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I. INTRODUCTION

The knowledge of the shift of resonance frequencies of
electromagnetic cavities due to perturbations of geometry
and/or material properties of walls or internal parts of the cav-
ities is important for many applications. Simple approximate
formulas for this shift were derived long ago [1–3] and some
of them can be found in the books [4–8]. Different applications
of these formulas and some generalizations can be found, e.g.,
in [9–17]. But it was assumed in all the cited references that the
changes of the material properties (in particular, the electric
permittivity) are small. However, there exist situations where
variations of parameters can be very big, but the frequency
shift is small due to the small size of the region where the
parameters change their values.

An interesting example is a cavity containing a thin
semiconductor slab illuminated by laser pulses. This setup
was suggested in [18,19] to simulate the dynamical Casimir
effect (DCE); see also [20,21] for recent reviews of different
proposals. In this case a highly conducting thin layer is created
near the surface of the semiconductor, so that the imaginary
part of the electric permittivity changes from zero to values
of the order of 105 or bigger. Nonetheless, the frequency shift
remains very small due to the small thickness of the slab and the
conducting layer. For the simplest rectangular or cylindrical
geometries and homogeneously excited slabs, this shift can
be calculated rather easily [22,23], but these special cases
can be considered only as rough models of real experimental
situations.

The aim of this paper is to obtain approximate formulas
generalizing the Müller-Bethe-Schwinger-Casimir ones to the
case of big changes of the complex electric permittivity in
thin slabs. The plan is as follows. Section II reproduces exact
(although not widely known) formulas for the difference of
the eigenfrequencies in two cavities. Formulas are derived
in Sec. III, and they are compared with the results of exact
calculations in some simple cases in Sec. IV. Arbitrarily thin
inhomogeneous slabs attached to the plain boundary of a cavity
are considered in Sec. V, and the specific features related to the
DCE experiments are discussed in Sec. VI. The final section
contains conclusions.

*vdodonov@fis.unb.br

II. EXACT FORMULA FOR THE FREQUENCY SHIFT

Let us consider monochromatic electric and magnetic
fields of the form E(r,t) = E(r) exp(−iωt) and H(r,t) =
H(r) exp(−iωt) inside a cavity with ideal walls. If the cavity
is filled in with a linear medium described by means of the
electric permittivity ε1(r) and magnetic permeability µ1(r),
then the Maxwell equations determining the eigenfrequency
ω1 have the form (I use the Gauss system of units)

rot E1 = iω1

c
µ1H1, (1)

rot H1 = − iω1

c
ε1E1. (2)

For a cavity filled in with a medium described by means of
functions ε2(r) and µ2(r), we have similar equations

rot E2 = iω2

c
µ2H2, (3)

rot H2 = − iω2

c
ε2E2. (4)

Let us multiply (forming the scalar products) both sides of
Eq. (1) by the function H2, Eq. (2) by E2, Eq. (3) by −H1, and
Eq. (4) by −E1. Taking the sum of the four new equations thus
obtained, one has

H2 rot E1 − E1 rot H2 − H1 rot E2 + E2 rot H1

= i

c
[E2E1(ω2ε2 − ω1ε1) − H2H1(ω2µ2 − ω1µ1)].

Now we integrate both sides of this equation over the total
volume of the cavity, taking into account the identity

div[a × b] ≡ b rot a − a rot b.

Due to the Gauss theorem, the volume integral in the left-hand
side can be transformed into the surface integral over the total
surface of the cavity,∫ ∫

walls
([H1 × E2] + [E1 × H2]) ds.

But this integral equals zero, because the scalar product of the
vector integrand and the vector surface differential ds depends
only on tangential components of the vectors E2 and E1, which
become zero on the surface of an ideal cavity. Thus we arrive
at the identity∫

[E2E1(ω2ε2 − ω1ε1) − H2H1(ω2µ2 − ω1µ1)] dV ≡ 0,
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which can be rewritten as two equivalent forms,

ω2 − ω1

ω2
= −

∫∫∫
(δεE2E1 − δµH2H1) dV∫∫∫
(ε1E2E1 − µ1H2H1) dV

, (5)

ω2 − ω1

ω1
= −

∫∫∫
(δεE2E1 − δµH2H1) dV∫∫∫
(ε2E2E1 − µ2H2H1) dV

, (6)

where

δε(r) = ε2(r) − ε1(r), δµ(r) = µ2(r) − µ1(r). (7)

Formulas (5) and (6) are exact, and they hold for arbitrary
complex functions ε1,2 and µ1,2 (so that the eigenfrequencies
ω1,2 are also complex in the most general case). A discussion
of formula (5) and its applications in the special case of ε1 =
µ1 = 1 can be found in [10].

