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Interaction of a quantum well with squeezed light: Quantum-statistical properties
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We investigate the quantum statistical properties of the light emitted by a quantum well interacting with
squeezed light from a degenerate subthreshold optical parametric oscillator. We obtain analytical solutions for the
pertinent quantum Langevin equations in the strong-coupling and low-excitation regimes. Using these solutions
we calculate the intensity spectrum, autocorrelation function, and quadrature squeezing for the fluorescent light.
We show that the fluorescent light exhibits bunching and quadrature squeezing. We also show that the squeezed
light leads to narrowing of the width of the spectrum of the fluorescent light.
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I. INTRODUCTION

Interaction of electromagnetic radiation with atoms has
led to interesting quantum features such as antibunching and
squeezing. In particular, interaction of two-level atoms with
squeezed light has extensively been studied by many authors
[1–3]. These studies show that the squeezed light modifies
the width of the spectrum of the incoherent light emitted by
the atom. On the other hand, cavity quantum electrodynamics
(QED) in semiconductor systems has been the subject of
interest in connection with its potential application in opto-
electronic devices [4–9]. For example, such optical systems
hold potential in the realization of optical devices that exhibit
exceptional properties such as monomode luminescence with
high gain allowing the realization of thresholdless lasers.
The quantum properties of the light emitted by a quantum
well embedded in a microcavity has been studied by several
authors [10–12]. Unlike antibunching observed in atomic
cavity QED, the fluorescent light emitted by the quantum well
exhibits bunching [13,14]. In the strong coupling regime—
when the coupling frequency between the exciton and photon
is larger than the relaxation frequencies of the medium
and the cavity—the intensity spectrum of the exciton-cavity
system has two well-resolved peaks representing two-polariton
resonance [15,16]. In the experimental setting, Weisbuch
et al. [17] demonstrated exciton-photon mode splitting in a
semiconductor microcavity when the quantum well and the
optical cavity are in resonance. Subsequent experiments on
exciton-photon coupling confirmed normal-mode splitting and
oscillatory emission from exciton microcavities [18,19].

In this work, we study the effect of the squeezed light
generated by a subthreshold degenerate parametric oscillator
(OPO) on the squeezing and statistical properties of the
fluorescent light emitted by a quantum well in a cavity. The
system is outlined in Fig. 1. Degenerate OPO operating below
threshold is a well-known source of squeezed light [20,21].
We explore the interaction between this light and a quantum
well with a single exciton mode placed in the OPO cavity. Our
analysis is restricted to the weak excitation regime where the
density of excitons is small so that the interactions between
an exciton and its neighbors can be neglected. Furthermore,
to gain insight into the physics we investigate the dynamics of
the fluorescent light emitted by the quantum well in the strong
coupling regime, which amounts to keeping the leading terms

in the photon-exciton coupling constant g. We show that the
fluorescent light exhibits bunching and quadrature squeezing.
The former is due to the fact that two or more excitons in
the quantum well can be excited by absorbing cavity photons.
This implies there is a finite probability that two photons can
be emitted simultaneously. We also show that the squeezed
light leads to narrowing of the width of the spectrum of the
fluorescent light.

We obtain the solutions of the pertinent quantum Langevin
equations for a cavity coupled to vacuum reservoir. The
resulting solutions, in the strong coupling limit, is used to
calculate the intensity, spectrum, second-order correlation
function, and quadrature squeezing of the fluorescent light.

