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Fractional Fourier transform in temporal ghost imaging with classical light
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We investigate temporal, second-order classical ghost imaging with long, incoherent, scalar plane-wave pulses.
We prove that in rather general conditions, the intensity correlation function at the output of the setup is given
by the fractional Fourier transform of the temporal object. In special cases, the correlation function is shown to
reduce to the ordinary Fourier transform and the temporal image of the object. Effects influencing the visibility
and the resolution are considered. This work extends certain known results on spatial ghost imaging into the time
domain and could find applications in temporal tomography of pulses.
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I. INTRODUCTION

Correlation imaging is a method to acquire an image of the
object by measuring an intensity correlation function instead
of the intensity distribution [1]. The second-order imaging is
based on transmitting mutually correlated light beams through
two arms: a test arm containing an object and a reference arm
that includes an imaging system (e.g., a lens). The intensity
distribution in the reference arm is scanned, whereas the
total intensity in the test arm is detected. By correlating the
intensities in the outputs of the two arms, spatial (image) or
spectral (Fourier transform, FT) information of the object is
obtained depending on the choice of the parameters. This kind
of correlation imaging is often referred to as ghost imaging
since the arm in which the intensity distribution is scanned
does not contain the object.

Ghost imaging has its roots in quantum-mechanical entan-
glement and it was first demonstrated [2,3] for two-photon
light (biphotons) generated in spontaneous parametric down-
conversion [4]. A few years later, it was observed that ghost
imaging does not necessitate nonlocal correlations of entan-
gled photons but can be realized with classical, mutually cor-
related light beams [5]. In particular, classical, pseudothermal
light with a random speckle structure enables ghost imaging
without any reference to quantum effects [6–8]. Most works on
ghost imaging, both classical and quantum, have concentrated
on acquiring spatial information on the object, i.e., its image
or far-field (spatial-frequency) distribution. However, it was
recently pointed out that the two-photon coincidence detection
amplitude obeys equations of motion similar to those that
the correlations of classical, partially coherent plane-wave
pulses do in linearly dispersive media [9,10]. This observa-
tion suggests that certain quantum-mechanical, time-domain
entanglement phenomena, e.g., nonlocal temporal and spectral
pulse shaping [11,12], could be mimicked by classical partially
coherent light.

In this work, we consider temporal ghost imaging with
long, classical plane-wave pulses having a short coherence

*Also at the Department of Microelectronics and Applied Physics,
Royal Institute of Technology (KTH), Electrum 229, SE-164 40 Kista,
Sweden.

time. We show that the correlation between the intensity
fluctuations at the ends of the two arms of the ghost-imaging
scheme is given by a fractional Fourier transform (FrFT) of
the temporal object in the test arm. As an imaging element we
employ a temporal lens [13] in the reference arm. Choosing
the dispersion properties of the arms and the “focal length”
of the lens suitably, the general result can be reduced to an
ordinary Fourier transform as well as to an image of the object,
providing spectral and temporal information on the object,
respectively. Somewhat analogous works dealing with spatial-
domain ghost imaging have been reported previously [14,15].
Entangled-photon Fourier optics has also been considered
earlier [16]. Time-domain ghost imaging is applicable in non-
local temporal sensing and imaging. Furthermore, in analogy
with its spatial counterpart [17], the time-domain fractional
Fourier transform can be useful in a variety of applications in
temporal optics and processing of time-dependent signals.

This paper is organized as follows. In Sec. II we describe
the temporal ghost-imaging setup and discuss its properties,
such as visibility and resolution. In Sec. III we show that the
intensity correlation function is generally given by a fractional
Fourier transform of the object, which in special cases reduces
to an ordinary Fourier transform and an image. Finally, in
Sec. IV, we briefly summarize the work. Certain mathematical
details are presented in Appendixes A and B.

