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Engineering biphoton wave packets with an electromagnetically induced grating
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We propose to shape biphoton wave packets with an electromagnetically induced grating in a four-level
double-� cold atomic system. We show that the induced hybrid grating plays an essential role in directing the
new fields into different angular positions, especially for the zeroth-order diffraction. A number of interesting
features appears in the shaped two-photon wave forms. For example, broadening or narrowing the spectrum
would be possible in the proposed scheme even without the use of a cavity.
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I. INTRODUCTION

The generation of entangled paired photons with a desired
joint spectrum has become a fascinating conceptual viewpoint
for both fundamental and practical research. This is because
the joint spectrum contains the information on bandwidth,
type of frequency correlations, and wave function of the
two-photon state. By manipulating the joint spectrum,
one can obtain the most appropriate form for the specific
quantum optics application under consideration. For instance,
biphotons with a narrow bandwidth play a key role in the
long-distance quantum communication protocols based on an
atom-photon interface [1]; biphotons with a few femtoseconds
of correlation time are of particular interest in the fields of
quantum metrology [2] and for some protocols for timing and
positioning measurements [3].

Conventionally, entangled paired photons are produced
from the process of spontaneous parametric down-conversion
(SPDC) in a nonlinear crystal, where a pump photon is
annihilated and two down-converted daughter photons are
simultaneously emitted [4]. Because of their broad bandwidth
and short coherence time, it is difficult to shape SPDC
photon wave packets in the time domain directly. A number
of methods has been proposed and developed to perform
spectral manipulation of the joint spectrum [5–7] or spatial
modulation of the nonlinear interaction [8–10]. Others are
to modify the (quasi-)phase matching [11], engineer the
dispersive properties of the nonlinear medium [12], or imprint
the spectral and spatial characteristics of the pump beam into
the joint spectrum [13].

A recent demonstration of the generation of narrow-band
biphotons in cold atomic ensembles via spontaneous four-wave
mixing (SFWM) [14–18] has attracted considerable attention
because of their long coherence time and controllable quantum
wave packets. Nonlocal modulation of temporal correlation
has been observed with such narrow-band biphotons [19].
In a very recent experiment [20], shaping of the temporal
wave form by periodically modulating the input driving
lasers has confirmed the previous theoretical prediction [21],
in which the input field profiles can be revealed in the
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two-photon correlation measurements. One major advantage
over shaping the SPDC photon temporal wave function is
that these narrow-band biphotons allow further wave-packet
modification directly in the time domain.

In this paper, we describe a way to manipulate paired
Stokes and anti-Stokes wave forms produced from SFWM
in a four-level double-� [22] cold atomic system with the use
of an electromagnetically induced grating (EIG) [23,24]. EIG
has been experimentally demonstrated in cold atoms [25,26]
and has been applied to all optical switching and routing
in hot atomic vapors [27]. Here, we show that, by spatially
modulating the control beams, alternating regions of high
transmission and absorption can be created inside the atomic
sample that act as an amplitude grating and by which the
joint Stokes and anti-Stokes wave packet can be shaped.
Compared with previous proposals ascribed before, several
interesting features appear in the present one. First, such a
medium may exert both amplitude and phase modulations
on biphoton wave packets in much the same way that a
hybrid (amplitude and phase) grating does to the amplitude
and phase of an electromagnetic wave. Second, the spatial
modulation of the control fields is imprinted into both the linear
and the nonlinear susceptibilities. Consequently, this mapping
may broaden or may narrow the joint spectrum depending
on the system’s parameters. Third, but not least, because of
the grating diffraction interference, the spectral brightness
can be improved, and the emission angle can be confined to
some particular angles. For example, the anti-Stokes field will
be mainly directed to the zeroth-order diffraction.

We organize the paper as follows. The basic idea is
presented in Sec. II by considering two-photon temporal
correlation measurement. The conclusion is summarized in
Sec. III.

