
PHYSICAL REVIEW A 82, 043815 (2010)

Self-trapping of two-dimensional vector dipole solitons in nonlocal media
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We study the self-trapping of the superposition of two-dimensional vector dipole solitons in nonlocal media
with an arbitrary degree of nonlocality. We apply the variational approach to find the exact solution of such
vector dipole solitons and investigate their stability by using directly numerical simulations. The dynamics of
such vector solitons are also compared with a scalar vortex. We show the nonlocality induces an attractive force
which can completely stabilize the vector dipole solitons.
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I. INTRODUCTION

Spatial solitons, localized waves balanced between linear
diffraction and nonlinear self-trapping, have drawn consider-
able attention in a range of physical settings [1]. In the case
of nonlinear optics, the nonlinear response of the medium can
be described in terms of the induced change in the refractive
index which is often approximated as a local function of the
wave intensity [1]. However, the nonlocal nonlinear response
has been a strong interest subject recently [2]. This so-called
nonlocal model represents the fact that the nonlinear change
of the refractive index depends on the beam intensity in the
neighborhood of each spatial point [2]. For other physical
systems, the cause of the nonlocal nonlinear model can be
interpreted with different physical mechanisms. This occurs,
for example, in media with the nonlinearity caused by various
transport processes such as heat conduction in media with
thermal response [3,4], diffusion of charge carriers or atoms
or molecules in atomic vapors [5], and drift or diffusion of pho-
toexcited charges in photorefractive materials [6]. Propagation
of electromagnetic waves in plasma [7] and parametric wave
mixing [8] also belong to the nonlocal nonlinear domain. It
is also the case of systems exhibiting a long-range interaction
of constituent molecules or particles such as in nematic liquid
crystals [9] or Bose-Einstein condensates with dipole [10] and
gravity-like interactions [11].

The propagation of solitons in nonlocal medium is an
interesting and important subject in that the nonlocality has
profound impact on its physical dynamics and leads to novel
phenomena of a generic nature [2]. Nonlocal nonlinearity has
been shown to support a series of novel solitons, such as
stable multipole solitons [12,13], discrete solitons [14,15], and
azimuthons [16–19]. It also affects the interactions of out-of-
phase bright [20,21] and dark solitons [22–24], provides attrac-
tive forces between the soliton components which always repel
in local media. Nonlocality can also support high-dimensional
stable, complex vortex soliton structures [25–28] because
of collapse suppression of localized structures, including
fundamental, vortex and rotating solitons in nonlocal nonlinear
media [29]. Recently, experimental and theoretical studies
have shown that the nonlocality also plays different important
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roles for the incoherent solitons in both instantaneous and
noninstantaneous media [30–35], respectively.

Vector solitons, a localized envelope consisting of multi-
components, have also been investigated in nonlocal media,
such as the stability of multipole vector solitons [36,37].
Alberucci et al. have investigated experimentally another class
of vector solitons—namely, two-color, spatial solitons—in a
nematic liquid crystal with highly nonlocal and anisotropic
reorientational nonlinearity [38]. Theoretical properties of
two-color vector fundamental solitons in nematic liquid crys-
tals have also been studied in local [39] and highly nonlocal
[40] limits. Lee et al. investigated theoretically the mutual
trapping of bright and dark beams in nonlocal media [41].
In addition to stabilization of vector soliton pairs, nonlocal
nonlinearity also helps to reduce the threshold power for
forming a guided bright solitons [41]. We have investigated
the incoherently coupled dipole soliton pairs in nonlocal media
and shown that the fundamental beam can effectively improve
the stability of the dipole beam [42]. Xu et al. studied the
vector coupling between a fundamental Gaussian beam and a
vortex beam in nematic liquid crystal [43].

Dipole-mode solitons, comprising two out-of-phase peaks
packed together by the force acting between them, attracted
much attentions in nonlocal nonlinear media, both experimen-
tally [12] and theoretically [13,17,44–48]. Stationary two-
dimensional (2D) dipole-mode solitons have been observed
experimentally in media with the thermal nonlinearity [12].
It is also shown that the stability of the dipole-mode solitons
is crucially dependent on the form of the nonlinear nonlocal
response [13,17,44–47]. Recently, stable elliptic dipole-mode
solitons in nonlocal nonlinear media with anisotropic semilo-
cal nonlinearity has also been reported [48].

