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Nonlinear suppression of time reversals in PT -symmetric optical couplers

Andrey A. Sukhorukov, Zhiyong Xu, and Yuri S. Kivshar
Nonlinear Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200, Australia

(Received 22 March 2010; published 13 October 2010)

We reveal a generic connection between the effect of time reversals and nonlinear wave dynamics in systems
with parity-time (PT ) symmetry, considering a symmetric optical coupler with balanced gain and loss where
these effects can be directly observed experimentally. We show that for intensities below a threshold level, the
amplitudes oscillate between the waveguides, and the effects of gain and loss are exactly compensated after each
period due to periodic time reversals. For intensities above a threshold level, nonlinearity suppresses periodic
time reversals, leading to the symmetry breaking and a sharp beam switching to the waveguide with gain. Another
nontrivial consequence of linear PT symmetry is that the threshold intensity remains the same when the input
intensities at waveguides with loss and gain are exchanged.
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I. INTRODUCTION

The study of different physical systems exhibiting parity-
time (PT ) symmetry has attracted a lot of attention in
the past few years. The original motivation stems from the
initial ideas of the generalization of quantum mechanics
suggested by Bender et al. [1–4], who demonstrated that
a wide class of Hamiltonians, even though non-Hermitian,
can still exhibit entirely real eigenvalue spectra provided that
they obey the so-called PT requirements or PT symmetry. A
necessary (but not sufficient) condition for a Hamiltonian to be
PT symmetric is that its potential V (x) satisfies the condition
V (x) = V ∗(−x). It was suggested that in optics the refractive
index modulation combined with gain and loss regions can
play a role of complex PT -symmetric potentials [5–7]. It
should be noted that the beam dynamics in directional couplers
composed of waveguides with gain and loss was originally
described theoretically two decades ago in Ref. [8]; however,
the recently identified analogy with PT -symmetry property
has stimulated extensive theoretical [9–15] and experimental
[16,17] studies.

As was demonstrated in the original study of directional
couplers with gain and loss [8], such structures can offer
benefits for all-optical switching in the nonlinear regime,
lowering the switching power and attaining sharper switching
transition. Recently, these conclusions were complemented by
the prediction of unidirectional switching and exact analytical
solution describing the switching dynamics in nonlinear PT -
symmetric couplers [15].

In this article, we show that the origin of nonlinear switching
in the PT -symmetric directional couplers is related to the
effect of suppression of time reversals. This conclusion is
based on the symmetry analysis which is applicable to a broad
class of nonlinear local responses, including in particular the
cases of cubic (as considered in Refs. [8,15]) or saturable
responses. This is important in view of possible experimental
realizations of such couplers in different material systems with
various nonlinear response characteristics. For example, linear
PT -symmetric couplers have been demonstrated based on
LiNbO3 platform [17], and this material possesses photore-
fractive nonlinearity with saturable response.

We show that although nonlinearity always breaks the
PT -symmetry conditions for asymmetric wave profiles even

at arbitrarily small intensity levels, the effects of gain and
loss are exactly compensated and PT -symmetric dynamics
is preserved on average due to periodic time reversals for
intensities below a certain threshold. In contrast, for intensities
above a threshold, nonlinear self-action suppresses time
reversals and PT -symmetric dynamics is broken both locally
and globally, resulting in the asymmetric wave localization in
the region with gain.

The article is organized as follows. In Sec. II we discuss
our model of a nonlinear PT -symmetric coupler. Stationary
solutions of this model are found and analyzed in Sec. III,
whereas Sec. IV provides the symmetry analysis underpinning
general conclusions on the types of nonlinear dynamics in
the coupler. Finally, results of numerical simulations which
confirm and complement the analytical analysis are presented
in Sec. V, and Sec. VI concludes the article.

