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We study the ground-state properties of trapped inhomogeneous systems of hardcore bosons in two- and
three-dimensional lattices. We obtain results both numerically, using quantum Monte Carlo techniques, and
via several analytical approximation schemes, such as the Gutzwiller mean-field approach, a cluster mean-field
method, and a spin-wave analysis which takes quantum fluctuations into account. We first study the homogeneous
case, for which simple analytical expressions are obtained for all observables of interest, and compare the
results with the numerical ones. We obtain the equation of state of the system along with other thermodynamic
properties such as the free energy, kinetic energy, superfluid density, condensate density, and compressibility. In
the presence of a trap, there is in general a spatial coexistence of superfluid and insulating domains. We show
that the spin-wave-based method reproduces the quantum Monte Carlo results for global as well as for local
quantities with a high degree of accuracy. We also discuss the validity of the local density approximation. Our
analysis can be used to describe bosons in optical lattices where the onsite interaction U is much larger than the
hopping amplitude t .
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I. INTRODUCTION

The successful realization of the superfluid-to-Mott-
insulator transition in ultracold bosonic gases trapped in optical
lattices in one [1], two [2,3], and three [4] dimensions has
opened the way to a myriad of experimental and theoretical
studies of strongly correlated lattice systems [5]. One of
the main ideas driving these studies is that ultracold atoms
in optical lattices can be used as analog simulators of
Hamiltonians of the Fermi- and Bose-Hubbard type. Intensive
efforts are currently under way to validate this approach by
comparing experimental and theoretical results for systems
such as the Bose-Hubbard model which is amenable to both
treatments [6,7].

In the Bose-Hubbard model, the basic Hamiltonian consists
of a hopping term of amplitude t and an onsite two-body
repulsion term with amplitude U . The phase diagram of this
homogeneous model is known to consist of two phases: (i) a
superfluid phase that is present for all incommensurate fillings
and arbitrary values of the ratio U/t , and for commensurate
fillings below some critical value (U/t)c, which depends on
the dimensionality of the system and on the (integer) filling,
and (ii) a Mott insulator which is present for commensurate
fillings for U/t > (U/t)c [8–12].

In experiments with ultracold gases, a confining potential is
always present. This confining potential is to a good approx-
imation harmonic, and generates an inhomogeneous density
profile in which superfluid and Mott-insulating phases coexist
in spatially separated domains [13–18]. In such systems, the
appearance of Mott-insulating domains in different regions of
the trap depends not only on the total filling and the ratio U/t

(as in the homogeneous case) but also on the curvature of the
harmonic confining potential.

So far, an accurate characterization of the local properties
of the system in the trap has only been achieved by means of
quantum Monte Carlo (QMC) simulations [14,15,17,18], and
density-matrix renormalization group (DMRG) techniques in
one dimension [16]. Our goal in this paper is to introduce an

analytical approach that provides an accurate prediction of the
behavior of the system in two and three dimensions. In this
study we shall consider the strongly correlated limit where the
ratio U/t is very large and the local occupation of the lattice
sites is lower than or equal to one. In that case, the system
can be described, to a good approximation, by impenetrable
(hardcore) bosons. As we will show, this in turn enables the
implementation of an analytical treatment which goes beyond
simple mean-field calculations, where within this approach,
quantum fluctuations are taken into account by the addition of
spin-wave corrections.

In what follows, we shall examine the extent to which the
results of this method are valid by comparing them against
quantum Monte Carlo simulations. As we will show, spin-
wave-corrected results provide a big improvement over the
usual Gutzwiller mean-field approach and its cluster-mean-
field extension. In most cases, for the system sizes considered
here, they are also more accurate than the QMC-based local
density approximation (LDA). In some regimes, and for some
local observables, the latter is found to be less accurate than
the simple Gutzwiller mean-field approach.

The paper is organized as follows. In Sec. II we review
the model at hand and discuss its properties. In Sec. III,
we study homogeneous systems in two and three dimen-
sions. We obtain the equation of state along with basic
thermodynamic properties and examine the extent to which
several analytical approaches compare against exact numerical
QMC simulations. In Sec. IV, we analyze the global and
local properties of hardcore bosons trapped in a confining
harmonic potential in a two-dimensional setup. We also ex-
amine the validity of the local-density approximation for finite
systems and compare the various analytical approximations
against exact QMC simulations. In Sec. V, we analyze the
behavior of three-dimensional harmonically trapped hardcore
bosons using the various approximation schemes. Finally, in
Sec. VI, we conclude with a discussion and summary of our
results.
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II. MODEL

The Hamiltonian for hardcore bosons confined in a har-
monic potential in a d-dimensional hypercubic lattice with
N = Ld sites, can be written as

Ĥ = −t
∑
〈ij〉

(â†
i âj + â

†
j âi) − µ

∑
i

n̂i + V
∑

i

r2
i n̂i . (1)

Here, 〈ij 〉 denotes nearest neighbors and âi (â†
i ) destroys

(creates) a hardcore boson on site i located at a distance
ri = |r i | from the center of the trap, where the coordinates
r i = (x1i , . . . ,xdi) are given here in units of the lattice spacing
a, which we set to unity.

The operator n̂i = â
†
i âi is the local density operator, µ is

the global chemical potential, and V is the harmonic potential
strength. The hopping parameter t (which we shall fix at
t = 1) sets the energy scale. The hardcore boson creation and
annihilation operators satisfy the constraints â

†2
i = â2

i = 0,
which prohibit double or higher occupancy of lattice sites,
as dictated by the U → ∞ limit of the Bose-Hubbard model.
For any two different sites i �= j , the creation and annihilation
operators obey the usual bosonic relations [âi ,âj ] = [â†

i ,â
†
j ] =

[âi ,â
†
j ] = 0.

To gain a general understanding of the zero-temperature
phases of this model, let us first analyze the atomic (t = 0)
limit. In this limit, there is no kinetic (hopping) term, and
the boson number operators n̂i commute individually with the
Hamiltonian, so every lattice site is occupied by a fixed number
of bosons. In this case, the Hamiltonian is diagonal in the Fock-
states basis, and the ground-state wave function has the form
|GS〉 = ∏⊗

i |ψi〉 and is solved for each site separately, giving

|ψi〉 =
{

|0〉 if µi < 0,

|1〉 if µi > 0,
(2)

where we have denoted µi = (µ − V r2
i ) as the local chemical

potential, and |0〉 and |1〉 denote vacant and occupied sites,
respectively. In the special V = 0 case, where no trap is
present, the model is translationally invariant, and the ground-
state boson occupancy is the same throughout the lattice: For
µ < 0 the minimal energy configuration is simply the vacuum
(i.e., the completely empty lattice), and for µ > 0 the minimal
energy configuration is the completely filled lattice. The
ground-state energy of these phases is degenerate at µ = 0.