If the functions ε1(r) and µ1(r) are real (in such a case, ω1

is also a real number, whereas ε2, µ2, and ω2 can be complex
quantities), then one can apply the same procedure as above
to Eqs. (3) and (4) and the complex-conjugated equations (1)
and (2), obtaining, e.g., the equation

ω2 − ω1

ω1
= −

∫∫∫
(δεE2E∗

1 + δµH2H∗
1) dV∫∫∫

(ε2E2E∗
1 + µ2H2H∗

1) dV
(8)

instead of (6). Note that the function E1 can be chosen real in
this case. Then H1 is purely imaginary, and this fact explains
the difference in signs of the “magnetic” terms in Eqs. (6) and
(8). However, formula (8) is not valid for complex functions
ε1(r) and µ1(r), because in this case the complex-conjugated
equations (1) and (2) contain the products ω∗

1ε
∗
1 instead of

ω1ε1.

III. GENERALIZATION OF THE STANDARD
APPROXIMATE FORMULA

It is assumed usually that the unperturbed fields E1(r) and
H1(r) are known for any point r of the cavity. The problem
is that the perturbed fields E2(r) and H2(r) are not known
[except for the simplest cases when they can be obtained by
scaling the fields E1(r) and H1(r) in all points [10]]. If the
variation δε(r) is small everywhere, then one may believe
that the perturbed fields E2(r) and H2(r) are close to E1(r)
and H1(r), respectively. Then it is natural to replace E2(r) by
E1(r) and H2(r) by H1(r) in the right-hand side (RHS) of (5).
Moreover, one can write ω2 ≈ ω1, ε2 ≈ ε1, and µ2 ≈ µ1 in
the denominators of the fractions in identities (5) or (6). Then
either of these two identities results in a simple approximate
formula for the frequency shift δω = ω2 − ω1, given in many
textbooks (see, e.g., [5]),

δω

ω
≈ −

∫∫∫ [
δε(r)E2

1 − δµ(r)H2
1

]
dV∫∫∫ (

ε1E2
1 − µ1H2

1

)
dV

= −
∫∫∫ [

δε(r)E2
1 − δµ(r)H2

1

]
dV

2
∫∫∫

ε1E2
1 dV

. (9)

The second equality holds due to the well-known identity∫
ε1E2

1 dV ≡ −
∫

µ1H2
1 dV. (10)

If ε1 and µ1 are real, then one can use equivalent formulas
(see [8]) which can be obtained from (9) by the changes

E2
1 → |E1|2 and H 2

1 → −|H1|2. In this case identity (10)
means the equality of electric and magnetic energies in ideal
resonance cavities (if ε1 and µ1 are positive functions with
negligible frequency dispersions). Hereafter I shall consider
only the case of nonmagnetic media with µ1 = µ2 = 1 (having
in mind concrete applications to the DCE and because a
generalization to the magnetic case is obvious), so that δµ(r) ≡
0 in the subsequent formulas.

Formula (9) gives a divergent result if δε(r) → ∞. How-
ever, it seems obvious that, if the function δε(r) is different
from zero only inside some small volume δV � V (where V

is the total cavity volume), then the ratio δω/ω remains small
even for very big values of δε(r). My goal is to find such a
generalization of formula (9), which can be used in the case
when δε(r) is much bigger than unity inside some thin flat slab
or film.

In this special case, it is convenient to divide the electric
vector into two parts, E(r) = (Ez,Et ), where Ez is the
component perpendicular to the surface of the slab and Et

is the two-dimensional vector parallel to this surface, and to
rewrite Eq. (6) in terms of the components of vector E(r) and
the electric displacement vector D(r) = ε(r)E(r) as follows:

ω2 − ω1

ω1

= −
∫∫∫

[Dz2Ez1 − Ez2Dz1 + (ε2 − ε1)Et2Et1] dV∫∫∫
(Dz2Ez1 + ε2Et2Et1 − H2H1) dV

. (11)

Then, taking into account the conditions of continuity of the
normal component of vector D(r) on the surfaces separating
media with different dielectric properties, one can assume that
the normal component Dz2 inside the thin slab is the same as
it was for the medium with ε1, but with the new frequency
ω2, i.e., Dz2 ≈ Dz1(ω2). Similarly, considering the tangential
components of vector E(r), one can suppose that function
Et2(r) at each point inside the thin slab is close to the value
Et1(r) at the same point, but taken for the new frequency ω2.