II. MODEL EQUATIONS

We describe the propagation of waves in a PT -symmetric
optical coupler, shown in Fig. 1, by the equations for the mode
amplitudes at the first and second waveguides. We use a set
of coupled-mode equations which include additional terms
accounting for Kerr-type nonlinearity [8,17]:

i
da1

dz
+ iρa1 + Ca2 + G(|a1|2)a1 = 0,

(1)
i
da2

dz
− iρa2 + Ca1 + G(|a2|2)a2 = 0,

where z is the propagation distance, a1 and a2 are the mode
amplitudes, ρ = ρ1 = −ρ2 defines the rates of loss in the first
waveguide and gain in the second waveguide, C is the cou-
pling coefficient between the modes of two waveguides, and
function G characterizes the nonlinear response. We assume
with no loss of generality that C > 0, since for negative C it is
possible to make the transformation a2 → −a2 and C → −C.
We note that a recently analyzed model for Bose-Hubbard
dimer in the mean-field approximation considered in Ref. [18]
may appear to be similar to the optical case; however, the
mean-field nonlinear terms are different, which response does
not depend on the total amplitude scaling, in contrast to
Kerr-type nonlinearity in Eqs. (1).
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FIG. 1. Scheme of nonlinear PT -symmetric directional coupler
with balanced loss in waveguide 1 and gain in waveguide 2.

In the following, we consider the values of gain and loss
coefficient below the linear PT -symmetry-breaking threshold
[17], ρ < C. In order to analyze nonlinear dynamics, it is
convenient to represent the mode amplitudes in the following
form:

a1 =
√

I (z) cos[θ (z)] exp[+iϕ(z)/2] exp[iβ(z)],
(2)

a2 =
√

I (z) sin[θ (z)] exp[−iϕ(z)/2] exp[iβ(z)],

where I is the total intensity, θ and ϕ define the relative
intensities and phases between the two input waveguides,
respectively, and β is the overall phase. After substituting
Eq. (2) into Eq. (1), we derive the closed system of evolution
equations for I , θ , and ϕ,

dI

dz
= −2ρI cos(2θ ),

dθ

dz
= ρ sin(2θ ) − C sin ϕ,

(3)
dϕ

dz
= G(I cos2 θ ) − G(I sin2 θ ) − 2C cot(2θ ) cos ϕ,

and additional equation for β,

dβ

dz
= 1

2
[G(I cos2 θ )/2 + G(I sin2 θ )] + C cos ϕ

sin(2θ )
. (4)

III. STATIONARY SOLUTIONS

Before performing the analysis of strongly nonstationary
dynamics, we first analyze stationary solutions of Eqs. (3).
We find that such nonlinear modes correspond to the phase-
space points (I = I0,θ = π/4,ϕ = ϕ±) and β = β±z, where
β± = G(I0/2) + C cos(ϕ±), sin(ϕ±) = ρ/C, and cos(ϕ±) =
∓[1 − (ρ/C)2]1/2. We perform the linear stability analysis by
considering weakly perturbed stationary solutions in the form

aj = exp(iβ±z){
√

I0/2 exp[i(−1)j+1ϕ±/2]

+uj exp(ipz) + v∗
j exp(−ip∗z)}, (5)

where uj and vj are the perturbation amplitudes and p defines
the growth rate. We identify nontrivial perturbation modes with
eigenvalues

p = ±2C[cos2(ϕ) − γ̃ cos(ϕ)]1/2, (6)

where γ̃ = G′(I0/2)I0/(2C) and prime stands for the deriva-
tive. The fixed point in phase space is a stable center,
Im(p) = 0, if (i) γ̃ < γ̃cr and ϕ = ϕ− or (ii) γ̃ > −γ̃cr and
ϕ = ϕ+, where γ̃cr = | cos(ϕ±)|. If these conditions are not
satisfied, then the fixed point is a saddle, and a mode amplitude
corresponding to Im(p) < 0 grows exponentially, indicating
the onset of instability.