II. HAMILTONIAN AND EQUATIONS OF EVOLUTION

We consider a system composed of a semiconductor
quantum well and a degenerate parametric oscillator operating
below threshold. In a degenerate parametric oscillator, a pump
photon of frequency 2ω0 is downconverted into a pair of
identical sinal photons of frequency ω0. The signal photons
are highly correlated and this correlation is responsible for the
reduction of noise below the vacuum level. Such a system
produces a maximum intracavity squeezing of 50%. In a
quantum well, the electromagnetic field can excite an electron
from the filled valance band to the conduction band thereby
creating a hole in the valance band. The electron-hole system
possesses bound states which are also called exciton states
analogous to the hydrogenic states or more precisely to the
positronium bound states. We assume that the density of
the excitons is small so that exciton-exciton interaction is
negligible. The Hamiltonian describing the parametric process
and interaction between exciton and cavity mode in the rotating
wave approximation and at resonance is given by

H = iε

2
(a†2 − a2) + ig(a†b − ab†) + Hloss. (1)

Here a and b, considered as boson operators, are the annihila-
tion operators for the cavity and exciton modes, respectively;
g is the exciton cavity mode coupling; Hloss is the Hamiltonian
associated with the dissipation of the cavity and exciton modes
by vacuum reservoir modes. We assume here that the amplitude
of the field ε that drives the cavity is real and constant. The
quantum Langevin equations of the system taking into account
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FIG. 1. (Color online) Schematic representation of a driven
cavity containing a nonlinear crystal (NLC) and a quantum well
(QW).

the cavity dissipation κ and the exciton spontaneous emission
γ can be written as

da

dt
= −κ

2
a + εa† + gb + Fc(t), (2)

db

dt
= −γ

2
b − ga + Fe(t), (3)

where Fc and Fe are the Langevin noise operators for the
cavity and exciton modes, respectively. Both noise operators
have zero mean (i.e., 〈Fc〉 = 〈Fe〉 = 0). For a cavity mode
damped by a vacuum reservoir, the noise operators satisfy the
following correlations:

〈Fc(t)F †
c (t ′)〉 = κδ(t − t ′), (4)

〈F †
c (t)Fc(t ′)〉 = 〈Fc(t)Fc(t ′)〉 = 〈F †

c (t)F †
c (t ′)〉 = 0. (5)

The exciton noise operators satisfy the following correlations:

〈Fe(t)F †
e (t ′)〉 = γ δ(t − t ′), (6)

〈F †
e (t)Fe(t ′)〉 = 〈Fe(t)Fe(t ′)〉 = 〈F †

e (t)F †
e (t ′)〉 = 0. (7)

III. PHOTON STATISTICS

In this section we analyze the photon statistics of the
fluorescent light by calculating intensity, intensity spectrum,
and second-order correlation function in the strong coupling
regime. The solutions of Eqs. (2) and (3) is rigorously derived
in the appendix. This paper is devoted to the dynamics of the
system in the strong coupling regime. To this end, imposing the
strong coupling limit (g � κ,γ ), which amounts to keeping
only the leading terms in g, one obtains from Eqs. (A14)
and (A19) � = � = 4ig. As a result, the solutions given by
Eqs. (A20) and (A21) reduce to

a(t) = λ
(+)
1 (t)a(0) + λ

(+)
2 (t)a†(0) + λ3(t)b(0) + λ4(t)b†(0)

+
∫ t

0
dt ′[λ(+)

1 (t − t ′)Fc(t ′) + λ
(+)
2 (t − t ′)F †

c (t ′)]

+
∫ t

0
dt ′[λ3(t − t ′)Fe(t ′) + λ4(t − t ′)F †

e (t ′)], (8)

b(t) = λ
(−)
1 (t)b(0) + λ

(−)
2 (t)b†(0) − λ3(t)a(0) − λ4(t)a†(0)

−
∫ t

0
dt ′[λ3(t − t ′)Fc(t ′) + λ4(t − t ′)F †

c (t ′)]

+
∫ t

0
dt ′[λ(−)

1 (t − t ′)Fe(t ′) + λ
(−)
2 (t − t ′)F †

e (t ′)],

(9)

where

λ
(±)
1 (t) =

[(
cos(gt) ± γ − κ

4g
sin(gt)

)
cosh(εt/2)

± ε

2g
sin(gt) sinh(εt/2)

]
e−(κ+γ )t/4, (10)

λ
(±)
2 (t) =

[(
cos(gt) ± γ − κ

4g
sin(gt)

)
sinh(εt/2)

± ε

2g
sin(gt) cosh(εt/2)

]
e−(κ+γ )t/4, (11)

λ3(t) = sin(gt) cosh(εt/2)e−(κ+γ )t/4, (12)

λ4(t) = sin(gt) sinh(εt/2)e−(κ+γ )t/4. (13)

All quantities of interest which describe the dynamics of the
system can fully be analyzed using these solutions.