The crucial point, which permits us to generalize formula
(9), consists in the account of the fact that the fields depend
not only on the coordinate vector r, but also on the frequency
ω which enters the Maxwell equations (3) and (4), so that one
should write the electric field as E(r; ω). Supposing that small
variations of frequency are accompanied by small variations
of functions Et1 and Ez1 (describing the field components in
the unperturbed cavity), we use the Taylor expansions of these
functions with respect to the frequency change δω, taking
into account only the first (linear) terms. Thus we arrive at
the following approximate expressions for the electric field
components inside the slab:

Et2(r; ω2) ≈ Et1(r; ω1) + Gt (r)δω̃, (12)

Dz2(r; ω2) ≈ Dz1(r; ω1) + ε1Gz(r)δω̃, (13)

where ω̃ = δω/ω1 and

G(r) = ω1∂E1(r; ω)/∂ω|ω=ω1 . (14)

I suppose that the dependence of ε1 on the frequency can be
neglected. However, ε2 can depend on frequency. For example,
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the semiconductor medium can be described by means of the
function (in the Gauss system of cgs units)

ε2(n; ω) = εb + 4πiσ/ω, σ (r) = n(r)|eb|, (15)

where σ is the conductivity, n(r) is the concentration of
electron-hole pairs, |e| is the electron charge, |b| = |be| + |bh|
is the total mobility of the pair, and εb is the dielectric constant
in the absence of free carriers. Since the frequency ω2 is
unknown, the function ε2(r) can be represented as follows:

ε2(r; n; ω2) ≈ ε2(r; n; ω1) + ν(r; n; ω1)δω̃, (16)

ν(r; n; ω) = ω∂ε2(r; n; ω)/∂ω. (17)

According to this scheme, function Ez2 in the numerator of
the RHS of (11) can be represented as

Ez2 ≈ ε1Ez1(ω2)/ε2(ω2) ≈ ε1Ez1(ω1)/ε2(ω1)

+ δω̃
[
ε1Gz/ε2(ω1) − ε1Ez1(ω1)ν(ω1)/ε2

2(ω1)
]
.

Putting all these approximate expressions in the RHS of
(6), neglecting terms containing (δω)2 (that means that the
terms containing δω̃ should be omitted in the denominator)
and taking into account Eq. (10), we arrive at the following
generalization of formula (9), which gives a finite frequency
shift in the limit δε → ∞:

δω

ω1
≈ −

∫∫∫
δε(r)

(
E2

t1 + E2
z1ε1/ε2

)
dV∫∫∫ [

2ε1E2
1 + δε(r)

(
E2

t1 + GtEt1 + GzEz1ε1/ε2
) + ν(r)

(
E2

t1 + E2
z1ε

2
1

/
ε2

2

)]
dV

. (18)

Here all the functions in the RHS, including ε2(r; n; ω) and
ν(r; n; ω), are taken at the known frequency ω1. Note that the
denominator in (18) does not contain the term with δε(r)E2

z1.

IV. COMPARISON WITH EXACT SOLUTIONS

To evaluate the accuracy of formula (18) and to see how it
works, let us consider a few examples in which exact solutions
of the problem can be found.

A. TE mode in two thin homogeneous slabs

As the first example let us consider a cylindrical cavity of
length L with an arbitrary cross section and the axis parallel to
the z direction, supposing that the main volume of the cavity
is empty, except for a thin slab of a thickness D � L, which
consists of two parts: a “background” of thickness D − D1

with a moderate real dielectric constant εb (which adjoins the
cavity flat wall) and a film of thickness D1 with a big dielectric
constant εs + εb, where εs can be a complex number (this
thin film separates the background from the empty part of the
cavity). We assume that the dielectric properties of the slab do
not depend on the frequency and the transverse coordinate r⊥.
Thus ε(r) depends on the longitudinal coordinate z as follows:

ε(z) =

⎧⎪⎨
⎪⎩

1 for − L < z < 0,

εb + εs for 0 < z < D1,

εb for D1 < z < D.

(19)

We also suppose that the cavity walls are made from an ideal
conductor, so that we can use the ideal boundary conditions
Et |wall = 0 for the tangential components of the electric field.

We consider the fundamental TE mode with the only
component of the electromagnetic field parallel to the slab
surface. It satisfies the three-dimensional scalar Helmholtz
equation (we assume that the magnetic permeability of the
slab is the same as in the vacuum)

�E + (ω/c)2ε(z)E = 0. (20)

The solution to Eq. (20) can be factorized as

E(z,r⊥) = ψ(z)
(r⊥), (21)

where the function 
(r⊥) obeys the two-dimensional
Helmholtz equation

�⊥
 + k2
⊥
 = 0, 
|wall = 0, (22)

so the problem is reduced to solving the one-dimensional
Helmholtz equation

ψ ′′ + [(ω/c)2ε(z) − k2
⊥]ψ = 0 (23)

with the boundary conditions

ψ(−L) = ψ(D) = 0. (24)

In the case of the dielectric function (19), the function ψ(z)
can be written as follows:

ψ(z) =

⎧⎪⎨
⎪⎩

F1 sin[k(z + L)] for − L < z < 0,

F2 sin(k2z + φ2) for 0 < z < D1,

F3 sin[k3(z − D)] for D1 < z < D,

(25)

where

k2
2 = (k2 + k2

⊥)(εs + εb) − k2
⊥, (26)

k2
3 = (k2 + k2

⊥)εb − k2
⊥, (27)

and the constant coefficient k is related to the field eigenfre-
quency ω as

ω = c(k2 + k2
⊥)1/2. (28)