In the t �= 0 case, the model has in general no analytic
solution [19]. As it turns out, however, the phase boundaries
separating the insulating phases from the superfluid one can
easily be obtained analytically in the V = 0 case even for
nonzero t . To see this, we use the fact that our Hamiltonian
commutes with the total-number-of-bosons operator N̂b =∑

i n̂i . This simply means that for any given µ and t , the
ground-state wave function is a linear combination of product
states, each having the same number of occupied (vacant) sites.
In the completely filled phase (which we denote by F) the wave
function is simply

|GS〉F =
⊗∏
i

|1〉, (3)

with energy εF = −µN . In the infinitesimally thin layer
outside of the F phase, the state of the system is characterized
by exactly one vacant site, and thus its wave function is
the sum,

|GS〉F+ = N−1/2
∑

i

âi |GS〉F, (4)

with energy εF+ = −2dt − µ(N − 1). The phase boundary
separating the superfluid phase and the (insulating) completely
filled phase is the curve along which the F state, Eq. (3),
is no longer energetically favorable. This happens when its
energy becomes degenerate with the energy of the defect state,
Eq. (4). Matching the two, we obtain the phase boundary:

µ

2dt
= 1. (5)

By the same token, the boundary between the superfluid phase
and the completely empty insulating phase (which we denote
by E) is given by µ/(2dt) = −1. This result can also be
obtained by repeating the above exercise with the substitution
|0〉 ↔ |1〉. Between the two insulating phases, in the region
|µ/2dt | < 1, the system is superfluid.

When a trap is introduced, the system will no longer be
entirely superfluid or entirely insulating. Depending on the
trap curvature and the total chemical potential, the system
may be in a coexistent state of a superfluid in one part of the
lattice and an insulator in another. Before discussing why this
is so, let us first note that unlike the homogeneous case which
is scale-invariant, in the presence of a trap the model has a
length scale determined by the ratio of the trap curvature to the
hopping amplitude, given by ξ = (V/t)−1/2. As a result, our
Hamiltonian can be rescaled by introducing the dimensionless
scaled length r̃i ≡ ri/ξ through which the Hamiltonian can
be rewritten in a way that eliminates the amplitude of the
harmonic trap V :

Ĥ = −t

⎡
⎣∑

〈ij〉
(â†

i âj + â
†
j âi) −

∑
i

(µ

t
− r̃2

i

)
n̂i

⎤
⎦ . (6)

As a result of this rescaling, it is clear that systems with the
same global chemical potential exhibit the same qualitative
behavior for all positive trap curvatures. In addition, away
from the center of the trap, the local onsite potential µi

always becomes very large and negative and hence outside
of some radius r̃out, the lattice must be empty (〈n̂i〉 = 0).
On the other hand, in the center of the trap, large enough
local chemical potentials will produce an insulating domain
with 〈n̂i〉 = 1 inside some critical radius r̃ � r̃in. In the
intermediate region, r̃in � r̃ � r̃out, the system is in the so-
called superfluid regime. The radial density profiles of the
two possible scenarios, with and without the insulator in
the center of the trap, are sketched in Fig. 1.

III. HOMOGENEOUS (V = 0) CASE IN TWO
AND THREE DIMENSIONS

Having discussed the general properties of the model
in the previous section, we now turn to analyze it in a
quantitative manner. We shall try to keep the discussion as
general as possible so that it applies to arbitrary dimensions
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FIG. 1. Typical density profiles of harmonically trapped hardcore
bosons as a function of the distance from the center of the trap. For
large enough values of chemical potential (solid line), a Mott insulator
with 〈n̂i〉 = 1 forms in the center of the trap (the region r̃ � r (1)

in ).
Outside of this radius the system is superfluid up until r̃ = r̃

(1)
out, outside

of which the lattice is empty. If the chemical potential is small (dashed
line) a Mott insulator will not form in the center of the trap, and the
only superfluid-insulator transition will take place at r̃ = r̃

(2)
out.

and confining potentials. Only after the general formulation
has been introduced, we will obtain analytical expressions
for homogeneous (i.e., V = 0) systems in two and three
dimensions. (We note that some of the observables of
the homogeneous two-dimensional case we analyze here have
been studied in Ref. [20].) This general formulation will be
useful later on when we address the problem of harmonically
confined bosons.

Our main objective in this section is to obtain the equation
of state of the model (i.e., the average density as a function of
the chemical potential), along with the basic thermodynamic
properties of the system. Since in dimensions higher than one
the model has no analytic solution, exact results for finite
systems (up to the relevant statistical errors) are obtained
numerically. Here we use the stochastic series expansion (SSE)
algorithm [21,22] and perform simulations over a wide range
of chemical potentials. Zero-temperature properties of the
system are obtained by choosing large inverse temperatures
β = 1/T (in our units, kB = 1), where we have found it
sufficient to have β � L, as the effects of increasing β beyond
this value are indiscernible. In two dimensions, we simulate
systems with 48 × 48 sites and 60 × 60 sites, with an inverse
temperature of β = 60, and in three dimensions, simulations
are performed on a 16 × 16 × 16 lattice and β = 20. After
obtaining the QMC results, we examine the validity of several
approximation schemes by comparing them against the results
of the SSE simulations.

A. Quantum Monte Carlo results

We first study the equation of state, which is very relevant
for experiments as it provides the dependence of the number
of bosons in the system (equivalently, the average density)
on the global chemical potential. It is depicted in Figs. 2(a)
and 3(a) for two- and three-dimensional lattices, respectively.
The corresponding compressibilities defined by κ = ∂ρ/∂µ

are also given in Figs. 2(b) and 3(b). These provide the response
of the average density to a change in the chemical potential.
We have computed them in two independent manners: (i) as
the numerical derivative of the average density with respect to

FIG. 2. (Color online) (a) Equation of state and (b) compress-
ibility κ = ∂ρ/∂µ for hardcore bosons in a homogeneous two-
dimensional lattice (60 × 60 sites). The SSE results are denoted by
circles, whereas the dotted, dashed, and solid lines, are the results of
the Gutzwiller mean field, the cluster mean field, and the spin-wave-
corrected Gutzwiller mean-field approximations, respectively.

the chemical potential and (ii) within the SSE algorithm using
the formula:

κ = ∂ρ

∂µ
= 1

NZ
Tr[N̂be

−βĤ ] = β

N
(〈N̂2

b 〉 − 〈N̂b〉2), (7)

where Z is the partition function and we have taken advantage
of the fact that [N̂b,Ĥ ] = 0. As expected, the results of both
methods were found to coincide. In the figures, the SSE results
are denoted by circles, whereas the various lines indicate the
predictions obtained by several approximation schemes that
will be introduced later. As the figures indicate, at µ/(2dt) = 0
the average density is 1/2. This is because of the particle-
hole symmetry of the model. Upon increasing the chemical
potential, the boson density increases too until it reaches
ρ = 1 at µ/(2dt) = 1, as predicted by the analysis given in
the previous section. At ρ = 1 the system becomes insulating
and the compressibilities drop sharply to zero. Note that due
to the particle-hole symmetry, the results for negative µ can
be immediately read off the figures by the transformations
µ → −µ and ρ → 1 − ρ.