A. Intensity of fluorescent light

The dynamical behavior of the intensity of light emitted
by a single quantum well in GaAs microcavity has been
measured experimentally [19]. We here seek to study the
dynamical behavior of the light emitted by a single quantum
well interacting with squeezed light. Note that the intensity
of the fluorescent light is proportional to the mean number
of excitons in the system. To this end, using Eq. (9) and the
properties of the noise forces, we readily obtain

〈b†b〉 = 2ε2

(κ + γ )2 − 4ε2
+ 1

2

[(
1 + n̄e + n̄e cos(2gt)

+ κ − γ

4g
(1 + 2n̄e) sin(2gt)

)
cosh(εt)

− 1

4g
[κ − γ + 2ε(1 + 2n̄e) sin(gt)] sinh(εt)

− (κ + γ )
2ε sinh(εt) + (κ + γ ) cosh(εt)

(κ + γ )2 − 4ε2

+ γ − κ

2g
sinh2(εt/2)sin(2gt)

]
e−(κ+γ )t/2, (14)

where n̄e is the mean exciton number in the cavity at initial
time. We assumed that the cavity mode is initially in the
vacuum state. It is easy to see that in the steady state the
mean exciton number reduces to

〈b†(t)b(t)〉ss = 2ε2

(κ + γ )2 − 4ε2
, (15)

which is a contribution to intensity of the fluorescent light due
to the optical parametric oscillator.

In Fig. 2, we plot the intensity as a function of scaled time
γ t for different values of the scaled pump field amplitude
ε/γ . In this figure we have assumed that the cavity is initially
prepared in such a way that it contains one exciton(n̄e = 1)
but no photon. For simplicity we have taken the cavity and
exciton decay rate to be the same (i.e., κ = γ ). This figure
shows the effect of the parametric oscillator on the intensity of
fluorescent light. It is not hard to see that the intensity oscillates
with frequency equal to the coupling constant g, which is a
signature of exchange of energy between the cavity and exciton
modes. Moreover, the amplitude of the oscillations depends
on the amplitude of the pump field, ε, which represents the
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FIG. 2. (Color online) Plots of the fluorescent intensity [Eq. (14)]
versus scaled time γ t for γ = κ , g/γ = 5, n̄e = 1 and for different
values of ε/γ .

optical parametric oscillator in our system. The stronger the
pump field and the higher the amplitude of oscillation and the
longer it takes to reach the steady-state value of the intensity.

It is worth emphasizing that since the optical parametric
oscillator is operating below threshold, the parameter ε is
constrained by the inequality κ + γ > 2ε. We, thus, interpret
κ + γ = 2ε as the threshold condition for the parametric
process. In the vicinity of the threshold the mean exciton
number increases rapidly and exceeds unity as illustrated in
Fig. 3. This shows that even though there is one exciton in
the cavity initially, there is a finite probability for the squeezed
light in the cavity to excite two or more excitons in the quantum
well. This has an interesting effect on the photon statistics of
the fluorescent light as discussed in Sec. III C.

B. Intensity spectrum

We next proceed to calculate the power spectrum of the
fluorescent light. The power spectrum of the fluorescent light
can be expressed in terms of the bosonic operator as

S(ω) = 1

π
Re

∫ ∞

0
dτeiωτ 〈b†(t)b(t + τ )〉ss

〈b†(t)b(t)〉ss . (16)
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FIG. 3. (Color online) Plots of the fluorescent intensity [Eq. (14)]
near threshold versus scaled time γ t for κ/γ = 1, g/γ = 5, n̄e = 1
and for different values of ε/γ .