The value of the longitudinal wave number k can be found
from the equations which are consequences of the continuity
conditions for the functions ψ(z) and ψ ′(z) at the surfaces
z = 0 and z = D1:

tan(kL) = k

k2
tan(φ2), (29)

tan(k2D1 + φ2) = k2

k3
tan[k3(D1 − D)]. (30)
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Solving Eq. (30) with respect to phase φ2 and putting the
solution into Eq. (29), we arrive at the equation

tan(kL) = k

k2

k2 tan[k3(D1 − D)] − k3 tan(k2D1)

k3 + k2 tan[k3(D1 − D)] tan(k2D1)
. (31)

The absolute value of the product k3(D1 − D) does not exceed
the quantity 2π

√|εb|D/λ, where

λ = 2π [(π/L)2 + k2
⊥]−1/2 = 2πc/ω0 (32)

is the wavelength corresponding to the fundamental eigenfre-
quency of an ideal cavity of length L. Assuming that |εb| < 16
(as for many dielectric materials or semiconductors at low
temperatures), we see that the function tan[k3(D1 − D)] can
be replaced by its argument, provided D � λ/(8π ). After
this simplification, the coefficient k3 drops out, together with
parameter εb, and Eq. (31) goes to

tan(kL) = k

k2

k2(D1 − D) − tan(k2D1)

1 + k2(D1 − D) tan(k2D1)
. (33)

Obviously, the longitudinal wave number k can be represented
as

k = (π/L)(1 + ξ ) (34)

with |ξ | � 1 if D � λ. Therefore we can write tan(πξ ) = πξ

in the left-hand side of Eq. (33), putting at the same time
ξ = 0 in the right-hand side (which is small even for ξ = 0).
This gives an immediate answer for the value of ξ . If D1 = 0
(this case corresponds to the frequency ω1), then Eq. (33)
becomes tan(kL) = −kD, with the solution ξ1 ≈ −D/L (the
corrections have an order of (D/L)3εb).

The frequency ω2 corresponds to a nonzero thickness D1.
A simple answer can be obtained if |k2D1| � 1 (despite that
|εs | 
 1), so that one can use the approximation tan(k2D1) ≈
k2D1. This can happen under quite realistic conditions. Indeed,
in a conductive medium |εs | ≈ 4πσ/ω, where σ is the
conductivity of the film in cgs units. For a good metal one
has |εs | ∼ 108 for ω ∼ 1010 s−1 (or λ ∼ 10 cm). Then the
limitation is D1 � 1 µm. For semiconductors with |εs | ∼
105 the upper limit can be shifted to much bigger values:
D1 � 1 mm. Making all these simplifications [in particular,
neglecting the small term k2

⊥(εb − 1) in the definition of
coefficient k2, i.e., replacing this coefficient by k2(ξ = 0) =
(2π/λ)

√
εs] and assuming in addition that D1 � D, one can

arrive at the following simple expression:

ξ2 ≈ − D

L(1 − As)
, (35)

where

As = 4π2εs

D1D

λ2
= k2

2D1D. (36)

There is no singularity in formula (35), because parameter As

is complex, as a matter of fact, and its real part is much smaller
than unity.

The relative shift between resonance frequencies can be
written, in view of (28), as

(ω2 − ω1)/ω1 = η2(ξ2 − ξ1), (37)

where

η = λ/(2L) = [1 − (2π )2/(k⊥λ)2]1/2. (38)

Thus the result of calculations based on the exact solution of
the Maxwell equations is

δω/ω1 ≈ −Dλ2

4L3

As

1 − As

. (39)

Now let us see how formula (39) can be derived from (18).
The only nonzero component Et1 of the electric field in the
empty cavity is given by formulas (21) and (25) with D1 = 0.
We take F1 = 1, since this constant factor is canceled in (18),
as well as the integral of function 
(r⊥) (which does not
depend on the frequency ω1). Equation (25) can be simplified
as ψ1(z) ≈ F3k3(z − D) for 0 < z < D if |k3D| � 1. But the
consequence of the continuity condition for the function ψ1(z)
at z = 0 and Eq. (34) is the relation −F3k3D = sin(kL) =
−πξ1 (since |ξ1| � 1). Thus one can write

ψ1(z) ≈ −πξ1(1 − z/D), 0 < z < D. (40)

Consequently,

2
∫ D

−L

ε1(z)ψ2
1 (z)dz ≈ L, (41)

∫ D1

0
δε(z)ψ2

1 (z)dz ≈ (πξ1)2D1εs, (42)

where the corrections of the order of D/L � 1 and D1/D � 1
are neglected in (41) and (42), respectively.