Figures 4 and 5 show other observables of interest in
two and three dimensions, respectively. Those observables
provide further understanding of the properties of the model:

FIG. 3. (Color online) (a) Equation of state and (b) compress-
ibility κ = ∂ρ/∂µ for hardcore bosons in a homogeneous three-
dimensional lattice (16 × 16 × 16 sites). The SSE results are denoted
by circles, whereas the dotted, dashed, and solid lines are the results
of the Gutzwiller mean field, the cluster mean field, and the spin-
wave-corrected Gutzwiller mean-field approximations, respectively.
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FIG. 4. (Color online) Thermodynamic properties of hardcore
bosons in a homogeneous two-dimensional lattice: (a) free energy,
(b) kinetic energy, (c) superfluid density, and (d) condensate density as
a function of the average density. The circles indicate the SSE results
(60 × 60 sites), whereas the dotted, dashed, and solid lines indicate
the Gutzwiller-mean-field, the cluster-mean-field, and the spin-wave-
corrected Gutzwiller-mean-field approximations, respectively.

Figures 4(a) and 5(a) show the free energy (per site), which
is the quantity that is being minimized throughout the simu-
lations. Also shown [Figs. 4(b) and 5(b)] is the kinetic energy
(per site), which can in principle also be measured in ultracold
gases experiments by time-of-flight expansion after simulta-
neously switching off the trapping potential and the lattice.

The superfluid densities [Figs. 4(c) and 5(c)] and the
condensate density [Figs. 4(d) and 5(d)] further indicate that
for ρ < 1, when the systems are compressible, they are also
superfluid and exhibit Bose-Einstein condensation. In the pres-
ence of the strong correlations generated by the infinite onsite
repulsion, one can see that the superfluid density is always
greater than the condensate density. This is similar to what
happens in liquid helium where strong correlations deplete the
condensate density to a very small value while the superfluid
density remains very large. Interestingly, as the dimensionality
of the system increases one can see that the difference between
the superfluid density and the condensate density decreases.
This point will be touched upon later, when we discuss the
Gutzwiller mean-field method which corresponds to the exact
solution in infinite dimensions. Also evident from the figures is
the fact that the superfluid density and the condensate density
become equal in the low density limit.

B. Approximation schemes

Having analyzed the homogeneous case via the SSE
algorithm, we now proceed to analyze the model with a number
of approximation schemes. We start this investigation with
the Gutzwiller mean-field approach. We note here that this

FIG. 5. (Color online) Thermodynamic properties of hardcore
bosons in a homogeneous three-dimensional lattice: (a) free energy,
(b) kinetic energy, (c) superfluid density, and (d) condensate density
as a function of the average density. The circles indicate the SSE
results (16 × 16 × 16 sites), whereas the dotted, dashed, and solid
lines indicate the Gutzwiller mean field, the cluster mean field,
and the spin-wave-corrected Gutzwiller mean-field approximations,
respectively.

approach is a particular case of a more general treatment
initially developed for soft-core bosons [8,13].

1. Gutzwiller mean field

Generalizing the discussion in Refs. [23] and [24] to
inhomogeneous systems, we start our mean-field calculation
with the following product state as our ansatz for the ground-
state wave function:

|GS〉MF =
⊗∏
j

(
sin

θj

2
|0〉j + cos

θj

2
eiϕj |1〉j

)
, (8)

where the unknowns (θj ,ϕj ) are to be determined via the
minimization of the grand-canonical potential (per site) which
evaluates to


MF = 1

N
MF〈GS|Ĥ |GS〉MF

= − t

2N

∑
〈ij〉

sin θi sin θj cos(φi − φj )

− 1

2N

∑
i

µi(1 + cos θi). (9)

In the homogeneous case, the wave functions of each of
the lattice sites are identical. However, in the following, we
consider general local potentials, as later we shall apply this
method to the case of the harmonic potential. For the azimuthal
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angles ϕj , it is sufficient to require that all sites share the
same value φj = �, where � can be chosen arbitrarily. The
conditions for the polar angles are obtained by differentiating

MF with respect to θj , giving

µi tan θi = tSi . (10)

Here, Si = ∑
j sin θj δi,n(j ) where δi,n(j ) is unity if i and j are

neighbors and is zero otherwise. This set of equations is to be
solved numerically in the general case.

In the limit where the lattice spacing is very small compared
to the average interparticle distance (i.e., in the low-density
limit), the θj ’s may be assumed to vary smoothly over the
lattice and the above set of equations may be approximated
by its continuous version, which turns out to be the ordinary
differential equation:

µ(r) tan θ (r) = t∇2[sin θ (r)] + 2dt sin θ (r), (11)

which also has to be solved numerically in the general case.
In the homogeneous case, where V = 0 and the system is

translationally invariant, Eq. (10) can be solved exactly, as we
can write θj = θ from which it follows that

cos θ = Min

[
1,Max

(
−1,

µ

2dt

)]
. (12)

Now that the ground state wave function has been obtained,
all physical properties of interest can easily be calculated
by computing the expectation value of the appropriate
operator. The average density of particles, for example,
becomes

ρMF = 1

N

∑
i

MF〈GS|â†
i âi |GS〉MF

= 1

2N

∑
i

(1 + cos θi) , (13)

where in the homogeneous case, this expression simplifies to

ρMF = 1
2 (1 + cos θ ) . (14)

The density of bosons is plotted in Figs. 2 and 3 for two and
three dimensions, respectively, along with the corresponding
compressibilities, as a function of the chemical potential. As
can be seen in Figs. 2(a) and 3(a), when compared against
the quantum Monte Carlo results, the Gutzwiller mean-field
approach provides a good approximation for the density close
to half filling and again at µ/(2dt) = 1 where the lattice
becomes completely filled, but deviates from the QMC results
in between. The behavior of the compressibility, as predicted
by the Gutzwiller mean-field approach, is on the other
hand qualitatively incorrect for all densities in the superfluid
regime.