In the strong coupling regime the correlation function that
appears has in the steady state the form,

〈b†(t)b(t + τ )〉ss
〈b†(t)b(t)〉ss
=

[
γ ((κ + γ )2 − 4ε2)

4g(κ + γ )ε
sin(gτ ) sinh(ετ/2) + cos(gt)

2ε

× (2ε cosh(ετ/2) + (κ + γ ) sinh(ετ/2))
]
e−(κ+γ )τ/4.

(17)

Substituting this result in Eq. (16) and keeping the leading
order in g, we obtain the power spectrum of the fluorescent
light to be

S(ω) = γ+γ−
2πεg(κ + γ )

×
[
gκ + 3gγ − 2γω

γ 2− + (g − ω)2
− gκ + 3gγ − 2γω

γ 2+ + (g − ω)2

+ gκ + 3gγ + 2γω

γ 2− + (g + ω)2
− gκ + 3gγ + 2γω

γ 2+ + (g + ω)2

]
, (18)

where γ± = (γ + κ ± 2ε)/4 are the half widths of the
Lorentzians centered at ω = ±g. We immediately see that
the width of the power spectrum depends on the amplitude of
the pump field.

We observe that the maximum of the power spectrum occurs
when the frequency equal to the coupling constant (g). In order
to explore the effect of the squeezed light on the width of
the spectrum it is convenient to plot the the power spectrum
normalized by its maximum value [i.e., SN (ω) = S(ω)/S(g)].
In Fig. 4, we plot the normalized spectrum as a function
of ω/γ for different values of the pump amplitude (ε). As
clearly indicated in the figure, the higher the amplitude of
the pump field (the degree of squeezing), the narrower the
width has become. It is also worth noting that the narrowing
of the width is more pronounced close to the threshold (i.e.,
when the squeezing approaches to its maximum value). This
is in contrast to the result obtained when the quantum well is
coupled to a squeezed vacuum reservoir, where the spectrum
is independent of the squeeze parameter [13].
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FIG. 4. (Color online) Plots the normalized intensity spectrum
of the fluorescent light [SN (ω) = S(ω)/S(g)] versus scaled frequency
ω/γ for κ/γ = 1, g/γ = 5, n̄e = 1, and for different values of ε/γ .
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We further note that the spectrum has two peaks symmet-
rically located at ±g. This is the result of the strong coupling
approximation (g � κ,γ ). Both peaks have the same width
which depends on the exciton and cavity mode decay rates
and the amplitude of the pump field.

C. Autocorrelation function

We now turn our attention to the calculation of autocor-
relation function, which is proportional to the probability of
detecting one photon at t + τ given that another photon was
detected at earlier time t. Quantum mechanically autocorrela-
tion is defined by

g(2)(τ ) = 〈b†(t)b†(t + τ )b(t + τ )b(t)〉
〈b†(t)b(t)〉2

. (19)

Using the Gaussian properties of the noise forces [22], the
autocorrelation function in the steady state can be put in a
simpler form,

g(2)(τ ) = 1 + |〈b†(t)b†(t + τ )〉ss |2
〈b†(t)b(t)〉2

ss

+ |〈b†(t)b(t + τ )〉ss |2
〈b†(t)b(t)〉2

ss

.