II. TEMPORAL SECOND-ORDER
GHOST-IMAGING SETUP

A long, temporally incoherent, scalar plane-wave pulse
whose two-time coherence function is to a good approximation
given by

�0(t ′1,t
′
2) = I0δ(t ′2 − t ′1), (1)

where I0 is the intensity, is split into two arms of an interfer-
ometer as shown in Fig. 1. The pulse can be generated, e.g., by
amplified spontaneous emission or supercontinuum radiation.
The upper arm, called the reference arm, consists of a temporal
lens having a transmission function exp(it2/2γ ), γ being a real
quantity (“focal length”), and two sections of optical single-
mode fiber characterized by the group-delay dispersion (GDD)
parameters �a and �b. The quadratic phase modulation of the
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FIG. 1. (Color online) Illustration of the geometry for temporal
ghost imaging. Light from a source is split into two mutually
correlated beams which are directed to the reference and test arms.
The reference arm contains two sections of single-mode fiber and
a temporal lens characterized by the “focal length” γ . The test arm
likewise contains two fiber sections and an object m(t) between them.
The fibers are characterized by the group-delay dispersion parameters
�i , with i = (a,b,c,d). The output intensities of the arms, Ii(ti), with
i = (1,2), are measured and correlated.

temporal lens is a time-domain analog to the phase change
due to a conventional lens. In practice, the temporal lens can
be implemented with electro-optic phase modulators or by
other nonlinear phenomena [13,18,19]. The lower arm, the test
arm, contains a temporal object with a deterministic variation
m(t), and two sections of single-mode fiber with dispersion
parameters �c and �d . The GDD parameters of the fibers
are of the form �i = β2izi , i = (a,b,c,d), where β2i is the
group-velocity dispersion (GVD) coefficient, which may be
positive or negative, and zi denotes the length of fiber. The
evolution of plane-wave pulses in first-order dispersive fibers is
governed, by the space-time duality [20,21], with an equation
analogous to the one-dimensional paraxial diffraction formula.
The instantaneous intensities, Ii(ti), i = (1,2), at the outputs
of the arms are then recorded as a function of time, and their
correlation function is computed. The role of the detector speed
is discussed below.

The slowly-varying envelopes of a realization of the random
optical fields at the output of the arms, Ei(t), can be written as

Ei(t) =
∫ ∞

−∞
E0(t ′)Ki(t,t

′) dt ′, i = (1,2), (2)

where E0(t) is the input realization, and i = (1,2) refer to the
reference arm and the test arm, respectively. Both arms consist
of a cascade of linear elements whose effect on the field is
contained in the kernels K1,2(t,t ′). For the reference arm the
kernel is of the form [10,21],

K1(t,t ′) = 1

2π

√
i

�a

√
i

�b

∫ ∞

−∞
exp

(
it ′′2

2γ

)

× exp

[
− i

(t ′′ − t ′)2

2�a

− i
(t ′′ − t)2

2�b

]
dt ′′, (3)

whereas for the test arm we have

K2(t,t ′) = 1

2π

√
i

�c

√
i

�d

∫ ∞

−∞
m(t ′′)

× exp

[
− i

(t ′′ − t ′)2

2�c

− i
(t ′′ − t)2

2�d

]
dt ′′. (4)

Equations (2)–(4) hold for narrow-band light for which a
fiber effectively acts as a Gaussian chirp filter; integrations
with respect to time can be taken to infinity without violating
causality [21]. These equations determine the instantaneous
intensities at the outputs, explicitly given by Ii(t) = |Ei(t)|2,
with i = (1,2). Detectors are not infinitely fast, rather
they integrate over a period of time. Thus, the quantities
Ii(t), in practice, are short-time averages of the instantaneous
intensities accounting for the detectors’ speed and spectral
response. This will influence the resolution and visibility
of the imaging scheme. Temporal resolutions on the order
of 100 ps are obtainable with present detectors [22]. How-
ever, detection schemes based on two-photon absorption and
capable of femtosecond resolution are emerging [23], paving
the way toward nearly time-resolved intensity correlation
measurements.