Next, the free energy, Eq. (9), becomes in the homogeneous
case,


MF = 1

N
MF〈GS|Ĥ |GS〉MF

= −dt

2
sin2 θ − 1

2
µ(1 + cos θ ), (15)

and the density of bosons in the zero-momentum mode (the
condensate density) turns out to be

ρ0,MF = 1

N
MF〈GS|â†k=0âk=0|GS〉MF

= 1

4N2

∑
i,j

sin θi sin θj = 1

4
sin2 θ, (16)

where â
†
k=0 (âk=0) creates (destroys) a particle with mo-

mentum k. The superfluid density, ρs,MF, requires a special
treatment of the boundary conditions. As is well known [25],
the superfluid density is related to the “spin stiffness” of the
system: To accomplish this, one needs to compare 
 (the
free energy) of the system under periodic conditions with
the free energy under a “twist” in the boundary conditions
along one of the linear directions (say, the x direction).
In the homogeneous case we consider here, the azimuthal
angles ϕj are all identical. To implement a twist, we take
this angle to be site dependent and with a constant gradient
such that the total twist across the system in the x direction
is π , namely δϕ = ϕj+x̂ − ϕj = π/L. Within the mean-field
treatment, one can show that addition of this gradient is
equivalent to substituting t → t/d [(d − 1) + cos δϕ]. Now,
the square of the gradient twist is related to the superfluid
density via the relation 
twisted − 
 = tρsδϕ

2 which in turn
yields the simple expression,

ρs,MF = − 1

2d

∂


∂t
. (17)

At the mean-field level, this expression evaluates to that
of the condensate density. Since mean-field theory becomes
exact in infinite dimensions, the differences between both
observables should decrease as the dimension of the sys-
tems increases. This explains why the differences between
the superfluid density and the condensate density (as they
were computed with the QMC simulations in Sec. III A)
were smaller in three dimensions than they were in two
dimensions.

The quantities discussed in Eqs. (15)–(17) are plotted in
Figs. 4 and 5 for two and three dimensions, respectively. As one
can immediately see, the Gutzwiller mean-field predictions
agree rather poorly with the QMC data with respect to all
quantities but the free energy, particularly close to half filling.
Hence, the mean-field approach described in this section does
not provide an accurate picture for most observables of interest
close to half filling. Nonetheless, it is clear that the agreement
with the QMC data is better in three dimensions: As already
noted, the mean-field approximation becomes exact in the limit
where d → ∞.

2. Cluster mean field

The cluster mean-field approach is an improvement over
the simple Gutzwiller mean-field approach, which is also
applicable to harmonically trapped hardcore bosons. It was
introduced in Refs. [23] and [24] to improve the Gutzwiller
mean-field prediction for the phase diagram of hardcore bosons
when a period-two superlattice was added to the homogeneous
model. Within this approach, one starts with a variational
ansatz which is also a product state, but not of single-site wave
functions. The new ansatz is a product of wave functions each
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describing the state of a “block” of 2d sites. In two dimensions,
a block consists of 2 × 2 square cells, so the ground-state wave
function has the form:

|GS〉CMF =
⊗∏
b

⎛
⎝ ∑

i,j,k,l∈{|0〉,|1〉}
cb
ijkl|ijkl〉

⎞
⎠ . (18)

Analogously, in three dimensions, the basic block is a 2 ×
2 × 2 cubic cell [23]. As with the Gutzwiller mean-field case,
we minimize the free energy 
CMF = N−1

CMF〈GS|Ĥ |GS〉CMF

with respect to the coefficients cb
ijkl of the wave function.

Obtaining the various observables in terms of the wave
function given in Eq. (18) is straightforward, and is performed
in much the same way as with the usual mean-field approach
discussed in Sec. III B 1.

The two- and three-dimensional equations of state, as deter-
mined by the cluster mean-field approximation, are depicted by
the dashed lines in Figs. 2 and 3, respectively. The predictions
for the other observables are presented in Figs. 4 and 5. As
the figures indicate, the cluster mean-field predictions are an
improvement over the plain Gutzwiller mean-field approach
but are still far from accurately reproducing the results of the
QMC simulations.

3. Addition of spin-wave corrections

In what follows, we show that the results of the mean-field
approaches discussed above can be significantly improved
by the addition of spin-wave corrections which take into
account quantum fluctuations [26–29]. This method was also
discussed in the context of homogeneous two-dimensional
systems in Ref. [20]. In a later study [23], it was shown that
in the presence of a superlattice, spin-wave corrections do
not modify the predictions of the simple Gutzwiller mean-
field theory for the phase diagram. Here, we generalize this
method to arbitrary dimensions and general inhomogeneous
systems.

The spin-wave analysis begins with introducing a set of
local rotations to the boson creation and annihilation operators.
This is accomplished by switching to new field operators via
the transformation:

1

2
(â†

j + âj ) = 1

2
(b̂†j + b̂j ) cos θj +

(
b̂
†
j b̂j − 1

2

)
sin θj ,

1

2i
(â†

j − âj ) = 1

2i
(b̂†j − b̂j ), (19)(

â
†
j âj − 1

2

)
=

(
b̂
†
j b̂j − 1

2

)
cos θi − 1

2
(b̂†j + b̂j ) sin θj .

The new annihilation and creation operators b̂j and b̂
†
j

describe low-energy fluctuations about the mean-field ground
state—these are spin waves. They, too, obey hardcore bosons
commutation relations. Substituting these expressions into our
Hamiltonian, ignoring cubic and quartic terms in these bosonic
operators (thus assuming a dilute gas of spin waves), the new
Hamiltonian becomes a sum of a constant term Ĥ0, a linear

term Ĥ1, and a quadratic term Ĥ2, where

Ĥ0 =
∑

i

(
−µi

2
(1 − cos θi) − 1

4
t sin θiSi

)
,

Ĥ1 =
∑

i

(b̂†i + b̂i)

(
µi

2
sin θi + t

2
cos θiSi

)
, (20)

Ĥ2 =
∑
ij

[
Aij b̂

†
i b̂j + 1

2
Bij (b̂i b̂j + b̂

†
i b̂

†
j )

]
,

and the matrix coefficients in Ĥ2 are

Aij = (−µi cos θi + t sin θiSi)δi,j

− 1
2 t(1 + cos θi cos θj )δi,n(j ),

Bij = − 1
2 t(cos θi cos θj − 1)δi,n(j ). (21)

The spin-wave analysis continues with the determination of
the θi’s via the requirement that the linear term Ĥ1, Eq. (20),
vanishes. Equating each term in the sum to zero, one ends up
with the set of equations:

µi tan θi = −tSi, (22)

which is analogous to the set of equations obtained previously
when the Gutzwiller mean-field approach was discussed, and
which similarly has to be solved numerically in the general
case. In the homogeneous case where µi = µ, we have θi = θ

and therefore also Si = 2d sin θ . This leads to the solution:

cos θ = Min

[
1,Max

(
−1, − µ

2dt

)]
. (23)

Substituting the solution into the zeroth order Hamiltonian Ĥ0,
Eq. (20), the zeroth order free energy yields, as it should, the
free energy of the Gutzwiller mean-field approach:

Ĥ0 = −1

2

∑
i

µi +
∑

i

µi cos θi

2

(
1 + 1

2
tan2 θi

)
. (24)

In the homogeneous case, the above expression evaluates to

Ĥ0/N = −dt

2
sin2 θ − 1

2
µ(1 + cos θ ), (25)

which is precisely the mean-field result, Eq. (15).
In order to obtain the spin-wave corrections, one must

diagonalize the remaining quadratic term Ĥ2 in Eq. (20), for
which one assumes that the spin waves are very dilute and
hence that the hardcore constraint can be ignored. The diag-
onalization process is a lengthy but straightforward process.
Here, we shall only review the basic steps. The interested
reader is referred to Appendix B of Ref. [23] for a more
detailed account. The diagonalization process consists of the
following steps: (i) Diagonalize the matrix (A + B)(A − B)
and obtain its (non-negative) eigenvalues �2

k along with the
unnormalized eigenstates φk = {φk1, . . . ,φkl, . . . ,φkN } where
k = 1 · · · N (here, A and B are matrices whose elements
are Aij and Bij , respectively). (ii) Evaluate the set of
vectors ψk = {ψk1, . . . ,ψkl, . . . ,ψkN } through the relation
(A − B)φk = �kψk . (iii) Normalize φk and ψk according to
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∑
k φk · ψk = 1. (iv) Obtain the basic two-particle operators

through the inverses of φk and ψk:

〈b̂†kb̂m〉 = 1

4

∑
l

(
φ−1

kl − ψ−1
kl

)(
φ−1

ml − ψ−1
ml

)
,

(26)

〈b̂†kb̂†m〉 = 1

4

∑
l

(
φ−1

kl − ψ−1
kl

)(
φ−1

ml + ψ−1
ml

)
.

(v) Express any desired physical quantity in terms of the new
field operators using the transformation, Eq. (19), neglecting
cubic and quartic terms, and use the expressions for the
two-particle operators, Eqs. (26), to evaluate the resulting
expression.

As an example, consider the local density of particles.
Within the spin-wave analysis, it evaluates to

ρii = 〈â†
i âi〉 = 1

2 (1 − cos θi) + cos θi〈b̂†i b̂i〉, (27)

following which the average density becomes

ρSW = 1

N

∑
i

〈â†
i âi〉

= 1

2N

∑
i

(1 − cos θi) + 1

N

∑
i

cos θi〈b̂†i b̂i〉. (28)

The potential energy (per site) is, then,

Ep,SW = − 1

N

∑
i

µi〈â†
i âi〉

= − 1

2N

∑
i

µi (1 − cos θi) − 1

N

∑
i

µi cos θi〈b̂†i b̂i〉.

(29)

The off-diagonal terms are more cumbersome to calculate but
can still be obtained in a straightforward manner. They evaluate
to

ρij = 〈â†
i âj 〉

= 1
4 [sin θi sin θj (1 − 2〈b̂†i b̂†i 〉 − 2〈b̂†j b̂†j 〉)]
+ 1

4 〈b̂†i b̂j 〉(1 + cos θi + cos θj + cos θi cos θj )

+ 1
4 〈b̂†j b̂i〉(1 − cos θi − cos θj + cos θi cos θj )

+ 1
4 〈b̂i b̂j 〉(−1 + cos θi − cos θj + cos θi cos θj )

+ 1
4 〈b̂†i b̂†j 〉(−1 − cos θi + cos θj + cos θi cos θj ). (30)

Once these are calculated, one can obtain the kinetic energy
(per site):

Ek,SW = − t

4N

∑
i

sin θiSi + t

N

∑
i

sin θiSi〈b̂†i b̂i〉

− t

2N

∑
ij

(1 + cos θi cos θj )δi,n(j )〈b̂†i b̂j 〉, (31)

and also the momentum distribution function defined by

n(k) = 1

N

∑
lm

ρlme−ik·(r l−rm). (32)

In the homogeneous case, the above equations simplify
substantially, and one can obtain analytic expressions for the

various physical observables [23]. The spin-wave-corrected
density of particles is given by

ρSW = ρMF − 1

2N
cos θ

∑
k �=0

⎛
⎝ αk√

α2
k − β2

k

− 1

⎞
⎠ , (33)

where we have defined

αk = − t

2
[(1 + cos2 θ )γk − 2d],

βk = t

2
sin2 θγk, (34)

γk =
d∑

i=1

cos kd.

The spin-wave corrected density is plotted in Figs. 2 and 3
for the two- and three-dimensional cases, respectively. As is
evident from the two figures, the spin-wave corrected densities
provide a decisive improvement over the plain Gutzwiller
mean-field results and they are also closer to the exact
results than the cluster mean-field calculations for the most
part. Interestingly, we find that for the compressibility, the
results of the cluster mean-field approach are slightly better
than those provided by the spin-wave corrections in three
dimensions.

The spin-wave corrections also yield the following expres-
sion for the free energy:


SW = 
MF +
∑

k

(√
α2

k − β2
k − αk

)
, (35)

where the superfluid density is obtained by evaluating the
expression ρs,SW = −(2d)−1∂
SW/∂t . Finally, the density of
bosons in the zero-momentum mode is found to be

ρ0,SW = ρ0,MF − 1

2N
sin2 θ

∑
k �=0

⎛
⎝ αk√

α2
k − β2

k

− 1

⎞
⎠ . (36)

The above quantities are plotted in Figs. 4 (two dimensions)
and 5 (three dimensions). As is clear from the figures, not only
are the spin-wave-corrected predictions a major improvement
over the mean-field approaches for the thermodynamic quan-
tities, but they are essentially on top of the QMC results for
the kinetic energy and the superfluid density, and very close
to the QMC results for the free energy and the condensate
fraction.

IV. TRAPPED HARDCORE BOSON IN TWO DIMENSIONS

Having discussed the properties of the homogeneous case,
we are now ready to analyze the more experimentally relevant
case of lattice bosons in the presence of a harmonic trap. We
shall limit the discussion to the two-dimensional case in this
section and address the three-dimensional case in the next
section.