The function (40) depends on the frequency ω1 through the
coefficient ξ1. From (34) one obtains ∂ξ1/∂ω1 = k−1

0 ∂k/∂ω1,
where k0 = π/L. The derivative ∂k/∂ω1 can be found from
Eq. (28): ∂k/∂ω1 = ω1/(c2k). Neglecting the small difference
between k and k0, we find

∂ξ1/∂ω1 ≈ ω1/(ck0)2. (43)

Consequently, the function (14) can be written as Gt =
G̃(z)
(r⊥) with

G̃(z) ≈ − ω2
1

c2k2
0

π (1 − z/D), 0 � z � D, (44)

so that ∫ D1

0
δε(z)G̃(z)ψ1(z)dz ≈ −DL(ω1/c)2D1εs (45)

if D1 � D (remember that ξ1 ≈ −D/L). One can see that the
term (42) is much smaller than (45) (the ratio is of the order
of D/L), so that it can be neglected in the denominator of the
fraction in the RHS of Eq. (18). Then formula (18) leads to (39)
with the same coefficient As , defined in Eq. (36). Analyzing all
the assumptions made during the derivation, one can conclude
that formula (39) is justified if

√|εs |D1/λ � 1 and D1 �
D. Note, however, that the absolute value of parameter As

can be much bigger than unity even under these restrictions.
For example, taking |εs | ∼ 106, λ ∼ 10 cm, D1 ∼ 10 µm and
D ∼ 1 mm, one gets |As | ∼ 40, while

√|εs |D1/λ ∼ 0.1 and
D1/D ∼ 0.01.

B. TM mode in two thin homogeneous slabs

Now let us consider the TM mode in the same geometry
as in the preceding subsection. In the exact approach it is
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convenient to solve the equation for the electric displacement
vector D,

�(D/ε) + (ω2/c2)D = grad div(D/ε). (46)

If the dielectric function depends on the single variable z,
then div(D/ε) = Dz∂(1/ε)/∂z due to the equation divD = 0.
Consequently, for the step-constant profile (19), Eq. (46)
coincides with (20), and one can use the same factorization
(21) for the function Dz(r). The difference is in the continuity
conditions at the interfaces of the slabs: one should require
a continuity of functions ψ(z) and ε−1∂ψ/∂z at z = 0 and
z = D1, whereas the derivative ∂ψ/∂z must go to zero
at z = −L and z = D. Thus instead of (25) one should
write

ψ(z) =
⎧⎨
⎩

F1 cos[k(z + L)] for − L < z < 0,

F2 cos(k2z + φ2) for 0 < z < D1,

F3 cos[k3(z − D)] for D1 < z < D,

(47)

with the same definitions of parameters as in (26), (27), and
(28). Equations (29) and (30) should be replaced by

tan(kL) = k2

kεs

tan(φ2), (48)

tan(k2D1 + φ2) = k3εs

k2εb

tan[k3(D1 − D)], (49)

so that instead of (31) we have the equation

tan(kL) = k2

kεs

k3εs tan[k3(D1 − D)] − k2εb tan(k2D1)

k2εb + k3εs tan[k3(D1 − D)] tan(k2D1)
. (50)

Using (34) and making the same simplifications as in the
preceding section (replacing the tangent functions by their
arguments, neglecting k2

⊥ in k2
2, and neglecting D1 in the

difference D − D1), one can obtain from (50) the formula

ξ = k2
3LD

π2
[
k2

3εsDD1 − εb

] , (51)

where the coefficient k in the definition (27) of k3 should be
replaced by π/L. If

ξ1 = −k2
3LD/(π2εb) (52)

corresponds to the cavity with D1 = 0 (but D > 0), then the
additional frequency shift caused by the presence of a thin
film with |εs | 
 1 is given by formulas (37) and (38). The
final result is similar to (39):

ω2 − ω1

ω1
≈ − ζmÃs

1 − Ãs

, (53)

ζm = k2
3Dλ2

4Lπ2εb

, Ãs = k2
3DD1

εs

εb

. (54)

If εb is not too close to unity (say, εb ∼ 10), then Ãs ≈
As given in (36). Under this condition, the maximal relative
frequency shift of the TM mode equals ζm ≈ D/L, i.e., it is
(2L/λ)2 = η−2 times bigger than for the TE mode.

To see how formula (18) works, let us consider the
fundamental TM mode in a rectangular cavity with 0 < x <

Lx,0 < y < Ly , and −L < z < D. The components of the

electric field in the empty part of the cavity, −L < z < 0, are
as follows:

Ez1 = cos[k(z + L)] sin(kxx) sin(kyy), (55)

Ex1 = −kkx

k2
⊥

sin[k(z + L)] cos(kxx) sin(kyy), (56)

Ey1 = −kky

k2
⊥

sin[k(z + L)] sin(kxx) cos(kyy), (57)

k = π

L
(1 + ξ ), kx = π

Lx

, ky = π

Ly

, k2
⊥ = k2

x + k2
y.