(20)

In order to find a closed-form analytical expression for the
autocorrelation function, one has to determine the two time
correlation functions that appear in Eq. (20). This can be done
using the solution (9) along with the correlation properties of
the noise forces. After algebraic manipulations, we obtain the
final expression of the autocorrelation function to be

g(2)(τ ) = 1 + e− 1
2 (κ+γ )τ cos(gτ )[µ1 sin(gτ ) + µ2 cos(gτ )],

(21)

where

µ1 = γ ((κ + γ )2 − 4ε2)
4g(κ + γ )ε2

[(κ + γ ) cosh(ετ ) + 2ε sinh(ετ )],

µ2 = ((κ + γ )2 + 4ε2) cosh(ετ ) + 4(κ + γ )ε sinh(ετ )

4ε2
.

Expression (21) is valid only in the strong coupling regime.
The behavior of g(2)(τ ) as a function of the pump amplitude

(ε) and for constant g is illustrated in Fig. 5. This figure shows
that the correlation function oscillates at frequency equals to
g. The amplitude of this oscillation decreases fast when we
increase the value of ε. The autocorrelation function at τ = 0
has the form g(2)(0) = 2 + (κ + γ )2/4ε2 > 1 indicating the
phenomenon of photon bunching. Here the underlying physics
can be explained in terms of the mean exciton number (see
Fig. 3). In that figure we have showed that, even though we
start at one exciton initially, there is a finite probability of
exciting two or more excitons in the quantum well by the
squeezed light. This allows the possibility of emission of two
photon at a time which leads to the phenomenon of bunching
in the fluorescent light.

IV. QUADRATURE SQUEEZING

The squeezing properties of the fluorescent light can
be analyzed by calculating the variances of the quadrature
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FIG. 5. (Color online) Autocorrelation function versus normal-
ized time γ τ for g/γ = 5, κ/γ = 1, n̄e = 1, and for different values
of pump amplitude ε/γ .

operators. The variances of the quadrature operators for the
fluorescent light are given by

�b2
1 = 1 + 2〈b†b〉 + 〈b2〉 + 〈b†2〉, (22)

�b2
2 = 1 + 2〈b†b〉 − (〈b2〉 + 〈b†2〉), (23)

where b1 = b† + b and b2 = i(b† − b). These quadrature
operators satisfy the commutation relation [b1,b2] = 2i. On
the basis of these definitions the fluorescent light is said to be
in a squeezed state if either �b2

1 < 1 or �b2
2 < 1. In deriving

(22) and (23) we have used 〈b(t)〉 = 0, which can easily be
verified using (9). Applying Eq. (9) and the properties of the
noise operators the variances turn out to be

�b2
1 = 1 + 2ε

k + γ − 2ε
+ e−(k+γ−2ε)t/2A−(t)

+ e−(k+γ−ε)t/2B−(t), (24)

�b2
2 = 1 − 2ε

k + γ + 2ε
+ e−(k+γ+2ε)t/2A+(t)

+ e−(k+γ+ε)t/2B+(t), (25)

in which

A±(t) = 1 + n̄e + n̄e cos(2gt)

×
[
γ − κ

4g
e±εt + κ − γ ± 2ε

4g
(1 + 2n̄e)

]
sin(2gt),

B±(t) = − (κ + γ )e±εt/2

κ + γ ± 2ε
± κ − γ

2g
sinh(εt/2) sin(2gt).

It is straightforward to see that the variances reduce in the
steady state to

�b2
1 = 1 + 2ε

k + γ − 2ε
, (26)

�b2
2 = 1 − 2ε

k + γ + 2ε
. (27)

Expressions (26) and (27) represent the quadrature variance of
a parametric oscillator operating below threshold. At thresh-
old κ + γ = 2ε, the squeezing becomes 50% which is the
maximum squeezing that can be obtained from subthreshold
parametric oscillator [21]. It is then not difficult to see that the
squeezing occurs in the b2 quadrature.
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FIG. 6. (Color online) Plots of the quadrature variance [Eq. (25)]
versus scaled time γ t for g/γ = 5, κ = γ , n̄e = 1 and for the different
values of the pump field amplitude ε/γ .