The intensity correlation function of the output fields in the
two arms, then, is

G(2)(t1,t2) = 〈I1(t1)I2(t2)〉
=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
〈E∗

0 (t ′1)E∗
0 (t ′2)E0(t ′′1 )E0(t ′′2 )〉

×K∗
1 (t1,t

′
1)K∗

2 (t2,t
′
2)K1(t1,t

′′
1 )

×K2(t2,t
′′
2 )dt ′1dt ′2dt ′′1 dt ′′2 , (5)

where the angle brackets denote ensemble averaging. For
sufficiently chaotic fields obeying Gaussian statistics the
fourth-order correlation function present in the integrand can
be expressed in terms of the second-order functions by using
the moment theorem [24]. In doing so, Eq. (5) takes on the
form,

G(2)(t1,t2) = 〈I1(t1)〉〈I2(t2)〉 + |�(t1,t2)|2, (6)

where

�(t1,t2) =
∫ ∞

−∞

∫ ∞

−∞
�0(t ′1,t

′
2)K∗

1 (t1,t
′
1)K2(t2,t

′
2) dt ′1dt ′2. (7)

In this equation �0(t ′1,t
′
2) is the two-time coherence function

of the incident field, given by Eq. (1), which when substituted
into Eq. (7), leads to

�(t1,t2) = I0

∫ ∞

−∞
K∗

1 (t1,t
′
1)K2(t2,t

′
1) dt ′1. (8)

The quantity |�(t1,t2)|2 is analogous to the two-photon co-
incidence probability in quantum-mechanical ghost imaging,
and it contains, in a form of temporal correlation, information
on the object m(t). Introducing the intensity fluctuation as
�I (t) = I (t) − 〈I (t)〉, it is readily shown that

〈�I1(t1)�I2(t2)〉 = |�(t1,t2)|2, (9)

indicating that the function |�(t1,t2)|2 can classically be
interpreted as a measure of the strength of the correlation
between the intensity fluctuations at the outputs of the two
arms.
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The averaged intensities in Eq. (6) constitute a background
term that reduces the visibility in ghost imaging with classical
light. The visibility can be defined by [25]

V = g(2)
max(t1,t2) − g(2)

min(t1,t2)

g
(2)
max(t1,t2) + g

(2)
min(t1,t2)

, (10)

where

g(2)(t1,t2) = G(2)(t1,t2)

〈I1(t1)〉〈I2(t2)〉 , (11)

and g(2)
max,min denote nearby maxima and minima. It can be

shown that 1 � g(2)(t1,t2) � 2, and, therefore, the visibility
in second-order classical ghost imaging with light obeying
Gaussian statistics is limited toVmax = 1/3. The finite detector
response time will further reduce the visibility as it smoothens
the function G(2)(t1,t2). However, in second-order and espe-
cially in higher-order classical ghost imaging with Gaussian
light the visibility can be significantly better, and even 1 as
in quantum imaging, provided the background intensities can
be subtracted optically or electronically [25,26]. In practice,
an important parameter characterizing the image quality is the
signal-to-noise ratio (SNR) which recently has received much
attention in ghost imaging [27]. It has been shown that SNR can
be improved by novel techniques such as compressive ghost
imaging [28] and, in particular, differential ghost imaging [29],
which could be applied also in the context of temporal ghost
imaging. The resolution, on the other hand, is determined by
the detector speed and the coherence time of light. In this work
the incident light is taken temporally fully incoherent with zero
coherence time, implying the best obtainable resolution.

III. FRACTIONAL FOURIER TRANSFORMATION
OF THE OBJECT IN THE INTENSITY

CORRELATION FUNCTION

Inserting Eqs. (3) and (4) into Eq. (8) leads, after some
straightforward developments outlined in Appendix A, to

�(t1,t2) = I0

√
γ

2πr�d

√
1

1 − i cot α
exp [i(ψ − π/2)]

× exp

(
− i

2�d

t2
2

)
exp

[
i

2r
(�a − �c − γ ) t2

1

]
× exp (−iω2 cot α/2)Mα(ω), (12)

where

r = (�a − �c)(�b − γ ) − �bγ. (13)

The parameter ψ is a constant, time-independent phase
specified by the dispersion parameters and the focal length.
Its explicit form is not relevant for this work. In particular,

Mα(ω) =
√

1 − i cot α

2π
exp(iω2 cot α/2)

∫ ∞

−∞
m(t)

× exp[−iωt csc α + it2 cot α/2] dt, (14)

is the fractional Fourier transform of order α [17,30] of the
object m(t). In Eqs. (12) and (14), the quantities α and ω are

determined by the GDD parameters of the fiber sections, γ of
the temporal lens, and times t1 and t2 as follows:

cot α = �b

r
− 1

�d

− γ

r
, (15)