II. SHAPING BIPHOTON WAVE FORM WITH EIG

A. EIG

To illustrate the basic idea, we consider a four-level double-
� atomic system (e.g., 87Rb) depicted in Fig. 1(a), where
all the atomic population is assumed to be in the ground
state |1〉. To ignore the Doppler broadening, the atoms are
laser cooled in a magnetic optical trap. Two strong control

1050-2947/2010/82(4)/043814(5) 043814-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.82.043814


JIANMING WEN, YAN-HUA ZHAI, SHENGWANG DU, AND MIN XIAO PHYSICAL REVIEW A 82, 043814 (2010)

FIG. 1. (Color online) Shaping biphoton wave packets with an
EIG. (a) The level structure, where in the presence of a cw probe
(ωp) and control (ωc) fields, paired Stokes (ωs) and anti-Stokes
(ωas) photons are spontaneously created from the four-wave mixing
processes in the low-gain regime. (b) The backward generation
geometry, where two strong control beams symmetrically displace
with respect to z and form a standing wave along x. (c) The standing
wave formed by control fields.

fields (ωc), resonant with the atomic transition |2〉 → |3〉
while being symmetrically displaced with respect to z, are
incident upon the atomic ensemble at such angles that they
intersect and form a standing wave within the medium [see
Fig. 1(c)]. In the presence of the counterpropagating weak
probe field (ωp) far detuned from the transition |1〉 → |4〉,
phase-matched Stokes (ωs) and anti-Stokes (ωas) photons are
then spontaneously generated in opposite directions and are
detected by single-photon detectors D2 and D1, respectively,
as shown in Fig. 1(b). Since the linear and nonlinear optical
responses to the generated fields depend on the strength of
the control light, they are expected to change periodically as
the standing wave changes from the nodes to the antinodes
across the x dimension. In the current configuration, the
Stokes photons travel at nearly the speed of light in vacuum
with negligible Raman gain. In contrast, the strong control
beams induce a set of periodic transparency windows to the
anti-Stokes field. Thus, alternatively, a nonmaterial grating is
formed in the anti-Stokes channel. This grating is termed as an
EIG [23], which will diffract the anti-Stokes field into some
particular angles according to the diffraction orders.

Following the analysis presented in Ref. [17], the third-
order nonlinear susceptibility for the generated anti-Stokes
field is calculated to be

χ (3)
as (ω) = −Nµ13µ32µ24µ41/[4h̄3ε0(�p + iγ41)]

(ω − �e + iγe)(ω + �e + iγe)
, (1)

and the linear susceptibilities at the Stokes and anti-Stokes
frequencies are, respectively,

χs(ω) = N |µ42|2(ω − iγ31)/(4h̄ε0)

|�c|2 cos2
(

πx
d

) − (ω − iγ31)(ω − iγ21)

|�p|2
�2

p + γ 2
41

,

(2)

χas(ω) = N |µ31|2(ω + iγ21)/(h̄ε0)

|�c|2 cos2
(

πx
d

)− (ω + iγ31)(ω + iγ21)
,

where N is the atomic density, µij are the dipole matrix ele-
ments, �p and �c are the probe and control Rabi frequencies,
γij are the decay or dephasing rate, �p = ωp − ω41 is the
probe detuning, and d = π

kcx
represents the space period, which

can be made arbitrarily larger than the wavelength of the
control fields by varying the angle between their two wave
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FIG. 2. (Color online) A typical transmission profile of the anti-
Stokes field as a function of x. Parameters are chosen as d = 2 µm,
the optical depth about 5, γ31 = 2π × 3 MHz, and γ21 = 0.6γ31.

vectors. �e =
√

|�c|2 cos2 (πx
d

) + γ31γ21 ≈ |�c| cos (πx
d

) is

the effective control Rabi frequency, and γe = γ31+γ21

2 is the
effective dephasing rate. χ (3)