In Fig. 6, the time evolution of the variance of the b2

quadrature [Eq. (4)] is plotted versus scaled time γ t . The
variance in this quadrature oscillates with frequency equal
to twice the Rabi frequency. The amplitude of oscillation
damps out at longer time and eventually becomes flat at steady
state. Moreover, it is interesting to note that the fluorescent
light is not squeezed at the initial moment, however, it starts
to exhibit transient squeezing before it becomes unsqueezed
again. The more the exciton interacts with the squeezed light,
the stronger the squeezing becomes. As a result of this, we
observe squeezed fluorescent light in longer periods which
ultimately approaches to the 50% maximum squeezing limit
observed in parametric oscillator. The reduction of fluctuations
noted in the fluorescent light is due to the interaction between
the long-lived squeezed photons in the cavity and excitons in
the quantum well. As can be seen from Fig. 6, the degree of
squeezing of the fluorescent light depends on the amplitude of
the pump field. The higher the amplitude of the pump field the
faster the transient squeezing reaches to its steady state value.

V. CONCLUSION

The quantum statistical properties of the fluorescent light
emitted by exciton in a quantum well interacting with squeezed
light is presented. Analytical solutions for the pertinent
quantum Langevin equations are rigorously derived. These
solutions, in the strong coupling limit in which the exciton-
cavity mode coupling is much greater than the cavity as well
as exciton spontaneous decay rates (g � κ,γ ), are used to
study the dynamical behavior of the generated light. We find
that the squeezed light from the OPO enhances the mean
photon number and narrows the width of the intensity spectrum
of the fluorescent light. Furthermore, the fluorescent light
shows normal-mode splitting, which is a signature of strong
coupling. We note that unlike atomic cavity QED where the
fluorescent light exhibits antibunching, the fluorescent light in
the present system rather exhibits bunching. The manifestation
of bunching is attributed to the possibility of exciting two or
more excitons in the quantum well which, in turn, leads a finite
probability of emission of two photons simultaneously. Our
results also indicate that the fluorescent light exhibits transient
squeezing, which in the long time limit, reaches to the steady
squeezing obtained in subthreshold OPO.
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APPENDIX: SOLUTION FOR THE QUANTUM
LANGEVIN EQUATIONS

In this appendix we derive the solution of the following
quantum Langevin equations:

da

dt
= −κ

2
a + εa† + gb + Fc(t), (A1)

db

dt
= −γ

2
b − ga + Fe(t). (A2)

In order to solve these equations it is more convenient to
introduce new variables defined by

a± = a† ± a, b± = b† ± b. (A3)

With the help of Eqs. (A1) and (A2) and their complex adjoint
we obtain

d

dt
a+ = −1

2
(κ − 2ε)a+ + gb+ + F+, (A4)

d

dt
b+ = −γ

2
b+ − ga+ + G+, (A5)

d

dt
a− = −1

2
(κ + 2ε)a− + gb− + F−, (A6)

d

dt
b− = −γ

2
b− − ga− + G−, (A7)

where F± = F
†
c ± Fc and G± = F

†
e ± Fe. Note that Eqs. (A4)

and (A5) are decoupled from (A6) and (A7). These cou-
pled equations can be solved using the method of Laplace
transform.

The Laplace transform of Eqs. (A4) and (A5) gives

A(s) = 4g

χ
G(s) + 2(2s + γ )

χ
F (s)

+ 1

χ
[4gb+(0) + 2(2s + γ )a+(0)], (A8)

B(s) = 2

χ
(κ + 2s − 2ε)G(s) − 4g

χ
F (s)