In this paper, we investigate the self-trapping of the
superposition of two-dimensional vector dipole solitons in
nonlocal media with an arbitrary degree of the nonlocality both
analytically and numerically. We use the variational approach
to derive analytical formulas for the vector dipole solitons.
We further show the stability and the evolution of the vector
dipole solitons by direct numerical simulations. Our results
show that the nonlocality induces an attractive force, which can
completely eliminate the split and the quasistable expanding
of the solitons in purely local media, and stabilizes the vector
dipole solitons. We also compare our results with the evolution
of a scalar vortex.
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II. MODEL AND VARIATIONAL METHOD

We consider the propagation of a vector soliton consisting
of N mutually incoherent optical components propagating in
a nonlinear medium with a spatially nonlocal response. The
propagation for the slowly varying beam envelopes En(x,y,z)
can be written in the form of the normalized coupled nonlocal
nonlinear Schrodinger equations (n = 1,2, . . ., N) [49],

i
∂En

∂z
+ ∂2En

∂x2
+ ∂2En

∂y2
+ En

∫
R(r − r′)I (r′,z)d2r′ = 0,

(1)

where the propagation coordinate, z, is measured in the unit of
the diffraction length LD and the transverse coordinates, (x,y),
are measured in the units of (LD/k)1/2. I = ∑ |En|2 is the total
beam intensity and R(r) is the normalized nonlocal response
function with

∫ ∞
−∞ R(r)dr = 1. The width of the response

function R(r) determines the degree of nonlocality. For a
singular response, R(r) = δ(r), the refractive index becomes
a local function of the light intensity, δn(I ) = I (r,z) (i.e., the
refractive index change at a given point is solely determined
by the light intensity at that point). With increasing width
of R(r) the light intensity in the vicinity of the point r also
contributes to the index change at that point. When the width
of the response function trends to infinity, the nonlocal model
can be treated as accessible solitons. In cylindrical coordinate
system, Eq. (1) can be written as follows:

i
∂En

∂z
+ 1

r

∂En

∂r
+ ∂2En

∂r2
+ 1

r2

∂2En

∂ϕ2

+En

∫
R(r − r′)I (r′,z)d2r′ = 0, (2)

where r =
√

x2 + y2 and ϕ = tan−1(y/x). In this paper, we
aim to investigate the propagation of vector localized solutions
of Eq. (1) using an incoherent superposition of the dipole
components. Similarly discussed in Ref. [49], we look for the
solutions of the vector solitons in the following form:

En = U (r)�n(ϕ)eikz, (3)

with the self-consistency condition �|�n(ϕ)|2 = 1 and the
propagation constant k. The total intensity of the nonlocal
vector soliton is a function of the radial coordinate only, which
is presented as I = U 2(r).

Substitute Eq. (3) into (2), we can obtain that

d2U

dr2
+ 1

r

dU

dr
− m2

r2
U − kU

+U

∫
R(r − r′)|U (r′,z)|2d2r′ = 0, (4)

and

d2�n

dϕ2
+ m2�n = 0. (5)

Equation (5) has an analytical solution:

�n(ϕ) = an cos(mϕ) + bn sin(mϕ), (6)

where the m (integer) is the topological charge, an and
bn are the complex coefficients satisfying the conditions
�Re(anb

∗
n) = 0 and �|an|2 = �|bn|2 = 1, which define exact

solutions of the system (1) for any N, and, in the particular
case N = 1, they describe a scalar vortex with a = 1 and
b = i. In this paper, we consider a two-component model
(N = 2) to investigate the dynamics of the vector solitons in
nonlocal media. The complex coefficients satisfy the following
relation:

a1 = (1 + p2)−1/2,b1 = ipa1, (7)

and

a2 = pa1,b2 = ±ia1, (8)

where 0 � p � 1 is a real parameter. For the vector dipole
solitons, represented as an incoherent superposition of two
dipole modes, the coefficients satisfy m = 1 and p = 0 [49].
The dipole components, thus, can be written as E1 = U cos(ϕ)
and E2 = iU sin(ϕ).