ω csc α = − t2

�d

− γ t1

r
. (16)

According to Eq. (12), the modulation in Eq. (6) assumes the
form,

|�(t1,t2)|2 = I 2
0

2π

∣∣∣∣γ sin α

r�d

∣∣∣∣ |Mα(ω)|2. (17)

Thus, the temporal modulation of the intensity correlation
function in second-order classical ghost imaging is, in the
general conditions assumed in this work, determined by the
fractional Fourier transform of the object in the test arm. In
special cases, the general result reduces to the ordinary Fourier
transform and the temporal image of the object, as will be
shown in subsequent sections.

The quantity g(2)(t1,t2) in Eq. (11) that specifies the
visibility contains 〈I1(t1)〉 and 〈I2(t2)〉 in the denominator.
For (infinitely) long δ-correlated pulses as in Eq. (1) one
finds that 〈I1(t1)〉 = ∞, while 〈I2(t2)〉 remains finite provided
the modulation m(t) is of limited duration. Hence, the use
of a Dirac δ function leads to zero visibility due to the
divergence of 〈I1(t1)〉. However, this is an unphysical result
since the correlation function has to remain finite. A more
accurate analysis implies that 〈I1(t1)〉 = I0|γ /(γ − �b)|µ(0),
where µ(τ ) is the normalized temporal correlation function
of the input light, i.e., �0(τ ) = I0µ(τ ) with µ(0) = 1. This
corresponds to a nonzero visibility. The visibility can also be
enhanced by using shorter (finite) pulses [31]. For example,
assuming that the input field E0(t) in Eq. (2) is δ correlated
but nonzero only within a finite interval −T � t � T leads
to 〈I1(t1)〉 = I0T |γ |/π |γ (�a + �b) − �a�b|. As mentioned
before, the visibility can be improved within the limits of
noise by measuring 〈I1(t1)〉 and 〈I2(t2)〉 and subtracting their
product from the intensity-correlation signal. By removing
the background completely, the visibility in classical ghost
imaging can reach the maximum value of 1.

A. Reduction to Fourier transform

The fractional Fourier transform given in Eq. (14) reduces to
the ordinary Fourier transform when α = π/2 [17]. According
to Eq. (15), this case is encountered when the system
parameters are chosen such that

�b

r
− 1

�d

− γ

r
= 0. (18)

The quantity ω then is given by Eq. (16) as

ω = − t2

�d

− γ t1

r
, (19)

and the function �(t1,t2) assumes the form,

|�(t1,t2)|2 = I 2
0

2π

∣∣∣∣ γ

r�d

∣∣∣∣
∣∣∣∣M

(
− t2

�d

− γ t1

r

)∣∣∣∣
2

. (20)
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TERO SETÄLÄ, TOMOHIRO SHIRAI, AND ARI T. FRIBERG PHYSICAL REVIEW A 82, 043813 (2010)

In the previous equation the function M(ω) is the Fourier
transform of m(t), defined as

M(ω) = 1√
2π

∫ ∞

−∞
m(t) exp(−iωt) dt. (21)

We note that the case α = −π/2 would correspond to an
inverse Fourier transform.

Equation (18) indicates that there exist several possibilities
to obtain a Fourier transform of the object in the intensity
correlation function. For example, by choosing �a = �c for
the dispersion parameters, and 1/γ = 1/�b − 1/�d for the
temporal lens, we find that

|�(t1,t2)|2 = I 2
0

2π

∣∣∣∣ 1

�b�d

∣∣∣∣
∣∣∣∣M

(
t1

�b

− t2

�d

)∣∣∣∣
2

. (22)

On the other hand, if �a = �d and 1/γ = 1/�b − 1/�c, then

|�(t1,t2)|2 = I 2
0

2π

∣∣∣∣ �c

�b�
2
d

∣∣∣∣
∣∣∣∣M

(
�ct1

�b�d

− t2

�d

)∣∣∣∣
2

. (23)

In particular, for arbitrary GDD parameters, choosing the
“focal length” of the temporal lens as

γ = �b(�a − �c − �d )