as in Eq. (1) has two resonances
separated by �e, and each is associated with a linewidth
of 2γe. From Eqs. (1) and (2), it is obvious that the
spatial periodic modulation of the control fields has been
mapped into the optical responses to the Stokes and anti-
Stokes fields. Consequently, such a modulation will further
modify the two-photon wave form as will be discussed
later. It is known that the linear susceptibilities determine
the transmission bandwidth and dispersion property. Taking
|�p| � �p, χs is approximated as 0, which means the Stokes
photons traverse the medium almost at the speed of light
in vacuum, and the Raman gain is negligible. In contrast,
the anti-Stokes photons may propagate at a lower group ve-
locity vg ≈ 2h̄ε0c|�c|2 cos2 (πx

d
)/N |µ31|2ω31 = v0 cos2 (πx

d
)

and may experience periodic linear loss characterized by
α = Nσ31γ21γ31/2[|�c|2 cos2 (πx

d
) + γ21γ31], where σ31 =

ω31|µ31|2/(h̄ε0cγ31) is the on-resonance absorption cross
section in the transition |1〉 → |3〉.

Thus, such a periodic linear loss results in an EIG to the
anti-Stokes photons. Figure 2 displays a typical transmission
function for the anti-Stokes light as a function of x. It is easy
to understand that, at the transverse locations around the nodes
(of the standing wave), the control field intensities are so weak
that the anti-Stokes field is absorbed according to the usual
Beer law. In contrast, since the intensity distribution of the
control fields at the spatial locations around the antinodes
is very strong, the absorption of the anti-Stokes field is
greatly suppressed due to the effect of electromagnetically
induced transparency [28]. This leads to a periodic amplitude
modulation across the beam profile of the anti-Stokes light, a
phenomenon reminiscent of the amplitude grating.

B. Shaping two-photon wave form

The paired Stokes and anti-Stokes photon states can be
obtained from first-order perturbation theory [16,17,29]. For
simplicity, we take the input probe and control beams as
classical cw lasers and focus on the two-photon temporal
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correlation. The effective interaction length is taken as L.
The unnormalized biphoton state at the output surfaces of the
sample may be written as

|�〉 = �0

∫
dω �(ω)a†

s a
†
as |0〉, (3)

where �0 is a grouped constant, and the joint spectral function
takes the form

�(ω) =
∫ x2

x1

dx χ (3)
as (ω) cos

(
πx

d

)
sinc

(
�k L

2

)
ei(�k L/2),

(4)

where the cosine term comes from the standing wave of
the control fields, and the last two terms come from the
longitudinal phase-matching condition with �k ≈ ω

vg
+ iα.

In Eq. (4), we have taken the linear loss into account. It is
clear that the joint spectrum � can be engineered through
χ (3)

as and the phase-matching condition. After, we describe the
wave-packet shaping by considering the simple two-photon
temporal correlation measurement in which paired Stokes and
anti-Stokes photons are detected by single-photon detectors
D1 and D2 with equal pathways from the output surfaces
of the medium, as shown in Fig. 1(b). Since there are two
characteristic timings embedded in Eq. (4), the resonance
linewidth determined by χ (3)

as and the natural spectral width
determined by the phase-matching condition L

v0
will be looked

at separately by using the two-photon temporal correlation in
which only one characteristic timing is dominant.

Using the Glauber theory, the two-photon amplitude is

A = 〈0|E(+)
s E(+)

as |�〉. (5)

The field E
(+)
j is the positive-frequency part of the free-space

electromagnetic field at position rj and time tj . In the far-field
region (Fraunhofer diffraction), the biphoton amplitude (5)
over the diffraction angle θ (with respect to z) can be derived,
by following the procedure done in Refs. [17,18,30], as

A(τ ; θ ) = A

∫ x2

x1

dx cos

(
πx

d

)
eikasx sin θ

×
∫

dω χ (3)
as (ω) sinc

(
�k L

2

)
ei(�k L/2−ωτ ), (6)

where A is an integrant-irrelevant constant, τ = tas − ts is the
relative time delay between two clicks, and kas is the central
wave number of the anti-Stokes photons. Equation (6) can
further be recast into a product of an integral and a geometric
series,