In order to get some insight into possible propagation
dynamics of the nonlocal vector solitons, we firstly employ
the so-called Lagrangian (or variational) approach. It is easy to
show that Eq. (1) can be derived from the following Lagrangian
density:

l =
∑
n=1,2

i

2
r

(
E∗

n

∂En

∂z
− En

∂E∗
n

∂z

)
− r

(∣∣∣∣∂En

∂r

∣∣∣∣
2

+ 1

r2

∣∣∣∣∂En

∂ϕ

∣∣∣∣
2
)

+ 1

2
r|En|2

∫
R(r − r′)I (r′,z)d2r′. (9)

R(r) is the normalized nonlocal response function with a
characteristic width σ0 which represents the degree of the
nonlocality. In our variational process, we consider here the
case of the Gaussian nonlocal response [17,30]:

R(r) = (
πσ 2

0

)−1
exp

( − r2
/
σ 2

0

)
, (10)

which can describe the dynamics of solitons in nonlocal media
physically. For convenience, we also choose a typical single
ring vortex form for the amplitude of the vector solitons,

U (r) = Ar exp (−r2/2σ 2), (11)

with the beam width σ [25]. The variational method is
represented as δ

∫
Ldz = 0, where L = ∫ ∞

−∞ ldxdy. Com-
bining Eqs. (9)–(11), we can obtain the effective Lagrangian
L = L(A,σ0) depending only on the parameters A and σ0.
From the Euler-Lagrange equations we then obtain

A2 =
(
2σ 2 + σ 2

0

)4

σ 10σ 2
0 + σ 12 + σ 8σ 4

0

. (12)

The total power of the vector dipole solitons is P = πA2σ 4.
In Fig. 1, we show the total power as a function of the degree
of nonlocality with different beam widths. We can see that
the total power of the vector dipole solitons will decrease
when the beam width increases, whereas the total power will
increase when the degree of the nonlocality increases. This
is because the nonlinearity depends on the power in nonlocal
Kerr media; the larger the power, the larger the nonlinearity.
As the degree of the nonlocality increases, the nonlinearity
of the media will be weakened and then the diffraction of the
beam will be strengthened which requires a larger nonlinearity
induced by the power to balance the diffraction.
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FIG. 1. (Color online) Total power of the vector dipole solitons
versus degree of nonlocality with different beam widths.

We also plot the total power versus the propagation constant
k in Fig. 2. The total power of the vector dipole solitons will
increase when the propagation constant increases which is
similar to the scalar dipole solitons in nonlocal media [17]. It
is also obvious that the power will increase when the degree
of nonlocality increases.

III. NUMERICAL RESULTS

In this paper, we are interested in the interactions between
the incoherent dipole components and the propagation stability
of the vector solitons in nonlocal media. In this section, the
predictions of the variational approach will be confronted with
direct numerical simulations by using the split-step Fourier
transform method. The approximate solitons resulting from the
variational approach will be used as an initial condition to our
two-dimensional code to compute their evolution dynamics.

In Figs. 3–6 we show the stability dynamics of the
vector dipole solitons in nonlocal media when degrees of
the nonlocality are local, weakly nonlocal, general nonlocal,
and strongly nonlocal, respectively. In all our simulations, we
make the initial beam width σ = 1. For comparison with the
vector case, we also present the evolution of a scalar vortex
E = U (r) exp (imϕ) with the topological charge m = 1 (the
scalar vortex can be regarded as a coherent superposition of E1

and E2) in the nonlocal nonlinear media. The numerical results
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FIG. 2. (Color online) Total power of the vector dipole solitons
versus k with different degree of nonlocality.
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FIG. 3. (Color online) Dynamics and symmetry-breaking insta-
bility of the scalar vortex and vector dipole solitons with the degree
of the nonlocality is σ0 = 0 (local).