These expressions are sufficient to calculate the first integral
in the denominator of formula (18), because the contribution
of the region 0 < z < D to this integral gives only a small
correction of the order of εbD/L with respect to the main
term,

2
∫

ε1E2
1 dV ≈ MLω2

1

/
(ck⊥)2, (58)

where M = LxLy/4. If the film thickness D1 satisfies the con-
ditions D1 � D and k2D1 � 1, then integrals containing δε

over the region 0 < z < D1 can be expressed as MεsD1f (0+),
where f (0+) means the value of the function f (z,x,y) in
the integrand, divided by the related product of trigonometric
functions of x and y and taken at the point z = 0+ inside the
dielectric background slab. The components of the electric
field E1 at this point can be obtained from the values of
functions (55)–(57) at z = 0 using the continuity conditions.
Replacing k by k0 = π/L in the amplitude factors and kL by
π + πξ1 in the arguments of the sine and cosine functions,
one finds (maintaining only the leading terms with respect to
small parameters, such as D/L)

Ez1(0+) ≈ −ε−1
b cos(πξ1), (59)

Ex1(0+) ≈ k0kxπξ1

k2
⊥

, Ey1(0+) ≈ k0kyπξ1

k2
⊥

. (60)

Using (52) we obtain the following expressions:
∫

δεE2
t1 dV ≈ MD1εs

(
k2

3D

k⊥εb

)2

, (61)

∫
δε(ε1/ε2)E2

z1 dV ≈ MD1/εb. (62)

The components of vector G (14) for z = +0 can be found
from expressions (59) and (60) with the aid of (43). Thus we
obtain ∫

δε(ε1/ε2)GzEz1 dV ≈ MLD1D

(
ω1k3

ck0εb

)2

, (63)

∫
δεGtEt1 dV ≈ −MLD1D

εs

εb

(
ω1k3

ck⊥

)2

. (64)

One can see that the integral (63) is much smaller than
(64) if |εsεb| 
 1. The integral (61) can be neglected in the
denominator of formula (18), because the ratio of this integral
to (64) is of the order of D/L. On the other hand, the integral
(61) gives the main contribution to the numerator of (18) under
the condition

|εsεb|(D/L)2 
 1. (65)
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Taking into account these relations, one can see that formula
(18) goes to (53) with the same values of parameters ζm and
Ãs as given by (54).

V. ARBITRARY THIN INHOMOGENEOUS SLABS

Now let us consider a more general case, when the dielectric
function is different from the value ε = 1 only inside a flat
thin slab, whose surface occupies some region S in the x-y
plane and whose thickness D is much less than any other
characteristic dimension L of the cavity. We assume that the
plane z = 0 coincides with the surface of the slab. Moreover,
we suppose that the background value εb is constant inside the
slab, but the function ε(r) rapidly changes from the maximal
value εs on the surface of the slab to the value εb in a film
of thickness D1 � D. If the condition (65) is fulfilled, then,
as was shown in the preceding section, formula (18) can be
reduced to

δω

ω1
≈ −

∫∫∫
δε(r)E2

t0 dV∫∫∫ [
2E2

0 + δε(r)Gt0Et0
]
dV

, (66)

where the subscript “0” means the field in the empty cavity
(because the tangential components of the electric field Et1

inside the film of thickness D1 practically coincide with
Et0). It is worth noting that formula (66) can be used even
for dispersive media [with ν(r) �= 0], except for very rare
specific situations. Indeed, the term ν(r)E2

z1ε
2
1/ε

2
2 in the

denominator of the fraction in the RHS of (18) is strongly
suppressed if |ε2

1/ε
2
2| � 1. The remaining term ν(r)E2

t1 does
not exceed in most of the cases the term δε(r)E2

t1, whose
contribution is small, as was shown in the examples considered
in the preceding section. The exceptional case is |ν| 
 |ε2|,
but this can happen only for specific frequencies near the
resonances of the function ε2(ω). In particular, for the model
(15) with frequency-independent mobility (as for microwave
frequencies) one has ε2(ω) + ν(ω) ≡ εb, meaning that
(δε + ν)E2

t1 ≡ 0.
The problem is that it is difficult to calculate the vector Gt0

in a general case, when the field E0 is calculated numerically.
However, in some special (but realistic and important) cases
this problem can be avoided in a rather simple way.