A(τ ; θ ) = A

M/2∑
n=−M/2

eikasnd sin θ

∫ d/2

−d/2
dx cos

(
πx

d

)
eikasx sin θ

×
∫

dω χ (3)
as (ω) sinc

(
�k L

2

)
ei(�k L/2−ωτ ), (7)

where M represents the input probe field across M times d.
This can be guaranteed by adjusting the diameters of both
probe and control fields to cover M slits. By evaluating the
geometric progression in the usual fashion, Eq. (7) can be

written as

A(τ ; θ ) = A
sin kasMd sin θ

2

sin kasd sin θ

2

B(τ ; θ ), (8)

with

B(τ ; θ ) =
∫ d/2

−d/2
dx cos

(
πx

d

)
eikasx sin θ

×
∫

dω χ (3)
as (ω) sinc

(
�kL

2

)
ei(�k L/2−ωτ ). (9)

Therefore, the diffracted two-photon amplitude is a product
of a single slit Eq. (9) multiplied by the function in Eq. (8).
Equations (8) and (9) together imply that the two correlated
Stokes and anti-Stokes photons are simultaneously produced
from any one of the slits, which can be regarded as a
superposition of coherent SFWM subsources. We also notice
that the first integration in Eq. (9) can be visualized as
an amplitude grating with a transmission profile followed
by a cosine curvature. The emission angles and diffraction
efficiencies are determined by the ability of the induced
grating. From Eq. (8), it is easy to obtain the diffraction angles
of the anti-Stokes field for different diffraction orders m as

sin θ = m
λas

d
, (10)

where λas = 2π/kas . According to the results shown in
Ref. [23], the diffraction mainly occurs at the zeroth order.
This could be important to direct the light into a smaller
solid angle and, hence, enhance its spectral brightness at the
observation’s location. Equations (8) and (9) are our starting
points to analyze shaping of biphoton wave forms using EIG.
Since, for the anti-Stokes field, the energy is almost emitted
toward the zeroth-order diffraction direction, we assume θ = 0
in Eq. (8) to simplify the analysis in the following.

C. Two-photon coincidence counts

First, let us look at the case in which the coherence time is
mainly determined by the resonance linewidth. In such a case,
the natural spectral width from the phase matching is much
greater than the linewidth. Hence, its effect on two-photon
temporal correlation can be ignored. Thus, Eq. (9) reduces to

B(τ ) =
∫ d/2

−d/2
dx cos

(
πx

d

) ∫
dω χ (3)

as (ω)e−iωτ . (11)

Plugging Eq. (1) into Eq. (11) and completing the frequency
integral yields

B(τ ) = B

∫ d/2

−d/2
dx sin

[
|�c|τ cos

(
πx

d

)]
e−γeτ , (12)

where B is a constant. Different from previous findings
[14–18,20,21,30], Eq. (12) clearly shows that the profile of
the biphoton wave form is further manipulated by the periodic
modulation of the control fields. Implementing the integration
in Eq. (12) gives

B(τ ) = B dH0 (|�c|τ )e−γeτ , (13)

where H0(x) is the Struve function of order zero. The
two-photon coincidence counting rate equals the square of
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FIG. 3. (Color online) Two-photon temporal coincidences exhibit
damped and overdamped oscillations with the space period d =
2 µm. Other parameters are the same as in Ref. [16].

A(τ ), whose profile is governed by H0(x) and is manifested
by an exponential decay. In Fig. 3, we have provided two
typical simulations of the coincidences using the parameters in
Ref. [16]. We notice that the damped oscillations shown in
Fig. 3 do not obey Rabi flopping as previously reported
in Refs. [14–16,18,30]. The origin of this difference comes
from the periodic modulation of the control fields, which,
in turn, modifies the joint-detection patterns. The minimum
coincidences appear at the zero solutions of H0(x). The lower
curve in Fig. 3 gives the overdamped case in which even
a single oscillation is not fully observable because of the
fast exponential decay. Another noticeable feature is that the
joint spectrum is broadened in a single oscillation due to
the diffraction interference.