�a + �b − �c − �d

, (24)

results in the Fourier transform,

|�(t1,t2)|2 = I 2
0

2π

∣∣∣∣�a − �c − �d

�b�
2
d

∣∣∣∣
×

∣∣∣∣M
[
− (�a − �c − �d )t1

�b�d

− t2

�d

]∣∣∣∣
2

. (25)

We emphasize that the previous results pertaining to the
Fourier transform of a temporal object are analogous to the
existence of a Fourier plane in a spatial-lens imaging system.
Adjustment of the GDD parameters and γ in the temporal
imaging setup corresponds to altering the object position,
focal length of the lens, and the position of the associated
Fourier plane (location of the source) in the spatial imaging
system [32].

Earlier, a Fourier transform of the object was found in a
lensless ghost-imaging scheme [10]. In our formalism that
geometry corresponds to the case �a + �b = �c + �d , for
which Eq. (24) implies that γ = ∞ as expected for a lensless
setup. With these parameters Eq. (25) turns into

|�(t1,t2)|2 = I 2
0

2π

∣∣∣∣ 1

�2
d

∣∣∣∣
∣∣∣∣M

(
t1 − t2

�d

)∣∣∣∣
2

, (26)

which is Eq. (11) in Ref. [10]. This result obtained for the
lensless geometry corresponds to the Fraunhoffer diffraction
pattern in the spatial domain, and could be called temporal
ghost diffraction.

B. Reduction to image

If α = π then cot α and csc α in Eqs. (15) and (16),
respectively, diverge. In this case Eq. (14) could be evaluated
with appropriate limiting procedures [17]. Alternatively, we
first note that Eq. (15) necessarily implies r = 0, which with
the help of Eq. (13) leads to the temporal analog of the thin-lens
equation in spatial ghost imaging [33], viz.,

1

γ
= 1

�b

+ 1

�a − �c

. (27)

When the previous condition holds, the function �(t1,t2) takes
on the form (see Appendix B),

�(t1,t2) = I0√−2πis�d

exp(iψ ′)m
(

t1

s

)

× exp

[
− i

2�d

(
t1

s
− t2

)2
]

× exp

[
i

2�b

(
1 − 1

s

)
t2
1

]
, (28)

where ψ ′ is a time-independent phase term, and

s = �b

�c − �a

. (29)

The absolute value squared of Eq. (28) is

|�(t1,t2)|2 = I 2
0

2π

∣∣∣∣ 1

�ds

∣∣∣∣
∣∣∣∣m

(
t1

s

)∣∣∣∣
2

, (30)

indicating that an image of the object is contained in the
intensity correlation function.

The formation of the image in classical spatial correlation
imaging with pseudothermal light can be explained in terms of
the intensity-weighted speckle patters [34]. In the time domain,
an analogous interpretation holds but the speckle patterns are
replaced by the random intensities of the field realizations,
whose weighted average produces the image. The weighting
is determined by the overlap of the temporal object and the
intensity. The higher the intensity of a realization during the
modulation m(t), the larger the weighting for that particular
realization.

We see from Eq. (30) that the quantity |s| acts as a
magnification factor for the image. For |s| > 1 the image
is magnified in time, whereas for |s| < 1 it is demagnified.
These cases, respectively, correspond to m(t/s) being longer
or shorter than m(t). In addition, s can be either positive or
negative leading to an erect or an inverted image. When the
image is inverted in time, the back tail of the object m(t)
turns into the front end in the image. If the lens is removed
(i.e., γ → ∞), then s = 1 and the output is a nonmagnified
image of the object. Equation (30) also shows that the image is
independent of time t2. Therefore, in measuring |�(t1,t2)|2
the intensity I1(t1) in the reference arm is scanned as a
function of t1, such that the interval of t1 covers and is longer
than the scaled temporal image of m(t). This intensity is
correlated with I2(t2) of the test arm where the interval of
t2 is not required to overlap with m(t), but can be arbitrary.
Note also that (with time-resolved detection) the image
resolution is infinitely accurate, consistently with the fact
that the source is temporally fully incoherent. Furthermore,
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Eq. (30) suggests that information on a pure phase object is
not obtained by the ghost-imaging setup considered in this
work.