tell us the nonlocality and the mutual attraction between the
necklace-ring components jointly stabilize the dynamics of the
vector solitons in nonlocal media. For the scalar vortex beam,
despite the fact it will decay into a pair of scalar solitons
during its propagation [49], the nonlocality can effectively
improve the stability of the beam (Figs. 3–5), and it will be
stable only in the strongly nonlocal case (Fig. 6). Figure 5
tells us we can obtain the stationary vector dipole solitons in a
general nonlocal case with σ0 = 1, whereas the scalar vortex
beam is still unstable with the same degree of the nonlocality.
The result indicates that the mutual self-trapping between the
vector components exhibit much more stability for the solitons
than the scalar beam, which is also displayed in the local
case (compare the scalar and the vector case in Fig. 3) and
weakly nonlocal case (compare the scalar and the vector case
in Fig. 4). The nonlocality also stabilize the vector dipole
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FIG. 4. (Color online) Dynamics and symmetry-breaking insta-
bility of the scalar vortex and vector dipole solitons with the degree
of the nonlocality is σ0 = 0.1 (weakly nonlocal).
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FIG. 5. (Color online) Dynamics and evolution of the scalar
vortex and vector dipole solitons when the degree of the nonlocality
is σ0 = 1 (generally nonlocal).

beam. For example, it will be stable when the propagation
distance is five diffraction lengths in the weak nolocality with
σ0 = 0.1 (Fig. 4). However, the vector beam split into three
components with the same propagation distance in the local
case with σ0 = 0 (Fig. 3).

In local and weakly nonlocal media, the vector property
and the nonlocality cannot prevent the break-up of the high-
dimensional beam; both the scalar vortex and the vector dipole
beam will split into some fundamental solitons. However,
the split dynamics of the vector solitons is very different
from the scalar vortex. The scalar vortex will split into an
even number of solitons produced by the symmetry-breaking
instability (Figs. 3 and 4). The vector dipole beam will split
into odd-number solitons with uniform intensity in spite of the
fact that its component intensity is asymmetrically modulated
(Figs. 3 and 4) [49]. In this paper, we find the vector beam
can only propagate several diffraction lengths in the local
and weakly nolocal media (Figs. 3 and 4), which is very
different from the case of Fig. 1(b) discussed in Ref. [49],
where the vector beam displays a long-term stable dynamics up
to the propagation distances of almost 55 diffraction lengths.
The result is due to the different types of the nonlinearity
used in our work and in Ref. [49]. The model used in
Ref. [49] is the saturable nonlinearity which can effectively
eliminate the collapse of the beam and show a larger stationary
propagation distance. In such saturable nonlinear media, the
vector beam can only propagate quasistably; it will expand
slowly with the propagation distance. However, the nonlocality
induces an attractive force [24], which can completely suppress
the repulsion between the neighbor beam “petals” with a
π phase flip [49], and we can obtain the fully stationary vector
dipole solitons, as shown in Figs. 5 and 6. In the strongly
nonlocal media, the nonlocality will weaken the strength of the
nonlinearity and induce a smoothly parabolic potential [42].
The solitons will be more stable, but weakly confined in such an
optical-induced waveguide and its profile will become nearly
rectangle (Fig. 6).
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FIG. 6. (Color online) Dynamics and evolution of the scalar
vortex and vector dipole solitons when the degree of the nonlocality
is σ0 = 10 (strongly nonlocal).

It should be indicated that we only consider the propagation
dynamics of solitons without a perturbation in this paper. In
fact, a perturbed scalar dipole soliton with a small perturbation
in the input field distribution will oscillate unstably in nonlocal
media with a thermal nonlinearity [12]. It will break up
and decay into a ground-state solitons at a long propagation
distance at moderate energy levels. However, we emphasize
that we have obtained the reasonable and interesting results of
the propagation dynamics of the scalar vortex and the vector
dipole solitons without perturbation in nonlocal media. Vector
dipole solitons with a perturbation is an important issue, which
is also, indeed, our next aim [41].

IV. CONCLUSION

In conclusion, we have investigated the self-trapping of
the superposition of two-dimensional vector dipole solitons in
nonlocal media with an arbitrary degree of the nonlocality both
analytically and numerically. We used the variational approach
to derive analytical formulas for the vector dipole solitons.
We further showed the stability of the vector dipole solitons
by direct numerical simulations. The evolution dynamics of
the vector solitons is compared with a scalar vortex. Our
results showed that the vector property and the nonlocality play
important roles in the dynamics of the vector dipole beam. The
nonlocality induces an attractive force, which can completely
eliminate the split and the quasistable expansion of the beam
in local media, and stabilizes the vector dipole solitons.
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