qualitative rather than quantitative agreement
(e.g., uniform layers), the discussion above provides hints
that sometimes the interpretations of linear and/or nonlinear
plasmonic phenomena that revolve around subwavelength
slits, holes, sharp edges, or extremely narrow, nanometer-wide
plasmonic transmission resonances or band gaps may be more
subtle and intricate than previously thought.

V. THE IMPACT OF CONVECTION

We now turn to the assessment of convective terms on
harmonic generation. Figure 3 shows the calculated SHG
efficiency on reflection from a 125-nm-thick silver film
suspended in air of a TM-polarized, ∼1-GW/cm2 pump pulse
approximately 50 fs in duration, tuned to 1064 nm. We measure
efficiency as the ratio of (total energy converted) to (total
incident pump energy) after the pulse has passed and show
results with and without convective contributions. The detected
radiation is also TM polarized. In the case of a single, uniform
thick layer (see caption of Fig. 3 for the parameters used
in the calculation) the quantitative effect of convection at
1064 nm is evidently to increase conversion efficiency by a
factor of ∼2.5. We note that conversion efficiency quickly
converges for pulses just a few optical cycles in duration,
so the same results are obtained for longer pulses. Even
though in Fig. 3 conversion efficiency is enhanced, convective
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FIG. 3. (Color online) Conversion efficiency for TM-incident
(1064 nm)–TM-detected (532 nm) light for a 125-nm-thick silver
layer. The effective mass and densities of both free and bound charges
are taken to be m∗ = me and n0 = 5.8 × 1022/cm3, respectively.

contributions are sensitive to the geometry of the structure
and their impact cannot be generalized as simply as it might
appear from Fig. 3. As an example we calculated transmitted
and reflected second-harmonic conversion efficiencies from
a transparent metal/dielectric multilayer stack similar to
those studied in Refs. [30] and [31]. The structure consists
of a five-period Ta2O5 (125-nm-thick)/Ag (20-nm-thick)
stack, with an incident, ∼1 GW/cm2, 60-fs pulse tuned to
800 nm. The stack and its plane-wave transmission at normal
incidence are depicted in Fig. 4. In Fig. 5 we report the
predicted transmitted and reflected conversion efficiencies for
TM-incident or TM-detected second-harmonic generation vs
incident angle, with and without convective terms. The model
we use presently is much improved compared to the model
that was employed in Ref. [30], where nonlinear sources were
derived only from the Lorentz force. Also significant is the
fact that in this model dielectric interfaces become active
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FIG. 4. (Color online) (Bottom) Transmission at normal inci-
dence from a five-period Ta2O5/Ag multilayer stack, having layer
thicknesses of 125 and 20 nm, respectively. (Top) Picture of the
incident pulse and the stack.
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FIG. 5. (Color online) TM-incident–TM-detected, reflected, and
transmitted SH efficiencies, with and without convection. Convection
shifts and reduces the amplitude of the reflected signal, while turning
the transmission maximum into a minimum. The subscript w/o stands
for “without,” while the subscript w stands for “with.” We have
assumed that m∗ = me and n0 = 5.8 × 1022/cm3.

via the presence of the spatial derivatives of the polarization
in Eq. (29), that explicitly account for symmetry breaking
contributions from all bound electron sources. In other words,
this stack would still generate harmonics via Eq. (29) even
if we turned off all the nonlinear terms in Eq. (12). Our
calculations thus suggest that in this case convection tends
to reduce and shift the peaks of conversion efficiency. With
convection the reflected SH signal is smaller compared to
its counterpart without convection by ∼50% and the peak
is shifted toward larger angles. For the transmitted SH signal
the tendency is more dramatic compared to the single layer:
the maximum turns into a minimum. Although these trends
could change for different layer thicknesses, this example
should suffice to highlight the sensitivity of the process to
convective terms. The quantitative consequences of convection
are far more dramatic if the stack of Fig. 4 is pumped
with a mixed TE–TM polarization state having equal TE-
and TM-polarized incident field amplitudes and TE-polarized
detected signal. The results are depicted in Fig. 6. The figure
shows that in addition to shifting the peaks to larger angles,
the inclusion of convective terms can also reduce reflected and
transmitted second-harmonic conversion efficiencies in this
case by a factor of ∼50. Usually neither a single TE- nor a
single TM-polarized incident field can generate a TE-polarized
SH signal without additional degrees of freedom and/or
nonlinear sources. However, the dual-pumping mode opens
up and couples all available interaction channels, so TE- and
TM-polarized SH and TH light may be efficiently produced.
These results show that in the general case the presence of
convection can influence the dynamics and strongly impact the
results quantitatively and qualitatively. Field penetration and
localization inside the metal may accentuate its importance.