Namely, we suppose that the spatial dependence of δε(r)
can be scaled as δε(r) = εsg(r), where the “form factor” g(r)
does not depend on the maximal value of the dielectric function
variation εs . Obviously, g(r) ≡ 0 outside the slab (actually,
it is close to zero even inside the slab, if z > D1). If the
characteristic scale D1 of spatial variations of function g(r)
in the z direction is much smaller than that of the electric field
(which is of the order of D or bigger), than one can replace
functions Et0 and Gt0 by their values on the surface z = 0 in
the integrals containing δε, so that (66) can be simplified as

δω

ω1
≈ − εs

∫
g(r)E2

t0(x,y,0) dV∫ [
2E2

0(r) + εsg(r)Gt0(x,y,0)Et0(x,y,0)
]
dV

. (67)

Taking the limit εs → ∞, we obtain the maximal (by the
absolute value) frequency shift ζm ≡ (δω/ω1)max:

ζm = −
∫∫∫

g(r)E2
t0(x,y,0) dV∫∫∫

g(r)Gt0(x,y,0)Et0(x,y,0) dV
. (68)

Consequently, the integral containing Gt0 can be expressed
through the integral containing only Et0 and the parameter ζm.
In turn, ζm = ζid − ζb, where ζid is the relative frequency shift
of the empty cavity, when the part of the cavity corresponding
to the slab becomes an ideal conductor, and ζb is the relative
frequency shift of the empty cavity, when the volume of the
slab is filled in with the medium having the dielectric function
εb. The coefficient ζb can be calculated by means of formula
(18) with ε1 = 1 and ε2 = εb. One can verify that only the
term with Ez0 in the numerator of (18) should be taken into
account in this case, while the contribution of all other integrals
containing δε can be neglected, so that

ζb ≈ 1 − εb

εb

�, � =
∫∫∫

slab E2
z0 dV

2
∫∫∫

cav E2
0 dV

. (69)

Formula (69) was used, for example, in Refs. [12,13]. The
coefficient � is called sometimes “the filling factor.” On the
other hand, the formula for ζid is well known since the papers
[1–3]:

ζid =
∫∫∫

slab(|H0|2 − |E0|2) dV

2
∫∫∫

cav |E0|2 dV
. (70)

Consequently,

ζm =
∫∫∫

slab(|H0|2 − |Et0|2 − |Ez0|2/εb) dV

2
∫∫∫

cav |E0|2 dV
. (71)

Thus formula (67) can be rewritten in the form analogous to
(39) and (53):

δω

ω1
≈ − ζmAg

1 − Ag

, (72)

where ζm, given now by (71), does not depend on εs , whereas
Ag is proportional to εs :

Ag = εs

∫∫∫
slab g(r)|Et0(x,y,0)|2 dV∫∫∫

slab(|H0|2 − |Et0|2 − |Ez0|2/εb) dV
. (73)

For example, considering the TE mode in a rectangular
empty cavity with the only nonzero component of the electric
field Ey(x,z) = sin[k(z + L)] sin(kxx), we obtain, using (1),
the following nonzero components of the magnetic field:

Hx = − ck

iω
cos[k(z + L)] sin(kxx),

Hz = ckx

iω
sin[k(z + L)] cos(kxx).

The component Hx is much bigger than Hz and Ey in the slab
region 0 < z < D, so that Eqs. (71) and (73) [with g(r) =
1 for 0 < z < D1 � D and g(r) = 0 otherwise] yield ζm ≈
λ2D/(4L3) and Ag ≈ (ω/c)2DD1εs , in full agreement with
(36) and (39).

In the TM case, Eqs. (1) and (55)–(57) give the following
nonzero components of the magnetic field inside the empty
rectangular cavity:

Hx0 = ωky

ick2
⊥

cos[k(z + L)] sin(kxx) cos(kyy), (74)

Hy0 = − ωkx

ick2
⊥

cos[k(z + L)] cos(kxx) sin(kyy). (75)
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Neglecting the contribution of |Et0|2 in the integrals in
formulas (71) and (73), one can verify again that these formulas
give the same results as Eqs. (53) and (54). For the filling
factor defined in Eq. (69), we find in this case the following
expressions:

� = D

L

(
ck⊥
ω

)2

= 2Dη

λ(1 − η2)
, (76)

where the coefficient η was defined in (38).

VI. APPLICATIONS TO THE DCE EXPERIMENTS

In the case of the DCE experiment described in [18,19],
people use highly doped GaAs slabs (εb ≈ 13) of thickness
D about 600 µm, and a highly conducting layer nearby the
surface z = 0 is created due to the photoabsorption of the
laser radiation. The thickness of this layer D1 is of the order of
l ≈ α−1, where α is the absorption coefficient. For example, if
α = 104 cm−1 (this is a realistic value), then l/D ∼ 2 × 10−3.
Neglecting a possible nonuniformity of the illumination within
the slab surface S, we can assume that the function g(r) inside
the illuminated slab depends on the perpendicular coordinate
z only, and g(z) rapidly decreases with increase of z, due to
the laser pulse attenuation. Then (73) goes to

Ag ≈ J
∫∫

S |Et0(x,y,0)|2 dS∫∫∫
slab(|H0|2 − |Et0|2 − |Ez0|2/εb) dV

, (77)

where

J =
∫ D

0
δε(z)dz. (78)

It appears that using simple rectangular or cylindrical
cavities (such as those considered in Sec. IV) requires too big
energy of laser pulses, due to the big areas of slabs which must
be illuminated. Therefore a more potentially useful geometry
seems to be the so-called reentrant cylindrical cavity [24]
of radius r2 and height h2, which has a central conducting
cylindrical post of radius r1 < r2 and height h1 < h2. A thin
dielectric (semiconductor) slab is attached to the post, so that
D � h2 − h1 = L. Such cavities have been used in many
devices, because their lowest resonance frequencies can be
achieved for rather small dimensions [5,25–27].