IV. SYMMETRY PROPERTIES AND
DYNAMICAL SCENARIOS

In order to describe the features of nonstationary dynamics,
we identify an important symmetry property of the model
equations. After performing the complex conjugation of
Eq. (1) and comparing it to the original equations, we conclude
that for any solution aj (z),

ã1(z0+) = a∗
2 (z0−)eiδ, ã2(z0+) = a∗

1 (z0−)eiδ (7)

is also a solution of Eq. (1) for arbitrary constants z0 and δ,
where z0± = z0 ± z. This transformation represents the action
of a PT operator, where parity operator (P) corresponds to
the exchange of waveguide numbers and time operator (T )
defines the reversal of propagation direction. Using notations
of Eq. (2), we express the transformation in Eq. (7) as

Ĩ (z0+) = I (z0−), ϕ̃(z0+) = ϕ(z0−),
(8)

θ̃(z0+) = π/2 − θ (z0−), β̃(z0+) = δ − β(z0−).

We notice that if z0 = zm, where

θ (zm) = π/4, (9)

then we can choose the free parameter as δ = 2β(z0), and
the solution transforms into itself at z = zm. This happens
because the intensity distribution is symmetric, |a1(zm)|2 ≡
|a2(zm)|2, and, accordingly, nonlinearity does not break the
PT -symmetry condition at z = zm. Since the original and
transformed solutions satisfy the same evolution equation, it
follows that

I (zm+) = I (zm−), θ (zm+) = π/2 − θ (zm−),
(10)

ϕ(zm+) = ϕ(zm−), β(zm+) = 2β(zm) − β(zm−),

for zm± = zm ± z and any zm which satisfies condition in
Eq. (9). According to Eq. (10), the dynamics starting from
zm in positive (+z) and negative (−z) directions is exactly
equivalent, subject to the effective exchange of waveguide
numbers [Eq. (7)], and this is a nontrivial consequence of
linear PT symmetry in the nonlinear regime. It also follows
from Eqs. (3) and (9) that

dI

dz

∣∣∣∣
z=zm

= 0. (11)

The physical interpretation of this important result is that the
system exhibits effective time-reversal when the total intensity
reaches the maximum or minimum values, where time-reversal
(T ) corresponds to change of the propagation direction (z). We
use this result to reveal the general properties of nonstationary
wave dynamics.

First, we show that for any conditions at z = 0 and
considering −∞ < z < +∞, the dependence I (z) should
contain a minimum (or a stationary point), where dI/dz = 0
and d2I/dz2 � 0 at zmin. This can be proven as a contradiction:
(i) Depending on the sign of dI/dz at z = 0, we choose the
positive or negative propagation direction corresponding to
decreasing intensity (if such direction does not exist, z = 0 is
already a minimum). (ii) As the intensity is decreasing, the
effect of nonlinearity is diminishing [we assume the regular
nonlinear response with G(I ) → 0 as I → 0], and the system
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approaches linear propagation regime. (iii) However, it was
shown that in the linear regime the intensity dependence
always contains a minimum when loss coefficient is below the
linear PT -breaking threshold [6,16,17]. Since there always
exists zmin, it follows from Eq. (10) that all trajectories in
phase space are symmetric with respect to transformation
θ → π/2 − θ . We note that for special initial conditions, at
stage (ii) the solution may be asymptotically approaching
a saddle-type fixed point (this is not possible for the only
other type of stationary solutions in our model corresponding
to a stable center). As we have shown earlier, fixed points
only appear when θ = π/4, exactly fulfilling the condition of
Eq. (9). Therefore, such case formally corresponds to a limit
zmin → ∞. However, such separatrix trajectories approaching
a saddle point are inherently unstable and this special case is
practically unreachable and can be neglected.