VI. EFFECTS DUE TO BOUND CHARGES

We now change the context and explore the influence
of bound charges. In Fig. 7 we show SH (400 nm) and
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FIG. 6. (Color online) TE- or TM-incident and TE-detected,
reflected, and transmitted SH conversion efficiencies with (right axis)
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larger angles but reduces both signals by nearly a factor of 50. The
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TH (266 nm) emission patterns that originate from a silver
nanopillar having a square cross section 200 nm on each side.
For simplicity we have assumed that in the metal χ (3) = 0.
A TM-polarized, 20-fs pump pulse is incident from the
left. The detected harmonic fields are also TM polarized.
In Figs. 7(a) and 7(b) we show snapshots of SH and TH

emission patterns that emerge from the sample if only free
charge contributions were turned on [Drude term only in
Eq. (1)]. In Figs. 7(c) and 7(d) we show the corresponding
field patterns when both free and bound charges contribute
simultaneously. We can see that bound charges can impact
field patterns, intensities, and conversion efficiencies. We now
recalculate harmonic field emission patterns for a TE-polarized
incident pulse, otherwise similar in nature to the pulse used
in Fig. 7, and plot the results in Fig. 8. Again we find that
the simultaneous presence of free and bound charges can
significantly alter the total SH and TH conversion efficiencies
and respective field patterns. In all cases adjusting the relative
weights of free to bound electron masses and densities will
also modify the relative contributions and affect the results.
Although it may be possible to adjust effective surface and
volume coefficients to the extent of obtaining a reasonable fit
with experimental results, our simulations suggest that bound
charges interfere with free charges and that ignoring their
contributions may amount to an important omission in the
larger, more complicated dynamical context outlined above.

VII. ELECTRON GAS PRESSURE

From Eqs. (12) and (13) above one may determine that the
potential for dynamical modifications of the linear dielectric
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|H ||H |
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20
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|H |2

Position ( m) Longitudinal Coordinate ( m)Longitudinal Coordinate ( m)( ) Longitudinal Coordinate ( m)Longitudinal Coordinate ( m)

FIG. 7. (Color online) (Right) A TM-polarized 20-fs pump pulse tuned to 800 nm is incident from the left on a silver nanopillar 200 nm on
each side. All detected fields are TM polarized. The snapshots are recorded when the peak of the pump pulse reaches the object. The spatial
extension of the pulse is hundreds of times larger than the object, so this snapshot mimics what one might expect for plane-wave illumination
and steady-state conditions. [(a) and (c)] TM-polarized SH field patterns for free charges only (a) and free and bound charges simultaneously
(c). [(b) and (d)] Same as (a) and (c) for the TH fields. Qualitative differences are especially evident for the TH field, where bound charges
tend to reinforce the main lobe that points directly backward. In all cases quantitative differences can be read on the side scales. Bound
charges enhance SH conversion by a factor of ∼2. TH generation is reduced by approximately the same factor. We have assumed m∗ = me and
n0 = 5.8 × 1022/cm3. (Left) Depiction of the setup and pump magnetic field intensity profile recorded at the same time as the harmonics.
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FIG. 8. (Color online) (Right) Same as Fig. 7, except for TE-polarized incident pump pulse. The snapshots are recorded when the peak of
the pump pulse reaches the metal object. Unlike in Fig. 7, the generated SH signals are TM polarized (the H field is shown for convenience),
while the TH fields are TE polarized (the E field is shown for convenience). The TM-polarized SH field patterns from free only (a) and from
free and bound (c) charges. TE-polarized TH field patterns obtained from free only (b) and free and bound (e) charges. Qualitative differences
are visible in both SH and TH patterns. The polarization of a resulting harmonic field under specific pumping conditions may be assessed by a
full decomposition of the nonlinear sources in Eqs. (12) and (29). (Left) Depiction of the set up and electric field intensity profile recorded at
the same time as the harmonics.