As discussed in Sec. II, in the presence of a harmonic
potential, the trapping amplitude V can be scaled out by using
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the dimensionless parameter ξ = (V/t)−1/2. In order to verify
that this is indeed the case, we have performed simulations
over a range of chemical potentials for two different trapping
amplitudes, V = 0.01 and V = 0.02. We have verified that
once properly normalized, results for local quantities for the
two trapping potentials are virtually the same.

In much the same way we analyzed the homogeneous
case in the previous section, here we obtain the equation
of state of the model along with the various thermodynamic
properties in the trapped system. We examine the accuracy of
the analytical approaches discussed in the previous section in
this inhomogeneous setup and compare them against QMC
simulations in a trap. (For the trapped bosons, however, the
equations derived in the previous section cannot be reduced
to simple analytical expressions as in the homogeneous
case; they must be computed numerically.) In addition, we
explore the regimes of validity of another approximate method,
namely, the LDA which is based on the QMC results of the
homogeneous system.

A. Equation of state

In a trapped system, where local densities change with
position, the meaning of “equation of state” may become
somewhat unclear. This is because in an inhomogeneous
trapped system the local phases are determined not only
by the onsite interaction and total filling of the system but
also through the strength of the confining potential. Fortu-
nately, it turns out that the total filling and the curvature of the
confining potential come into play only as a combination of the
two: This is the characteristic density. It is the trap equivalent
of the overall density in homogeneous systems.

The characteristic density (ρ̃) was introduced for lattice
fermions in one dimension in Refs. [31,32], where it was
shown by means of QMC simulations, that the scaled di-
mensionless variable ρ̃ = ρN (a/ξ )d can be used to generate
a state diagram of the coexisting phases in the trap in the
plane ρ̃ vs U/t in a way that is independent of the specific
values of the number of particles and the amplitude of the
confining potential. Further studies validated this approach
for the one-dimensional fermionic case within Bethe-Ansatz
schemes [33–36], and state diagrams have been obtained
for fermions in higher dimensions by means of dynamical
mean-field theory (DMFT) [37]. The same idea has been
shown to work with equal success in bosonic systems [18],
in the framework of which the concept of characteristic
density has been further discussed within the local density
approximation [38] and finite size scaling theory [39,40]. It
should be noted however that the concept of characteristic
density remains a meaningful quantity even in cases where the
LDA fails [18].

As follows from the above discussion, one can then
generate equations of state for trapped systems based on
the characteristic density. This has recently been done by
Roscilde in Ref. [30] for soft-core bosons in various superlat-
tice potentials. The equation of state for two-dimensional hard-
core bosons is given in Fig. 6(a), which shows the dependence
of the characteristic density in our two-dimensional trapped
systems in terms of the global chemical potential. The SSE
results are denoted in the figure by circles, whereas the various

FIG. 6. (Color online) (a) Equation of state and (b) density of
bosons in the center of the trap versus ρ̃ for harmonically trapped
hardcore bosons in a two-dimensional lattice (48 × 48 sites and
V = 0.02). The circles indicate the QMC results whereas the dotted,
dashed, solid, and dot-dashed lines are the Gutzwiller mean field,
the cluster mean field, the Gutzwiller mean field with spin-wave
corrections, and the LDA results, respectively. The inset in panel (a)
shows the deviations of the various approximation schemes from the
SSE data.

approximation schemes are represented by the different lines.
The inset shows the deviations of the various approximation
schemes from the QMC data. It is clear from the figure that,
at least to some extent, all approximation schemes without
exception provide a fairly accurate description of the equation
of state. The spin-wave corrected results however provide a
better match than the cluster mean-field approximation which
in turn shows only negligible improvement over the Gutzwiller
mean-field results. Figure 6(b) shows the density in the center
of the trap as a function of the characteristic density, a relation
that is very useful to experimentalists for controlling their
density profiles by only changing the total filling in their
systems once the value of the trapping potential is known.

Figure 6 also shows another useful approximation method
that is usually applied to trapped systems. This is the LDA,
which provides predictions of local quantities based on results
obtained from matching homogeneous systems. Within the
LDA, local observables of the confined system are approx-
imated by their values in the corresponding homogeneous
system, where the chemical potential of the homogeneous case
is taken to be the corresponding local chemical potential in the
trap. In general, the LDA has been shown to give reasonably
accurate descriptions of other confined systems, but is known
to fail in regions where the local potential changes rapidly
when compared with the correlation length of the relevant
phase in the homogeneous case. The LDA results here were
generated from the QMC results of the homogeneous systems
studied in the previous section. As the figure illustrates, the
LDA provides a very good approximation of the QMC results
for the density in the center of the trap, although, as expected,
it underestimates the characteristic density required to form a
Mott insulator in the center of the trap [Fig. 6(b)].

B. Local densities and compressibilities

In recent experiments, it has become possible to image
local density profiles in optical lattices in situ [41–43]. This
now allows experimentalists to explore the behavior of local
quantities in a trap. Two quantities that provide insight into
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FIG. 7. (Color online) (a) and (c) Density profiles and (b) and (d)
local compressibilities of harmonically trapped hardcore bosons in a
two-dimensional lattice as a function of the normalized distance r̃i

from the center of the trap. The top panels correspond to a
characteristic density ρ̃ ≈ 4.62 [µ/(2dt) = 0.175] for which there is
no Mott-insulating region in the center of the trap, while the bottom
panels correspond to ρ̃ ≈ 15.02 [µ/(2dt) = 1.3], in which case there
is an insulating region in the center. The SSE results are indicated
by circles (V = 0.01) and squares (V = 0.02), whereas the dotted,
dashed, solid, and dot-dashed lines correspond to the Gutzwiller mean
field, the cluster mean field, the Gutzwiller mean field with spin-wave
corrections, and the LDA results, respectively. The insets in the left
panels show the deviations of the approximation schemes from the
SSE results.

the properties of the trapped system are the local densities
and compressibilities [17]. In Fig. 7, we show the local radial
densities ρ—averaged over the azimuthal angle—and the local
compressibilities ∂ρ/∂µi both as a function of r̃i . The local
compressibility was computed as a numerical derivative of the
radial density when viewed as a function of the local chemical
potential, in much the same way as it would be derived in an
actual experiment. This is done for two values of chemical
potential: The top panels correspond to ρ̃ ≈ 4.62 [µ/(2dt) =
0.175] for which there is no Mott-insulating region in the
center of the trap, while the bottom panels correspond to ρ̃ ≈
15.02 [µ/(2dt) = 1.3], in which case there is an insulating
region in the center, as indicated by the plateau in the density
profile when r̃ is small. The QMC data presented in the figure
correspond to two different values of trap curvature which
however trace the same curve, reflecting the fact that proper
scaling eliminates the dependence of the results on the strength
of the trap. Interestingly, all approximation schemes are in
good agreement with the exact QMC results. The spin-wave
corrected results and the LDA provide the best match to the
QMC results, although as is evident from the insets of the
density profile panels, in the vicinity of the transition between

the superfluid and the insulating phase, the LDA method shows
larger deviations. This is also reflected in the compressibilities.