Second, we reveal that for arbitrary nonlinear response
functions, all solutions belong to two classes: (i) periodic solu-
tions, where the intensities and relative phases in two waveg-
uides are exactly restored after each period (z → z + zp);
or (ii) solutions where the total intensity grows without bound
due to nonlinearly induced symmetry breaking. Let us prove
that solutions are periodic if intensity is bounded, that is, when
there exists zmax where dI/dz = 0 and d2I/dz2 < 0 (we again
neglect the special case of a separatrix trajectory approaching
a saddle point). Then, according to the relation in Eq. (11),
Eq. (10) should be satisfied simultaneously for zm = zmax and
zm = zmin; that is,

I (zmin − z) = I (zmin + z), I (zmax − z) = I (zmax + z). (12)

Making a variable transformation z → (zmin − z) and z →
(zmax − z) in the first and second relations in Eq. (12),
respectively, we obtain

I (z) = I (2zmin − z), I (z) = I (2zmax − z). (13)

Applying the second relation in Eq. (13) recursively after the
first one, we find that

I (z) = I (2zmax − 2zmin + z). (14)

This means that the solution is periodic, with the period
equal to zp = 2|zmax − zmin|. We can determine the location
of extrema points (zmax and zmin) on the phase plane. It
follows from Eqs. (3) and (9) that maxima (zmax) correspond
to θ = π/4 and ϕ− < ϕ < ϕ+ and minima (zmin) to θ = π/4
and ϕ < ϕ− or ϕ > ϕ+.

Based on these general predictions, we can reveal a
remarkable property. The type of nonlinear dynamics (periodic
or unbounded) remains the same if we swap the intensities
between the two waveguides [see Eq. (10)]. In particular, we
can couple light at the input just to the first waveguide with
loss, or to the second waveguide with gain, and the type of
dynamics would be the same. This is a counterintuitive result,
since in the first case the total intensity will initially decrease,
whereas in the second case the total intensity will be growing.
However, in both cases the type of dynamics will be determined
only by the initial intensity level. This is a highly nontrivial
consequence of linear PT symmetry in the strongly nonlinear
regime.

V. NUMERICAL RESULTS FOR KERR NONLINEARITY

We now complement the general analytical results with
numerical examples. To be specific, we consider the Kerr-type
nonlinear response function

G(I ) = γ I, (15)

where γ > 0 for self-focusing nonlinearity. Then, by introduc-
ing the transformation z → zC and aj → aj

√
C/γ , we can

scale the values of coefficients to unity, C = 1 and γ = 1, and
we use these values in numerical simulations. It follows from
analytical analysis presented in Sec. III that the stationary

FIG. 2. (Color online) System dynamics for different initial
conditions: (a)–(d) ϕ = π/6 − π/20 and (e)–(h) ϕ = π/6 + π/20.
(a), (e) Trajectories in the phase plane (θ , ϕ). The red open circle
marks the point at z = 0, and the open triangle marks the unstable
stationary solution with ϕ− = π/6. (b), (f) Intensity dependencies on
propagation distance in the first (dotted line) and second (dashed line)
waveguides; the solid line shows the sum of individual intensities.
(c), (g) and (d), (h) show the intensity and phase evolution along the
propagation direction. For all the plots, ρ = 0.5 and I (z = 0) = 2.2.
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FIG. 3. (Color online) Regions of PT symmetry (white shading)
and symmetry breaking with nonlinear switching (black shading) in
the plane of initial conditions: (a)–(c) The plane (θ , ϕ) for different
input intensities: (a) I = 0.1, (b) I = 0.8, and (c) I = 2.2. Stars and
triangles mark stable and unstable stationary solutions, respectively.
(d) The plane (I , ϕ) for θ = π/4. Dashed and dotted lines mark the
stationary points at ϕ±. For all the plots, ρ = 0.5.

point at ϕ+ is always stable, whereas at ϕ− the instability
appears for I0 > I0cr = 2[1 − ρ2]1/2. We present in Fig. 2 two
examples of system dynamics when the initial condition (at
z = 0) is chosen in the vicinity of the unstable point, ϕ− = π/6
for ρ = 0.5 and I0 = 2.2 > I0cr = √