function and nonlinear contributions to harmonic generation
may be significant if the fields become strongly confined to
produce either (i) large evanescent wave vectors via strong
field localization or (ii) large spatial derivatives near or just
inside the metal surface. In the visible and IR ranges one
can always count on the field penetrating inside the metal
with consequent rapid spatial modulation. In what follows we
concentrate on estimating perturbations to the linear dielectric
constant in a grating of GaAs-filled, 60-nm-wide nanocavities
carved on a silver substrate 100 nm thick. The grating is
designed to be resonant at λ = 1064 nm, and displays enhanced
transmission through a broad Fabry-Perot resonance. The
structure is depicted in Fig. 9 along with the transmittance for
TM-polarized light as a function of wavelength for a center-to-
center distance (pitch) of ∼570 nm between the nanocavities.
The structure displays a maximum transmittance of ∼280%,
with field amplification values that range from 100 times for the
transverse electric field intensity at the corners of the cavity to
approximately 400 times for the magnetic field intensity. These
relatively modest amplifications correspond to an effective
cavity Q that hovers in the thousands and persists even for
slightly rounded cavity corners.

The question relative to Eq. (13) and electron gas pressure
may be formulated as follows: How large do pressure terms be-
come relative to the linear driving field terms near resonance?
We provide a partial answer in Fig. 10, where we compare
the transverse and longitudinal pressure terms relative to their

respective field components, when the peak of an incident
100-fs pulse reaches the cavity. The figure shows that the
transverse pressure can alter the local, instantaneous transverse
forcing term by approximately 1%–2%. Longitudinal pressure
changes are strongest at the four corners of the cavity but
amount to a more modest ∼0.1%. Of course, these rates
could increase or decrease depending on the exact magnitude
of the Fermi velocity, tuning, and other geometrical factors.
Nevertheless, these results show that electron gas pressure
may act to either “soften” or “harden” the metal boundaries
and to shift resonance conditions. Perhaps more significantly,
while it is certainly important to establish the low-intensity
bulk metal dielectric constant [68], these results point to the
fact that in metallic, high-finesse, high-field cavities [55,67]
it may be more important to determine and include terms
not needed in more ordinary situations. Our estimates also
indicate that in the case of metal layers or metal-dielectric
multilayer stacks pressure contributions to the linear dielectric
constant amount to at most one part in 105. We will report
elsewhere more details on the dynamical effects of electron
gas pressure, and the linear and nonlinear optical properties
of metallic nanocavities in the enhanced transmission regime.
Suffice it to say here that under extreme conditions effects
due to electron gas pressure should at a minimum be assessed
when strong field confinement occurs at the subwavelength
scale, as it may account for resonance shifts on the order of
tens of nanometers.
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driving field term. The longitudinal pressure is modulated along its entire length but is strongest at the four corners of the cavity. Note: negative
pressure simply indicates regions of pressure lower compared to contiguous regions.
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FIG. 11. (Color online) SH conversion efficiency under various
pumping conditions. The data are taken from Ref. [71], where the
average peak intensity is estimated at ∼80 MW/cm2. The shapes of
theoretical curves agree well with the experimental data in all cases.
If we choose m∗ = 0.5 me, and n0 = 3 × 1022/cm3, for both free
and bound charges, excellent quantitative agreement emerges with
the following choice of incident peak intensities: (a) ∼60 MW/cm2;
(b) ∼100 MW/cm2; (c) ∼300 MW/cm2.