C. Local phases

The concept of characteristic density can also provide a
general picture of the spatially separated local phases inside
the trap as the total filling and/or trapping potential are varied.
To show that, we have computed the inner and outer radii
r̃in and r̃out which enclose the superfluid region of the bosonic
cloud. This was done by inspection of the local density profiles
obtained via the QMC simulations for the different chemical
potentials. In practice, the inner radius r̃in has been determined
as the radius inside of which the local density is greater
than 0.999 whereas r̃out was defined as the radius outside of
which the local density is lower than 0.001. We have verified
that our results are robust against small deviations from the
above values. Figure 8 shows the resulting diagram: Both radii
are plotted for two different systems (two different trapping
potentials) but with the same characteristic density at each
point in the diagram. The circles indicate the SSE results with
V = 0.01 while squares correspond to V = 0.02. The lines
in the figure indicate the predictions of the different approx-
imation schemes. This figure, too, illustrates that the concept
of characteristic density is justified even when the LDA is
not accurate, as the two systems corresponding to the two
values of trapping amplitudes trace virtually the same curve.
Furthermore, remarkably the various approximation schemes
but the LDA yield very accurate predictions of both radii.

Within the LDA, the two radii r̃in and r̃out, at which the
local densities are 〈n̂i〉 = 1 and 〈n̂i〉 = 0, respectively, can be
obtained in a straightforward manner: From the homogeneous
results discussed in the previous sections, we know that these
densities are reached at µ/(2dt) = ±1. Translating back to

FIG. 8. (Color online) Local phases of harmonically trapped
hardcore bosons in a two-dimensional lattice; the notations E, SF,
and F correspond to empty, superfluid, and completely filled lattices,
respectively. The SSE results are denoted by circles (V = 0.02) and
squares (V = 0.01), whereas the various lines are the results of
the different approximation schemes: Gutzwiller mean field (dotted
lines), cluster mean field (dashed lines), Gutzwiller mean field with
spin-wave corrections (solid lines), and LDA (dot-dashed lines).
The systems depicted here have 48 × 48 lattice sites. (Note that the
Gutzwiller and cluster mean-field results here are concealed by the
spin-wave-corrected results.)
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the harmonic trap case, this condition becomes µ/(2dt) −
r̃2
i /(2d) = ±1. Solving for r̃i for the two cases, we arrive at

r̃in,LDA = Re[
√

µ/t − 2d],
(37)

r̃out,LDA =
√

µ/t + 2d.

The two radii are indicated by the dot-dashed lines plotted in
Fig. 8. As one can see, the LDA yields a rather poor prediction
of the two radii. This is expected, however, since these radii
mark the transition from the superfluid phase to the insulating
phase in the periodic system where diverging correlations are
present.

D. Thermodynamic properties and the momentum
distribution function

To conclude the analysis of the two-dimensional case,
here we present measurements of the kinetic and total (free)
energies of the system. These are shown in Fig. 9 as a function
of the characteristic density. The SSE results are denoted by
circles, whereas the dotted, dashed, and solid lines indicate
the Gutzwiller mean field, the cluster mean field, and the
spin-wave corrected approximations. Both the kinetic energy
and the inset in the free-energy panel, indicate that spin-wave
corrected results provide a far better match than the two
mean-field methods.

Next, we analyze the momentum distribution of the model
n(k) as a function of the radial-momentum coordinate kr =√

k2
x + k2

y (where, as with the radial densities, the azimuthal
angle is averaged over). This quantity can be directly probed
in experiments with ultracold atomic gases via absorption
imaging after time of flight [1–5]. In the homogeneous case,
due to the long-range decay of one-particle correlations in
the compressible phase, the momentum distribution function
has a delta peak singularity at kr = 0. In general, in the
insulating phase, the off-diagonal one-particle correlations
decay exponentially (they are zero in our hardcore model),
yielding a broad momentum distribution (completely flat in
our case). When a harmonic trap is present, the compress-
ible and incompressible insulating phases coexist, so the

FIG. 9. (Color online) (a) Free energy and (b) kinetic energy of
harmonically trapped hardcore bosons in a two-dimensional lattice
as a function of the characteristic density. The circles indicate
the SSE results (48 × 48 sites and V = 0.02), whereas the dotted,
dashed, solid, and dot-dashed lines are the mean field, the cluster
mean field, the mean field plus spin waves, and the LDA results,
respectively. The inset of the free-energy panel shows the deviation
of the approximation schemes from the SSE results.

FIG. 10. (Color online) Momentum distribution of harmonically
trapped hardcore bosons in a two-dimensional lattice as a function
of the radial momentum kr = √

k2
x + k2

y . (a) ρ̃ ≈ 4.62 [µ/(2dt) =
0.175] and (b) ρ̃ ≈ 15.02 [µ/(2dt) = 1.3] for a system with 48 × 48
sites. The SSE results are indicated by circles whereas the lines are the
results of the approximation schemes: Gutzwiller mean field (dotted
lines), cluster mean field (dashed lines), and Gutzwiller mean field
with spin-wave corrections (solid lines).

zero-momentum peak is a smoother function of kr . Figure 10
shows the behavior of the momentum distribution for two
values of the characteristic density: ρ̃ ≈ 4.62 [µ/(2dt) =
0.175], for which there is no insulating phase at the center
of the trap, and ρ̃ ≈ 15.02 [µ/(2dt) = 1.3] for which such
a phase exists. Interestingly, it is the latter value for which
the zero-momentum peak is higher, despite the presence of
the insulating phase in the center of the trap. This is because
the system corresponding to the higher characteristic density
has a higher number of bosons in the superfluid domain that
surrounds the Mott insulator.

Looking at the Gutzwiller and cluster mean-field approx-
imations, they both provide rather accurate predictions away
from zero momentum but overestimate the peak by ≈16%. The
spin-wave corrected prediction is much better in both cases,
giving only a ≈5% error in the worst case.

V. TRAPPED HARDCORE BOSONS
IN THREE DIMENSIONS

In the previous section, we showed that the Gutzwiller
mean-field solution already provides a fairly good description
of the hardcore Bose-Hubbard model in the presence of a
harmonic potential, where the deviations from the QMC data
were shown to be rather small in most cases. This was true
both for global observables such as the energies shown in
Fig. 9, and also for local observables such as local densities and
compressibilities shown in Fig. 7. When spin-wave corrections
were taken into account, the results were improved to a point
where most errors dropped to below 1%, yielding virtually
exact results.