3. In both examples we
choose θ = π/4, such that zm = 0 according to Eq. (9). In the
first example, we set the value of ϕ(z = 0) slightly larger than
ϕ−, and therefore, according to the general analytical results,
the initial condition corresponds to a maximum (zmax = 0),
and the solution should be periodic. Indeed, this is confirmed
by numerical simulations in Figs. 2(a)–2(d). We see that the
trajectory in phase space rapidly moves away from the unstable
stationary point, but then returns to the initial location after a
full period. Completely different dynamics is observed in the
second example [Figs. 2(e)–2(h)], where we set the value of
ϕ(z = 0) slightly less than ϕ−. In this case, the initial condition
corresponds to a minimum (zmin = 0), and the solution does
not have to be periodic. Indeed, we see that the total intensity
grows without bound and light becomes concentrated in a
single waveguide at |z| → ∞. These examples illustrate two
types of the system dynamics.

Next we perform comprehensive numerical studies to de-
termine the dynamical regimes for arbitrary initial conditions,
which may not correspond to the vicinity of stationary points.
In Fig. 3 we show the regions of the initial conditions
corresponding to periodic (white shading) and unbounded
(black shading) solutions for ρ = 0.5. The plots in Figs. 3(a)–
3(c) are shown in the plane (θ , ϕ) for different input intensities,

FIG. 4. (a) Dependence of the minimal critical intensity required
for nonlinear switching vs the gain coefficient ρ. (b) The correspond-
ing value of the input phase ϕcr for the nonlinear switching.

and those in Fig. 3(d) in the plane (I , ϕ) for θ = π/4. For the
input intensity below a critical threshold (I < Icr), all initial
conditions correspond to periodic solutions preserving PT

symmetry on average. Note that the threshold value is lower
than the instability threshold for the stationary mode; that is,
Icr < I0cr. As the input intensity exceeds the threshold, there
appears a range of initial conditions corresponding to nonlinear
suppression of PT -symmetry reversals. On the other hand,
according to the analytical results, the region between the
dashed and dotted lines [corresponding to the stationary points
with ϕ± in Fig. 3(d)] will always remain white, since these
initial conditions correspond to periodic solutions at arbitrary
intensities.

Finally, in Fig. 4 we present the dependence of the minimal
input intensity (Icr) on gain coefficient and the correspond-
ing phase difference (ϕcr) required for nonlinear switching.
According to the analytical results, the minimal intensity
should always correspond to the condition θcr = π/4, and our
numerical results confirm this conclusion. As follows from
Fig. 4(a), the threshold for nonlinear switching is drastically
reduced for larger gain or loss coefficients, which is crucial for
the practical applications of such couplers in all-optical signal
processing.

VI. CONCLUSIONS

We have described analytically and demonstrated
numerically the effect of nonlinearity-induced PT -symmetry
breaking in directional waveguide couplers with balanced
gain and loss. We have revealed that time reversals can
support average balance between gain and loss despite local
PT -symmetry breaking, whereas suppression of time rever-
sals at stronger nonlinearities results in switching and light
concentration in a region with gain. Our results may offer an
interesting insight and suggest different possibilities for all-
optical control of the beam switching and amplification in non-
linear photonic structures containing loss and gain elements
[8,15,19–21].

ACKNOWLEDGMENTS

This work has been supported by the Australian Research
Council through Discovery projects.

043818-4



NONLINEAR SUPPRESSION OF TIME REVERSALS IN . . . PHYSICAL REVIEW A 82, 043818 (2010)

[1] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243
(1998).

[2] C. M. Bender, D. C. Brody, and H. F. Jones, Phys. Rev. Lett. 89,
270401 (2002); 92, 119902(E) (2004).

[3] C. M. Bender, D. C. Brody, and H. F. Jones, Am. J. Phys. 71,
1095 (2003).