+ 1

χ
[−4ga+(0) + 2(κ + 2s − 2ε)b+(0)], (A9)

where χ = 4g2 + (2s + γ )(κ + 2s − 2ε) and A(s) =
L(a+),B(s) = L(b+),G(s) = L(G+) and F (s) = L(F+) with
L denoting Laplace transform. The inverse Laplace transform
of Eqs. (A8) and (A9) yields

a+(t) = a+(0)f+(t) + b+(0)f2(t) +
∫ t

0
f+(t − t ′)F+(t ′) dt ′

+
∫ t

0
f2(t − t ′)G+(t ′) dt ′, (A10)

b+(t) = b+(0)f−(t) − a+(0)f2(t) +
∫ t

0
f−(t − t ′)G+(t ′) dt ′

−
∫ t

0
f2(t − t ′)F+(t ′) dt ′, (A11)
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where

f±(t) =
[

cosh(�t/4) ± γ − κ + 2ε

�
sinh(�t/4)

]
e−γ−t ,

(A12)

f2(t) = 4g

�
sinh(�t/4)e−γ−t , (A13)

� =
√

−16g2 + (γ − κ + 2ε)2,γ− = 1
4 (κ + γ − 2ε).

(A14)

Note that the solution of the coupled equations (A6) and
(A7) can easily be obtained by replacing ε by −ε, F+ by F−,
and G+ by G− in the solution of Eqs. (A4) and (A5). We thus
have

a−(t) = a−(0)h+(t) + b−(0)h2(t) +
∫ t

0
h+(t − t ′)F−(t ′) dt ′

+
∫ t

0
h2(t − t ′)G−(t ′) dt ′, (A15)

b−(t) = b−(0)h−(t) − a−(0)h2(t) +
∫ t

0
h−(t − t ′)G−(t ′) dt ′

−
∫ t

0
h2(t − t ′)F−(t ′) dt ′, (A16)

where

h±(t) =
[

cosh(�t/4) ± γ − κ − 2ε

�
sinh(�t/4)

]
e−γ+t ,

(A17)

h2(t) = 4g

�
sinh(�t/4)e−γ+t ,

(A18)
� =

√
−16g2 + (γ − κ − 2ε)2,γ+ = 1

4 (κ + γ + 2ε).

(A19)

Applying the inversion formula a = (a+ − a−)/2 and b =
(b+ − b−)/2 the solutions for a(t) and b(t) turn out to be

a(t) = η
(+)
1 (t)a(0) + η

(+)
2 (t)a†(0) + η

(+)
3 (t)b(0) + η

(−)
3 (t)b†(0)

+
∫ t

0
dt ′[η(+)

1 (t − t ′)Fc(t ′) + η
(+)
2 (t − t ′)F †

c (t ′)]

+
∫ t

0
dt ′[η(+)

3 (t − t ′)Fe(t ′) + η
(−)
3 (t − t ′)F †

e (t ′)],

(A20)

b(t) = η
(−)
1 (t)b(0) + η

(−)
2 (t)b†(0) − η

(+)
3 (t)a(0) − η

(−)
3 (t)a†(0)

−
∫ t

0
dt ′[η(+)

3 (t − t ′)Fc(t ′) + η
(−)
3 (t − t ′)F †

c (t ′)]

+
∫ t

0
dt ′[η(−)

1 (t − t ′)Fe(t ′) + η
(−)
2 (t − t ′)F †

e (t ′)],

(A21)

where

η
(±)
1 (t) = 1

2

(
cosh(�t) ± γ − κ + 2ε

�
sinh(�t/4)

)
e−γ−t

+ 1

2

(
cosh(�t/4) ± γ−κ−2ε

�
sinh(�t/4)

)
e−γ+t ,

(A22)

η
(±)
2 (t) = 1

2

(
cosh(�t/4) ± γ − κ + 2ε

�
sinh(�t/4)

)
e−γ−t

− 1

2

(
cosh(�t/4) ± γ−κ−2ε

�
sinh(�t/4)

)
e−γ+t ,

(A23)

η
(±)
3 (t) = 2g

�
sinh(�t/4)e−γ−t ± 2g

�
sinh(�t/4)e−γ+t .