The encouraging results of the previous sections suggest
that in three dimensions the spin-wave corrected results should
be an even better approximation of the exact solution. In light
of this, in what follows we explore the harmonically trapped
three-dimensional hardcore Bose-Hubbard model using the
Gutzwiller mean-field approach with and without the addition
of spin-wave corrections. The three-dimensional harmonically
confined system is a good example of a system that becomes
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FIG. 11. (Color online) (a) Equation of state and (b) density
of bosons at the center of the trap for harmonically trapped hard-
core bosons in a three-dimensional lattice (24 × 24 × 24 sites and
V = 0.08). The dotted lines indicate the Gutzwiller mean field while
the solid and dot-dashed lines are the spin-wave-corrected and LDA
results, respectively.

very demanding computationally if one wants to study the
ground state for lattice sizes that are on the same order of
magnitude as the ones realized experimentally. Having a large
linear system size is critical when probing local observables
that change with distance as is the case of the harmonic
trap.

Below we present the results of the three-dimensional
analysis: The Gutzwiller mean-field (dotted lines), the spin-
wave corrected (solid lines), and the LDA (dot-dashed lines)
predictions of the equation of state (Fig. 11), the boundaries
of the local phases in the trap (Fig. 12), and the energies
(Fig. 13) of harmonically trapped hardcore bosons in three
dimensions (for a 24 × 24 × 24 lattice). These results can
be used in current experiments to understand density profiles
and other properties of the system in regimes in which the
local filling does not exceed one and the ratio U/t is very
large.

As all three figures indicate, in three dimensions the spin-
wave corrections are less pronounced than in two dimensions.

FIG. 12. (Color online) Local phases of harmonically trapped
hardcore bosons in a three-dimensional lattice; the notations E, SF,
and F correspond to empty, superfluid, and completely filled lattices,
respectively. The Gutzwiller mean-field results are denoted by the
dotted line, whereas the dashed and solid lines correspond to LDA
results and spin-wave corrected results, respectively. (Note that the
Gutzwiller mean-field results here are concealed by the spin-wave-
corrected results.)

FIG. 13. (Color online) (a) Free energy and (b) kinetic energy of
harmonically trapped hardcore bosons in a three-dimensional lattice
as a function of the characteristic density. The dotted lines indicate
the Gutzwiller mean-field results whereas the solid lines are the spin-
wave-corrected results. Here, V = 0.08.

However, they still provide a discernible improvement over
the mean-field results, particularly for the kinetic energy.

In Fig. 14, we examine some of the local properties of the
three-dimensional system, specifically, the radial density pro-
files ρ(r̃) and the local compressibilities, as they are predicted
by the Gutzwiller mean-field, the spin-wave-corrected, and the
LDA methods. The figure shows the results for two values of
chemical potential: The top panels correspond to ρ̃ ≈ 23.90
[µ/(2dt) = 0.3] for which there is no Mott-insulating region

FIG. 14. (Color online) (a) and (c) Density profiles and (b) and
(d) local compressibilities of harmonically trapped hardcore bosons
in a three-dimensional 24 × 24 × 24 lattice and (V = 0.08) as a
function of the normalized distance r̃i from the center of the trap.
The top panels correspond to a characteristic density ρ̃ ≈ 23.90
[µ/(2dt) = 0.3] for which there is no Mott-insulating region in the
center of the trap, while the bottom panels correspond to ρ̃ ≈ 118.12
[µ/(2dt) = 1.5], in which case there is an insulating region in the
center. The Gutzwiller mean-field results are indicated by the dotted
lines, whereas the dashed, solid, and dot-dashed lines correspond to
the Gutzwiller mean field, the cluster mean field, the Gutzwiller mean
field with spin-wave corrections, and the LDA results, respectively.
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in the center of the trap, while the bottom panels correspond
to ρ̃ ≈ 118.12 [µ/(2dt) = 1.5], in which case there is an
insulating region in the center, as indicated by the plateau in the
density profile when r̃ is small. As is evident from the figures,
in the vicinity of the transition between the superfluid phase
and the surrounding insulating phases which are rather abrupt,
the LDA results detach from the mean-field and spin-wave
ones. This is also reflected in the compressibilities.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have studied the ground-state properties
of homogeneous and trapped inhomogeneous systems of
hardcore bosons in two- and three-dimensional lattices. We
have obtained results both by means of quantum Monte Carlo
(SSE) simulations, and via several analytical approximation
schemes, such as the Gutzwiller mean-field approach, a cluster
mean-field method, and a spin-wave analysis which takes
quantum fluctuations into account. We studied the equation
of state and various quantities of interest such as densities
and compressibilities, condensate and superfluid density, as
well as the momentum distribution function and other basic
thermodynamic properties.

In the homogeneous case, we showed that the equation
of state can be predicted reasonably well by all approxi-
mation schemes. However, for other quantities such as the
kinetic energy, and the superfluid and condensate density, the
Gutzwiller and cluster mean-field predictions were found to
deviate considerably from the quantum Monte Carlo results,
particularly close to half filling. Interestingly, the addition
of quantum fluctuations through spin-wave corrections was
shown to yield virtually exact results for all quantities but the
compressibility.

In the inhomogeneous case, we found that for the equation
of state and some quantities, such as the onsite densities,
even the simplest method (i.e., the Gutzwiller mean-field
approach) is capable of providing a fair analytical description.
For other quantities, on the other hand, Gutzwiller mean-field
theory is not a very good approximation. For example, for
the momentum distribution function we found that it largely
overestimates the very low momenta occupations. A cluster
mean-field approach, based on larger cell sizes, did not prove
to be much of an improvement over the Gutzwiller mean field,
especially considering the large amount of additional degrees
of freedom in the ansatz.

The addition of spin-wave corrections turned out to be an
excellent approximation for all quantities, yielding virtually
exact results when compared against the QMC data. This, in
turn, allowed us to study large systems of three-dimensional
harmonically trapped hardcore bosons of sizes that would
be very demanding for QMC techniques to simulate, with
a fraction of the effort. Hence, this analytical approach can be
used to study trapped systems in which the onsite repulsion is
much larger than the bandwidth and the filling per site that is
always lower or equal to one.

Finally, we examined the validity of the local density
approximation in these harmonically trapped systems. We
showed that it provides a fairly good description of local
quantities as long as the measurement takes place away from
the superfluid-insulator boundaries, which correspond to a
phase transition in the homogeneous case.
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