[4] C. M. Bender, Rep. Prog. Phys. 70, 947 (2007).
[5] A. Ruschhaupt, F. Delgado, and J. G. Muga, J. Phys. A 38, L171

(2005).
[6] R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and

Z. H. Musslimani, Opt. Lett. 32, 2632 (2007).
[7] S. Klaiman, U. Gunther, and N. Moiseyev, Phys. Rev. Lett. 101,

080402 (2008).
[8] Y. J. Chen, A. W. Snyder, and D. N. Payne, IEEE J. Quantum

Electron. 28, 239 (1992).
[9] M. V. Berry, J. Phys. A 41, 244007 (2008).

[10] K. G. Makris, R. El-Ganainy, D. N. Christodoulides,
and Z. H. Musslimani, Phys. Rev. Lett. 100, 103904
(2008).

[11] S. Longhi, Phys. Rev. Lett. 103, 123601 (2009).

[12] O. Bendix, R. Fleischmann, T. Kottos, and B. Shapiro, Phys.
Rev. Lett. 103, 030402 (2009).

[13] C. T. West, T. Kottos, and T. Prosen, Phys. Rev. Lett. 104, 054102
(2010).

[14] S. Longhi, Phys. Rev. A 81, 022102 (2010).
[15] H. Ramezani, T. Kottos, R. El Ganainy, and D. N.

Christodoulides, Phys. Rev. A 82, 043803 (2010).
[16] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-

Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides,
Phys. Rev. Lett. 103, 093902 (2009).

[17] C. E. Ruter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides,
M. Segev, and D. Kip, Nat. Phys. 6, 192 (2010).

[18] E. M. Graefe, H. J. Korsch, and A. E. Niederle, Phys. Rev. A 82,
013629 (2010).

[19] Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N.
Christodoulides, Phys. Rev. Lett. 100, 030402 (2008).

[20] Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N.
Christodoulides, J. Phys. A 41, 244019 (2008).

[21] S. V. Dmitriev, A. A. Sukhorukov, and Yu. S. Kivshar, Opt. Lett.
35, 2976 (2010).

043818-5

http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRevLett.89.270401
http://dx.doi.org/10.1103/PhysRevLett.89.270401
http://dx.doi.org/10.1103/PhysRevLett.92.119902
http://dx.doi.org/10.1119/1.1574043
http://dx.doi.org/10.1119/1.1574043
http://dx.doi.org/10.1088/0034-4885/70/6/R03
http://dx.doi.org/10.1088/0305-4470/38/9/L03
http://dx.doi.org/10.1088/0305-4470/38/9/L03
http://dx.doi.org/10.1364/OL.32.002632
http://dx.doi.org/10.1103/PhysRevLett.101.080402
http://dx.doi.org/10.1103/PhysRevLett.101.080402
http://dx.doi.org/10.1109/3.119519
http://dx.doi.org/10.1109/3.119519
http://dx.doi.org/10.1088/1751-8113/41/24/244007
http://dx.doi.org/10.1103/PhysRevLett.100.103904
http://dx.doi.org/10.1103/PhysRevLett.100.103904
http://dx.doi.org/10.1103/PhysRevLett.103.123601
http://dx.doi.org/10.1103/PhysRevLett.103.030402
http://dx.doi.org/10.1103/PhysRevLett.103.030402
http://dx.doi.org/10.1103/PhysRevLett.104.054102
http://dx.doi.org/10.1103/PhysRevLett.104.054102
http://dx.doi.org/10.1103/PhysRevA.81.022102
http://dx.doi.org/10.1103/PhysRevA.82.043803
http://dx.doi.org/10.1103/PhysRevLett.103.093902
http://dx.doi.org/10.1038/nphys1515
http://dx.doi.org/10.1103/PhysRevA.82.013629
http://dx.doi.org/10.1103/PhysRevA.82.013629
http://dx.doi.org/10.1103/PhysRevLett.100.030402
http://dx.doi.org/10.1088/1751-8113/41/24/244019
http://dx.doi.org/10.1364/OL.35.002976
http://dx.doi.org/10.1364/OL.35.002976