Next, we look at the two-photon temporal correlation
mainly characterized by the phase-matching condition. That
is, the natural spectral width is much narrower than the
resonance linewidth such that the intrinsic mechanism of
biphoton generation is partially or even fully washed out.
(The latter case requires much higher optical depth.) In such
a case, Eq. (9) becomes

B(τ ) =
∫ d/2

−d/2
dx cos

(
πx

d

)∫
dω sinc

(
�k L

2

)
ei(�k L/2−ωτ ),

(14)

which can be numerically evaluated. In Fig. 4, we have plotted
the coincidence counting rate with the space period d = 2 µm
plus taking the third-order nonlinearity [Eq. (9)] into account.
As illustrated in Fig. 4(a), most of the features appearing in pre-
vious studies [for instance, see Fig. 4(b)] can be observed. For
example, the sharp peak in the leading edge of the two-photon
coincidence counts represents the Sommerfeld-Brillouin pre-
cursor at the biphoton level, as reported in Ref. [31]. One
difference from previous results in the literature [15,16,21] is
that, at the tail in Fig. 4(a), several small bumps emerge instead
of a smooth exponential decay. Another difference is that the
coherence time is extended. In Fig. 4(a), the coherence time
is extended by more than 1 µs. However, without the induced
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FIG. 4. (Color online) Two-photon temporal coincidences:
(a) modulated by an EIG with the space period d = 2 µm. Other
parameters are chosen as L/v0 = 800 ns, �c = 5γ31, γ31 = 2π ×
3 MHz, and γ21 = 0.6γ31. (b) Without the induced grating. Same
parameters are chosen as in (a).

grating as shown in Fig. 4(b), the coherence time is only about
800 ns. Alternatively, the joint spectrum of the biphotons is
narrowed. This spectrum narrowing is a result of the spatial
modulation of the control fields plus the modulated group
velocities of the anti-Stokes field. Without the use of the cavity,
the spectrum narrowing achieved here is useful for producing
narrow-band biphotons with higher spectral brightness. If the
optical depth of the medium could be made high enough,
the two-photon temporal correlation would be closer to a
square-wave pattern as usually observed in the SPDC process.
Those small bumps would become discrete step functions at
the tail, which can be verified from Eq. (14). Since this looks
more like an ideal case and might not be detectable in the
experiment, we will not offer further discussions here.

Before ending the discussions, in Secs. II A and II B, we
have analyzed how to shape the entangled Stokes-anti-Stokes
temporal wave form with the use of EIG. The extension of the
idea to be used on a nonlinear crystal would be interesting.
Although it is easy to design a diffraction grating within or
at the output surface of the crystal, it is difficult to modulate
the dispersion periodically and spatially. Therefore, it is very
challenging to fully recover the features obtained here in
nonlinear crystals.
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III. SUMMARY

To summarize, here, we have proposed a method to
engineer the two-photon temporal wave packets by utilizing an
EIG. The method distinguishes itself from previous research
by the appearance of several features. First, the induced grating
influences both the linear and the nonlinear susceptibilities.
As a consequence, this will shape the biphoton wave packets
through both the dispersive properties of the medium and
the periodic nonlinear optical responses. Second, the induced
(hybrid) nonmaterial grating directs the output anti-Stokes
field into different angular positions, especially into its zeroth-
order diffraction. Third, the modulated biphoton wave packets
exhibit different profiles compared with previous studies. For
example, the damped oscillations do not coincide with the
Rabi oscillations as observed in Refs. [14–16]. The decayed
square-wave pattern shows small bumps at the tail, which, to
the best of our knowledge, have never been discovered in the
literature. Fourth, the spectral brightness and emission angle
can further be engineered by the induced grating. This paper is
important not only because it explores another application of

the EIG, but also because the shaped biphoton wave packets
hold applications in certain protocols of quantum information,
quantum communications, and quantum cryptography. For
instance, the properties ascribed before can be used to direct
the propagation of single photons and to improve the efficiency
of detecting photons in free space due to the diffraction. The
broadened or narrowed bandwidth could be useful for coherent
absorption and reemission of photons based on the interface
between atoms and photons. The effect of EIG on the trans-
verse correlation of entangled photons may be interesting and
worth studying. However, such an issue is beyond the scope
of the current paper and might be addressed somewhere else.
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