(A24)
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A 69, 031802 (2004).
[11] A. Quattropani and P. Schwendimann, Phys. Status Solidi 242,

2302 (2005).
[12] H. Eleuch, Eur. Phys. J. D 49, 391 (2008); 48, 139 (2008).

[13] D. Erenso, R. Vyas, and S. Singh, Phys. Rev. A 67, 013818
(2003).

[14] R. Vyas and S. Singh, J. Opt. Soc. Am. B 17, 634 (2000).
[15] Y. Chen, A. Tredicucci, and F. Bassani, Phys. Rev. B 52, 1800

(1995).
[16] H. Wang, Y. Chough, S. E. Palmer, and H. J. Carmichael, Opt.

Express 1, 370 (1997).
[17] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Phys.

Rev. Lett. 69, 3314 (1992).
[18] S. Pau, G. Björk, J. Jacobson, H. Cao, and Y. Yamamoto, Phys.

Rev. B 51, 14437 (1995); H. Cao et al., Appl. Phys. Lett. 66,
1107 (1995).

[19] J. Jacobson, S. Pau, H. Cao, G. Björk, and Y. Yamamoto, Phys.
Rev. A 51, 2542 (1995).

[20] L. A. Lugiato and G. Strini, Opt. Commun. 41, 67 (1982).
[21] G. J. Milburn and D. F. Walls, Phys. Rev. A 27, 392

(1983).
[22] D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag,

Berlin, 1994).

043810-6

http://dx.doi.org/10.1103/PhysRevLett.56.1917
http://dx.doi.org/10.1103/PhysRevA.65.063808
http://dx.doi.org/10.1103/PhysRevA.65.063808
http://dx.doi.org/10.1016/j.optcom.2006.10.016
http://dx.doi.org/10.1080/09500340701624641
http://dx.doi.org/10.1038/nphoton.2007.46
http://dx.doi.org/10.1103/PhysRevA.69.023809
http://dx.doi.org/10.1103/PhysRevA.69.023809
http://dx.doi.org/10.1140/epjd/e2010-00031-x
http://dx.doi.org/10.1088/0953-4075/41/5/055502
http://dx.doi.org/10.1088/1464-4266/6/4/001
http://dx.doi.org/10.1088/1464-4266/6/4/001
http://dx.doi.org/10.1016/S1631-0705(02)01302-6
http://dx.doi.org/10.1016/S1631-0705(02)01302-6
http://dx.doi.org/10.1103/PhysRevA.69.031802
http://dx.doi.org/10.1103/PhysRevA.69.031802
http://dx.doi.org/10.1002/pssb.200560963
http://dx.doi.org/10.1002/pssb.200560963
http://dx.doi.org/10.1140/epjd/e2008-00173-4
http://dx.doi.org/10.1140/epjd/e2008-00079-1
http://dx.doi.org/10.1103/PhysRevA.67.013818
http://dx.doi.org/10.1103/PhysRevA.67.013818
http://dx.doi.org/10.1364/JOSAB.17.000634
http://dx.doi.org/10.1103/PhysRevB.52.1800
http://dx.doi.org/10.1103/PhysRevB.52.1800
http://dx.doi.org/10.1364/OE.1.000370
http://dx.doi.org/10.1364/OE.1.000370
http://dx.doi.org/10.1103/PhysRevLett.69.3314
http://dx.doi.org/10.1103/PhysRevLett.69.3314
http://dx.doi.org/10.1103/PhysRevB.51.14437
http://dx.doi.org/10.1103/PhysRevB.51.14437
http://dx.doi.org/10.1063/1.113827
http://dx.doi.org/10.1063/1.113827
http://dx.doi.org/10.1103/PhysRevA.51.2542
http://dx.doi.org/10.1103/PhysRevA.51.2542
http://dx.doi.org/10.1016/0030-4018(82)90215-2
http://dx.doi.org/10.1103/PhysRevA.27.392
http://dx.doi.org/10.1103/PhysRevA.27.392