Let us analyze the behavior of electric and magnetic fields
near the flat surface of the central post. The magnetic field in
this region is much smaller than the electric field component
Ez0 (contrary to the cases considered in Sec. IV). A rough
evaluation of the predominant tangential component Hφ of
the magnetic field near the surface, based on the model of
a capacitor with time-dependent electric displacement flux
(and Ez ≈ const nearby the post surface), gives |Hφ(ρ)| ≈
πEzρ/λ, where ρ is the radial distance from the cylinder
axis in the x-y plane and λ is the resonance wavelength of
the cavity. In this approximation, the ratio of the integrals
in (77) containing |H0|2 and |Ez0|2/εb is (εb/2)(πr1/λ)2.
Consequently, the contribution of the magnetic field is not
extremely small due to the factor εb, and it should be taken
into account, if one wants to know the coefficient Ag with a
sufficient accuracy.

The tangential component |Et0| inside the slab is also much
smaller than Ez0. In the first approximation one can think that
|Et0| is proportional to the distance D − z from the surface of
the metallic post (since this component turns into zero at this
surface). Thus one can expect a rough evaluation of the ratio
|Et0|/|Ez| in this region as D/L. In such a case, the relative
contributions of the integrals containing |H0|2 and |Et0|2 in
(71) and (73) can hardly exceed a few percent, compared with
the main contribution from the electric field component Ez0.
In addition, E2

z0 only slightly deviates from its values on the
surface z = 0 inside the slab if D � L. Taking into account all
these evaluations, as well as the inequality l � D, one arrives
at the following expressions:

ζm ≈ −D
∫∫

S E2
z0(x,y,0) dS

2εb

∫∫∫
cav E2

0(r) dV
≈ ζid/εb. (79)

Note that ζm is negative for the reentrant cavity. Moreover,
this important parameter can be found experimentally from
the measurement of ζid (by replacing the semiconductor
slab with a metallic one of the same thickness and mea-
suring the corresponding frequency shift), if the value of εb

is known.
If the creation of electron-hole pairs in the semiconductor

material changes only its conductivity, the function δε(z) is
pure imaginary, δε = 4πiσ/ω. Immediately after the absorp-
tion of a very short laser pulse we have N (0) ≡ ∫ D

0 n(z)dz =
κW/(SEg), where W is the total pulse energy, S is the area
of the slab surface, Eg is the energy gap of the semiconductor
material, and κ � 1 is the quantum efficiency of photoab-
sorption. In the absence of significant surface recombination
and diffusion, the total concentration per unit area depends on
time exponentially [28] as N (t) = N (0) exp(−t/Tr ), where Tr

is the recombination time. Consequently, the time evolution
of the real and imaginary parts of the complex frequency
shift δω = ω1(χ − iγ ) can be described approximately
as follows:

χ (t) ≈ ζmA2(t)

A2(t) + 1
, γ (t) ≈ |ζm|A(t)

A2(t) + 1
, (80)

where A(t) = iAg(t) = A0 exp(−t/Tr ),

A0 = εbYK(D/λ), Y = 2|eb|κW

cEgS
, (81)

K =
(

λ

D

)2 ∫∫
S E2

t0(x,y,0) dS∫∫
S E2

z0(x,y,0) dS
. (82)

Formula (81) clearly shows the influence of different factors
on the parameter A0. The ratio (λ/D)2 is introduced in the
definition of the dimensionless parameter K (82) in order to
make it approximately independent of the slab thickness, since
|Et0(x,y,0)| ∼ D for D � L < λ.

VII. CONCLUSION

The main results of this paper are given by the gen-
eral formula (18) and its special case (66). One of
their consequences is the universal interpolation formula
given by Eqs. (72) and (73), which describes the reso-
nance frequency shift caused by thin layers even for very
big changes (by many orders of magnitude) of the complex
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dielectric function inside these layers. Note that the layer
can be inhomogeneous and the dielectric function can be
frequency-dependent. In particular, Eqs. (80)–(82) can be

useful for the analysis of the experiments on the dynamical
Casimir effects in cavities with photoexcited thin semicon-
ductor slabs, which are now under way.
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