VIII. COMPARISON WITH EXPERIMENTAL RESULTS

We now attempt to make a comparison with experimental
results [69–74] and choose Ref. [71] because it contains data
for a pump field tuned at 1064 nm relative to silver for (i) TE-
incident–TM-detected; (ii) TM-incident–TM-detected; and
(iii) TE- and TM–incident–TE-detected polarization states. In
Fig. 11 we show a comparison between our calculations and
the data reported in Ref. [71]. The pulses used in Ref. [71] were
50 ps in duration, and the silver layer was 400 nm thick. Our
simulations were carried out using 80-fs pulses and a silver
layer 150 nm thick. As we mentioned earlier, dispersion plays
a role only for pulses that are a few optical cycles in duration
since the single metal layer has neither transmission nor
reflection features. Substrate thickness becomes unimportant
if the layer is substantially opaque. For simplicity, effective
mass and density were chosen in order to maintain the ratio
(i.e., plasma frequency) constant relative to the actual data. The
input beam used in the experiment was slightly converging

(ours was not), with a ∼2-mm radius at the sample and a
peak intensity of ∼80 MW/cm2. Once these parameters were
fixed, Fig. 11(a) was fitted with an incident peak intensity
of 60 MW/cm2; in Fig. 11(b) we used ∼100 MW/cm2 and
in Fig. 11(c) ∼300 MW/cm2. The comparison in Figs. 11(a)
and 11(b) shows excellent quantitative and qualitative agree-
ment between theory and experiment. Even though Fig. 11(c)
also shows excellent qualitative agreement, our input intensity
was approximately four times larger than that reported in
Ref. [71]. Although these discrepancies are relatively small
and could be easily accounted for by modest power and beam
radius fluctuations and perhaps even the focusing geometry,
more stringent experimental and theoretical tests are under
way to further validate the model under a variety of conditions.

IX. CONCLUSIONS

We have presented a model to study propagation phenom-
ena and harmonic generation in nanostructures in the ultrashort
pulse regime, with the inclusion of linear and nonlinear effects
due to free and bound charges simultaneously. Free electrons
are modeled using the hydrodynamics model, comprising
effects due to convection and electron gas pressure. Bound
charges are modeled by Lorentz oscillators under the action
of electric, magnetic, and nonlinear restoring forces. We have
shown that the influence of bound charges and convection on
harmonic generation can be qualitatively and quantitatively
appreciable. In addition, we have briefly discussed dynamical
changes that can occur in resonant metal gratings or nanocav-
ities as a result of electron gas pressure. Although we have
derived explicit nonlinear electron gas pressure terms, we
have not discussed their influence on harmonic generation.
We will do so in a different setting, in the more specific con-
text of GaAs-filled resonant nanocavities. Finally, we found
our calculations to be in good qualitative and quantitative
agreement with the data of Ref. [71], where SHG from a
silver film was reported under different incident pumping
conditions. Although some differences remain and more tests
cases are actively under consideration, our calculations and
comparisons so far show that this approach may suffice to
explain all relevant features of harmonic generation, provided
the model includes all crucial dynamical aspects, namely
convection, electron gas pressure, and contributions from core
electrons. Previous experiments do show that it is possible
for both the effective electron mass and density to experience
relatively large fluctuations due to stresses in the fabrication
system. The values that we used appear to yield reflection
second-harmonic conversion efficiencies and curve shapes that
are almost identical to experimental results, under three very
different pumping conditions. These values could be refined
by seeking SHG and THG data for transmitted fields, say,
for thin metal layers or in the kind of transparent multilayer
structure we have described. Calibration of transmission
curves could be used to narrow down mass and density values
further. However, one should not lose sight of the fact that
whatever values one uses are bound to be system specific and
may easily change for different experimental conditions and
setups.
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