IV. SUMMARY

It is a known fact that the optical field at any plane behind
the lens in a spatial imaging system is given by a fractional
Fourier transform of the object in front of the lens. In this
work we have demonstrated that an analogous result holds
in temporal, classical ghost imaging with long, incoherent
plane-wave pulses. The coherence time of the source and the
detector response time influence the resolution and visibility
of the resulting signal. We also showed that by adjusting
the temporal lens and the dispersion properties of the single-
mode fibers constituting the setup, the correlation between the
intensity fluctuations at the output can be reduced to an image
and an ordinary Fourier transform of the object. These cases
correspond to the existence of the image plane and the Fourier
plane in a conventional spatial imaging system. An important
application of our results deals with time-domain tomography
of pulsed fields. The fractional Fourier transforms correspond
to projections of the time-frequency Wigner function from
which the pulse shape can be determined [35].
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APPENDIX A: DERIVATION OF EQ. (12)

Substituting Eqs. (3) and (4) into Eq. (8) leads to

�(t1,t2) = (2π )−3/2I0√
i�b�d (�a − �c)

exp(iψ ′)

×
∫ ∞

−∞
m(t ′) exp

[
− i

2�d

(t ′ − t2)2

]

×
∫ ∞

−∞
exp

(
− it ′′2

2γ

)
exp

[
i

2�b

(t ′′ − t1)2

]

× exp

[
i(t ′′ − t ′)2

2(�a − �c)

]
dt ′′dt ′, (A1)

where ψ ′ is a constant (time-independent) phase term de-
termined by the geometry, and we have employed the
equation,

∫ ∞

−∞
exp

[
i

2u
(t ′′ − τ )2

]
exp

[
− i

2v
(t ′ − τ )2

]
dτ

=
√

2πuv

i (u − v)
exp

[
i(t ′′ − t ′)2

2(u − v)

]
. (A2)

Integration with respect to t ′′ in Eq. (A1) can be carried out
and is

∫ ∞

−∞
exp

[
− it ′′2

2γ
+ i

2�b

(t ′′ − t1)2 + i(t ′′ − t ′)2

2(�a − �c)

]
dt ′′

= (−1)1/4

√
2πγ�b(�c − �a)

r

× exp

{
i

2r

[
(�a − �c)t2

1 − γ (t1 − t ′)2 + �bt
′2]} ,

(A3)

where r is defined in Eq. (13). Using the previous formula in
Eq. (A1) results in

�(t1,t2) = I0

2πi

√
γ

r�d

exp (iψ)
∫ ∞

−∞
m(t ′)

× exp

[
− i

2�d

(t ′ − t2)2

]
exp

{
i

2r

[
(�a − �c)t2

1

− γ (t1 − t ′)2 + �bt
′2]}dt ′, (A4)

where ψ is a constant geometry-dependent phase, in general,
ψ �= ψ ′. The previous expression, in turn, can be arranged as
follows:

�(t1,t2) = I0

2πi

√
γ

r�d

exp (iψ) exp

(
− i

2�d

t2
2

)

× exp

[
i

2r
(�a − �c − γ ) t2

1

]

×
∫ ∞

−∞
m(t ′) exp

[
i

2

(
�b

r
− 1

�d

− γ

r

)
t ′2

]

× exp

[
i

(
t2

�d

+ γ t1

r

)
t ′
]

dt ′. (A5)

Introducing next the parameters given in Eqs. (15) and (16),
Eq. (A5) can be written in the form of Eq. (12).

APPENDIX B: DERIVATION OF EQ. (30)

Using the lens condition of Eq. (27) on the left-hand side
of Eq. (A3) results in

∫ ∞

−∞
exp

[
− it ′′2

2γ
+ i

2�b

(t ′′ − t1)2 + i(t ′′ − t ′)2

2(�a − �c)

]
dt ′′

= 2π

∣∣∣∣�b

s

∣∣∣∣ exp

[
i

2�b

(t2
1 − st ′2)

]
δ

(
t ′ − t1

s

)
, (B1)

where s is defined in Eq. (29). Insertion of the previous formula
into Eq. (A1) leads to Eq. (28).
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